JP2013079580A - Method of operating combined power generating facility and combined power generating facility - Google Patents

Method of operating combined power generating facility and combined power generating facility Download PDF

Info

Publication number
JP2013079580A
JP2013079580A JP2011218684A JP2011218684A JP2013079580A JP 2013079580 A JP2013079580 A JP 2013079580A JP 2011218684 A JP2011218684 A JP 2011218684A JP 2011218684 A JP2011218684 A JP 2011218684A JP 2013079580 A JP2013079580 A JP 2013079580A
Authority
JP
Japan
Prior art keywords
steam
control valve
steam control
valve
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011218684A
Other languages
Japanese (ja)
Inventor
Masafumi Kawamura
将史 川村
Misao Kizaki
操 鬼崎
Akihiro Matsumoto
朗弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011218684A priority Critical patent/JP2013079580A/en
Publication of JP2013079580A publication Critical patent/JP2013079580A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of operating a combined power generating facility diverting an existing steam turbine having higher thermal efficiency by minimum modification without changing the structure of a speed governing stage nozzle, and a combined power generating facility.SOLUTION: The method of operating the combined power generating facility includes a step of controlling the valve openings of the first and the second main steam regulating valves without opening the third main steam regulating valve and the fourth main steam regulating valves among four main steam regulating valves according to the flow rate of steam exhausted from an exhaust heat recovery boiler which generates steam by the use of the combustion exhaust gas of a gas turbine; a step of controlling the flow rate of main steam flowing into the speed governing stage nozzle by controlling the valve openings of the first and second steam regulating valves of the main steam regulating valves; a step of making the steam turbine work according to the flow rate of main steam to the speed governing stage nozzle; and a step of driving the generator by the work performed by the steam turbine.

Description

本発明の実施形態は、コンバインド発電設備の運転方法及びコンバインド発電設備に関
する。
Embodiments described herein relate generally to a method for operating a combined power generation facility and a combined power generation facility.

地球温暖化が世界的に叫ばれる中、大量の化石燃料を使用し、地球温暖化の原因の一つ
である二酸化炭素を多く排出する火力発電設備において、二酸化炭素の排出量を低減する
ことは急務である。この対策の一つとして、既設の蒸気タービン発電設備を、より熱効率
の高いガスタービンと組合せたコンバインド発電設備(以下、コンバインド発電設備とい
う。)に改修することが考えられる。
While global warming is screaming worldwide, reducing the amount of carbon dioxide emissions in a thermal power generation facility that uses a large amount of fossil fuel and emits a large amount of carbon dioxide, which is one of the causes of global warming. There is an urgent need. As one of the countermeasures, it is conceivable to upgrade an existing steam turbine power generation facility to a combined power generation facility (hereinafter referred to as a combined power generation facility) combined with a gas turbine having higher thermal efficiency.

しかし、これには莫大な費用を必要とし、このことが従来の蒸気タービン発電設備をコ
ンバインド発電設備にする際の大きな問題のひとつであった。この対策として、可能限り
、既設の蒸気タービン設備を流用して、その工期や建設費を低減させるという方法がある
However, this requires enormous costs, and this is one of the major problems when converting a conventional steam turbine power generation facility into a combined power generation facility. As a countermeasure, there is a method in which existing steam turbine equipment is diverted as much as possible to reduce the construction period and construction cost.

一方、コンバインド発電設備で必要とされる蒸気タービンの定格出力は、ガスタービン
の定格出力に依存して決まり、既存の蒸気タービン設備をコンバインド発電設備に改修す
る場合、既設蒸気タービンが最適な定格出力より大きくなる場合が多い。そのため、既設
の蒸気タービンをそのまま使用すると、蒸気タービンへの主蒸気流量が最適な流量より少
ないことから、蒸気タービン入口圧力が低下し、著しく性能が低下してしまう。
On the other hand, the rated output of the steam turbine required for the combined power generation facility is determined depending on the rated output of the gas turbine, and when the existing steam turbine facility is upgraded to the combined power generation facility, the existing steam turbine has the optimum rated output. Often larger. Therefore, if the existing steam turbine is used as it is, the main steam flow rate to the steam turbine is less than the optimum flow rate, so that the steam turbine inlet pressure is lowered and the performance is significantly lowered.

ここで、蒸気タービン入口圧力を上昇させる方法として、一部の段落、もしくは全部の
段落のノズルの蒸気通路部の一部を物理的に閉止(以下、部分挿入という。)する方法が
ある。しかし、当該方法では、蒸気タービンに流入する蒸気流量が変化した場合は、最適
な蒸気タービン入口圧力とするためのノズル部分挿入率は変化し、これを最適に変更する
場合は、ノズルの構造的な変更が必要となるが、特に調速段ノズルの構造的変更は、他の
段落のノズルと比較してコストが高価である。
Here, as a method of increasing the steam turbine inlet pressure, there is a method of physically closing a part of the steam passage portion of the nozzles in some or all of the paragraphs (hereinafter referred to as partial insertion). However, in this method, when the flow rate of steam flowing into the steam turbine changes, the nozzle partial insertion rate for achieving the optimum steam turbine inlet pressure changes, and when this is optimally changed, the structure of the nozzle is changed. However, the structural change of the governing stage nozzle is more expensive than the nozzles of the other paragraphs.

また、蒸気タービンの最適主蒸気流量を発生させる為に複数台のガスタービン、及び排
熱回収ボイラを設置する解決策もあるが、敷地の制約がある場合が多く、設置可能な場合
でも、工期や建設費用の増加が避けられないという問題があった。
There is also a solution to install multiple gas turbines and exhaust heat recovery boilers to generate the optimal main steam flow rate of the steam turbine, but there are often site restrictions and even if it can be installed, There was a problem that the increase in construction costs was inevitable.

特開平3−115707号公報Japanese Patent Laid-Open No. 3-115707

本発明が解決しようとする課題は、調速段ノズルの構造を変更することなく、最小限の
改造により高い熱効率を有する既設蒸気タービンを流用したコンバインド発電設備の運転
方法及びコンバインド発電設備を提供することである。
The problem to be solved by the present invention is to provide a method for operating a combined power generation facility and a combined power generation facility that uses an existing steam turbine having high thermal efficiency by minimal modification without changing the structure of the governing stage nozzle. That is.

実施形態のコンバインド発電設備の運転方法は、ガスタービンの燃焼排ガスを用いて蒸
気を発生させる排熱回収ボイラから排気される蒸気流量に応じて、4つの主蒸気加減弁の
うち、第3の主蒸気加減弁及び第4の主蒸気加減弁の弁を開けず、かつ、第1の主蒸気加
減弁及び第2の主蒸気加減弁の弁開度を制御する工程と、を有する。さらに、当該主蒸気
加減弁の当該第1の蒸気加減弁及び当該第2の蒸気加減弁の弁開度の制御によって調速段
ノズルへ流入する主蒸気の流量を制御する工程と、を有する。また、当該調速段ノズルの
主蒸気の流量に応じて当該蒸気タービンを仕事させる工程と、を有する。さらに、当該蒸
気タービンが行う仕事によって当該発電機を駆動する工程と、を有する。
The operation method of the combined power generation facility according to the embodiment includes a third main steam control valve among the four main steam control valves according to the steam flow rate exhausted from the exhaust heat recovery boiler that generates steam using the combustion exhaust gas of the gas turbine. And a step of controlling the valve opening degree of the first main steam control valve and the second main steam control valve without opening the valves of the steam control valve and the fourth main steam control valve. And a step of controlling the flow rate of the main steam flowing into the governing stage nozzle by controlling the valve opening degree of the first steam control valve and the second steam control valve of the main steam control valve. And a step of causing the steam turbine to work according to the flow rate of the main steam of the governing stage nozzle. And a step of driving the generator by work performed by the steam turbine.

また、実施形態のコンバインド設備は、ガスタービンの燃焼排ガスを用いて蒸気を発生
させる排熱回収ボイラから排気される蒸気流量に応じて、4つの蒸気加減弁のうち、第3
の蒸気加減弁及び第4の蒸気加減弁の弁を開けず、かつ、第1の蒸気加減弁及び第2の蒸
気加減弁の弁開度を制御する手段と、を有する。さらに、当該主蒸気加減弁の当該第1の
蒸気加減弁及び当該第2の蒸気加減弁の弁開度の制御によって調速段ノズルへ流入する主
蒸気の流量を制御する手段と、を有する制御部と、を有する。また、当該調速段ノズルの
主蒸気の流量に応じて蒸気タービンを仕事させる手段と、を有する。さらに、当該蒸気タ
ービンが行う仕事によって発電機を駆動する手段と、を有する。
Moreover, the combined equipment of embodiment is 3rd among four steam control valves according to the steam flow rate exhausted from the exhaust heat recovery boiler which generates steam using the combustion exhaust gas of a gas turbine.
Means for controlling the valve opening degree of the first steam control valve and the second steam control valve without opening the valves of the steam control valve and the fourth steam control valve. And control means for controlling the flow rate of the main steam flowing into the governing stage nozzle by controlling the valve openings of the first steam control valve and the second steam control valve of the main steam control valve. Part. And a means for causing the steam turbine to work in accordance with the flow rate of the main steam of the governing stage nozzle. And a means for driving the generator by work performed by the steam turbine.

第1の実施形態のコンバインド発電設備の概略図。The schematic diagram of the combined power generation equipment of a 1st embodiment. 第1の実施形態のコンバインド発電設備の高圧蒸気タービンのノズルガバニング調速方式を示す概略図。Schematic which shows the nozzle governing speed control system of the high pressure steam turbine of the combined power generation equipment of 1st Embodiment. 第1の実施形態のコンバインド発電設備の運転方法の主蒸気加減弁の弁開度を示すグラフ。The graph which shows the valve opening degree of the main steam control valve of the operating method of the combined power generation equipment of 1st Embodiment. 第1の実施形態のコンバインド発電設備の運転方法の主蒸気加減弁の制御を示すフローチャート図。The flowchart figure which shows control of the main steam control valve of the operating method of the combined power generation equipment of 1st Embodiment. 第2の実施形態のコンバインド発電設備の概略図。Schematic of the combined power generation facility of 2nd Embodiment. 第2の実施形態のコンバインド発電設備の運転方法の主蒸気加減弁の弁開度を示すグラフ。The graph which shows the valve opening degree of the main steam control valve of the operating method of the combined power generation equipment of 2nd Embodiment. 第2の実施形態のコンバインド発電設備の運転方法の主蒸気加減弁の制御を示すフローチャート図。The flowchart figure which shows control of the main steam control valve of the operating method of the combined power generation equipment of 2nd Embodiment.

以下、実施形態について図面を用いて説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(第1の実施形態)
以下、第1の実施形態の既設蒸気タービンを流用したコンバインド発電設備の運転方法に
ついて、図面を用いて説明する。なお、以下の図面の記載において、同一または類似の部
分には同一または類似の符号が付してある。
(First embodiment)
Hereinafter, an operation method of the combined power generation facility using the existing steam turbine of the first embodiment will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.

まず、第1の実施形態の既設蒸気タービンを流用したコンバインド発電設備の概略につ
いて説明する。図1は、第1の実施形態のコンバインド発電設備の運転方法の概略図であ
る。
First, an outline of a combined power generation facility using the existing steam turbine of the first embodiment will be described. FIG. 1 is a schematic diagram of an operation method of the combined power generation facility according to the first embodiment.

図1は、既設蒸気タービンへの主蒸気流量が最適な流量より少ない例として、1台のガ
スタービンとその排熱を利用して蒸気タービンを駆動するための蒸気を発生させる1台の
排熱回収ボイラと、既設蒸気タービンから構成されるコンバインド発電設備を示している
FIG. 1 shows an example in which the main steam flow rate to the existing steam turbine is less than the optimum flow rate, and one exhaust heat generating steam for driving the steam turbine using one gas turbine and its exhaust heat. A combined power generation facility composed of a recovery boiler and an existing steam turbine is shown.

図1に示すように、第1の実施形態のコンバインド発電設備は、ガスタービン10の燃
焼排ガスから蒸気タービン駆動用の蒸気を発生させる再加熱器を有する排熱回収ボイラ9
と、排熱回収ボイラ9の蒸気により駆動する高圧蒸気タービン1と、再熱器により再加熱
された高圧蒸気タービン1の排気蒸気により駆動する中圧蒸気タービン2と、中圧蒸気タ
ービン2の排気蒸気と排熱回収ボイラ9の低圧混入蒸気により駆動する低圧蒸気タービン
3と、を備える。
As shown in FIG. 1, the combined power generation facility of the first embodiment includes an exhaust heat recovery boiler 9 having a reheater that generates steam for driving a steam turbine from combustion exhaust gas of a gas turbine 10.
A high pressure steam turbine 1 driven by the steam of the exhaust heat recovery boiler 9, an intermediate pressure steam turbine 2 driven by the exhaust steam of the high pressure steam turbine 1 reheated by the reheater, and the exhaust of the intermediate pressure steam turbine 2 A low-pressure steam turbine 3 driven by the low-pressure mixed steam of the steam and the exhaust heat recovery boiler 9.

ここで、ガスタービン10は、外部から供給される燃料と空気圧縮機11から供給され
る空気を取り込んで燃焼させて、ガスタービン10の軸と同一の軸である発電機12を駆
動して発電する。また、ガスタービン10は、燃焼した後に発生する排熱を排熱回収ボイ
ラ9に排気する。
Here, the gas turbine 10 takes in fuel supplied from the outside and air supplied from the air compressor 11 and burns them to drive a generator 12 that is the same shaft as the shaft of the gas turbine 10 to generate power. To do. Further, the gas turbine 10 exhausts exhaust heat generated after combustion to the exhaust heat recovery boiler 9.

排熱回収ボイラ9は、ガスタービン10からの排熱と高圧蒸気タービン1、中圧蒸気タ
ービン2、低圧蒸気タービン3への給水または蒸気とを熱交換し、高圧蒸気タービン1、
中圧蒸気タービン2、低圧蒸気タービン3を駆動するための蒸気を発生させる。
The exhaust heat recovery boiler 9 exchanges heat between the exhaust heat from the gas turbine 10 and the feed water or steam to the high pressure steam turbine 1, the intermediate pressure steam turbine 2, and the low pressure steam turbine 3.
Steam for driving the intermediate pressure steam turbine 2 and the low pressure steam turbine 3 is generated.

また、高圧蒸気タービン1は、排熱回収ボイラ9より供給される主蒸気によって、最初
に仕事をして発電機5を駆動する。
The high-pressure steam turbine 1 works first by the main steam supplied from the exhaust heat recovery boiler 9 to drive the generator 5.

また、中圧蒸気タービン2は、蒸気の流れにおいて、高圧蒸気タービン1と低圧蒸気タ
ービン2の間に位置しており、高圧蒸気タービン1の抽気蒸気を排熱ボイラ9にて再加熱
した再熱蒸気によって仕事をして発電機5を駆動する。
The intermediate pressure steam turbine 2 is located between the high pressure steam turbine 1 and the low pressure steam turbine 2 in the steam flow, and reheats the extracted steam of the high pressure steam turbine 1 reheated by the exhaust heat boiler 9. The generator 5 is driven by working with steam.

さらに、低圧蒸気タービン3は、蒸気の流れにおいて最後に仕事をし、発電機5を駆動
して発電する。また、その排気は排気を凝縮する復水器4に導入される。また、復水器4
において凝縮された低圧タービン3の排気は、復水器4と復水ポンプ6、グランド蒸気コ
ンデンサ7および給水ポンプ8を介して、排熱回収ボイラ9に供給される。
Furthermore, the low-pressure steam turbine 3 finally works in the steam flow, and drives the generator 5 to generate electricity. The exhaust gas is introduced into a condenser 4 that condenses the exhaust gas. In addition, condenser 4
The exhaust gas from the low-pressure turbine 3 condensed in step S3 is supplied to the exhaust heat recovery boiler 9 through the condenser 4, the condensate pump 6, the ground steam condenser 7, and the feed water pump 8.

なお、第1の実施形態では、既設蒸気タービンとは、既に蒸気タービン発電設備として
建設され、運用もしくは休止・廃止されている蒸気タービンをいう。
In the first embodiment, the existing steam turbine refers to a steam turbine that has already been constructed as a steam turbine power generation facility and has been operated, suspended, or abolished.

ここで、制御部22は、図1の点線矢印に示すように、高圧蒸気タービン1、中圧蒸気
タービン2、低圧蒸気タービン3の主蒸気量を常に計測している。さらに、制御部22は
、図1の点線矢印に示すように、高圧蒸気タービン1の後述する主蒸気加減弁20の第1
弁乃至第4弁の弁開度を計測するとともに、当該主蒸気加減弁20の第1弁乃至第4弁の
制御する制御信号を高圧蒸気タービン1に送信している。
Here, the control unit 22 always measures the main steam amounts of the high-pressure steam turbine 1, the intermediate-pressure steam turbine 2, and the low-pressure steam turbine 3 as indicated by dotted arrows in FIG. 1. Furthermore, the control unit 22 is configured as a first steam control valve 20 of the high-pressure steam turbine 1 to be described later, as indicated by a dotted arrow in FIG.
The valve opening degree of the valve to the fourth valve is measured, and a control signal controlled by the first valve to the fourth valve of the main steam control valve 20 is transmitted to the high-pressure steam turbine 1.

ここで、第1の実施形態のように、既設蒸気タービン発電設備を用いてコンバインド発
電設備にする場合には、排熱回収ボイラ9から蒸気タービンを駆動するために、高圧蒸気
タービン1に供給される主蒸気流量が最適な流量より少なくなっている。第1の実施形態
では、例えば、最適流量の1/2であったとする。このような高圧蒸気タービン1への主
蒸気流量では、高圧蒸気タービン1の、後述する調速ノズル21の入口圧力が大きく低下
してしまい、蒸気タービンである高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タ
ービン3の仕事量が低下してしまう。
Here, when the existing steam turbine power generation facility is used as the combined power generation facility as in the first embodiment, the exhaust heat recovery boiler 9 supplies the high pressure steam turbine 1 to drive the steam turbine. The main steam flow is less than the optimum flow. In the first embodiment, for example, it is assumed that the flow rate is ½ of the optimum flow rate. With such a main steam flow to the high-pressure steam turbine 1, the inlet pressure of the governing nozzle 21 to be described later of the high-pressure steam turbine 1 is greatly reduced, and the high-pressure steam turbine 1 and the medium-pressure steam turbine 2 that are steam turbines. The work volume of the low-pressure steam turbine 3 is reduced.

次に、第1の実施形態のコンバインド発電設備の運転方法について、説明する。図2は
、第1の実施形態のコンバインド発電設備の高圧蒸気タービンのノズルガバニング調速方
式を示す概略図であり、図3は、第1の実施形態のコンバインド発電設備の運転方法の主
蒸気加減弁の弁開度を示すグラフである。
Next, a method for operating the combined power generation facility according to the first embodiment will be described. FIG. 2 is a schematic diagram illustrating a nozzle governing speed control method for the high-pressure steam turbine of the combined power generation facility according to the first embodiment, and FIG. 3 is a main steam of the operation method of the combined power generation facility according to the first embodiment. It is a graph which shows the valve opening degree of an adjustment valve.

まず、第1の実施形態のコンバインド発電設備の運転方法は、コンバインド発電設備に
改造を行うノズルガバニング調速方式を有する既設蒸気タービン発電設備を対象とする。
First, the operation method of the combined power generation facility according to the first embodiment is intended for an existing steam turbine power generation facility having a nozzle governing speed control system that modifies the combined power generation facility.

ここで、図2に示すように、ノズルガバニング調速方式とは、高圧蒸気タービン1の主
蒸気加減弁20と、蒸気タービンの主蒸気流れの最も上流であって主蒸気が最初に流入す
る調速段ノズル21を用いて、主蒸気流量を主蒸気加減弁20の開弁数と各弁の弁開度に
よって調整する方式である。
Here, as shown in FIG. 2, the nozzle governing speed control system is the main steam control valve 20 of the high-pressure steam turbine 1 and the main steam first upstream of the main steam flow of the steam turbine. This is a system in which the governing stage nozzle 21 is used to adjust the main steam flow rate according to the number of opened main steam control valves 20 and the valve opening degree of each valve.

具体的には、図2に示すように、高圧蒸気タービン1の主蒸気加減弁20は、それぞれ
2つの弁を持っている。例えば、主蒸気加減弁20は、図面右から左方向に、第1弁、第
2弁、第3弁、第4弁を備えている。主蒸気加減弁20を介して流れてくる主蒸気は、高
圧蒸気タービン1の調速段ノズル21に流れ込む。
Specifically, as shown in FIG. 2, the main steam control valve 20 of the high-pressure steam turbine 1 has two valves. For example, the main steam control valve 20 includes a first valve, a second valve, a third valve, and a fourth valve from the right to the left in the drawing. The main steam flowing through the main steam control valve 20 flows into the governing stage nozzle 21 of the high-pressure steam turbine 1.

ここで、高圧蒸気タービン1の調速段ノズル21の入り口は、主蒸気加減弁20の弁数
に対応するように、4つの入り口に区切られている。高圧蒸気タービン1の調速段ノズル
21の入り口の番号は、高圧蒸気タービン1の主蒸気加減弁20の第1弁から第4弁まで
の番号に対応しており、反時計回りに、主蒸気加減弁20の第1弁から第4弁へ流れ込む
主蒸気の流れを受け入れる。
Here, the inlet of the governing stage nozzle 21 of the high-pressure steam turbine 1 is divided into four inlets so as to correspond to the number of the main steam control valves 20. The number of the inlet of the governing stage nozzle 21 of the high-pressure steam turbine 1 corresponds to the number from the first valve to the fourth valve of the main steam control valve 20 of the high-pressure steam turbine 1, and the main steam is counterclockwise. The flow of the main steam which flows into the 4th valve from the 1st valve of the control valve 20 is received.

さらに、主蒸気の流れの方向によって、高圧蒸気タービン1の調速段ノズル21には、
高圧蒸気タービン1の主蒸気加減弁20の第1弁に対応する入り口GV#1では、図面左
下の矢印方向に蒸気による力が発生し、高圧蒸気タービン1の主蒸気加減弁20の第2弁
に対する入り口GV#2では、図面右下の矢印方向に蒸気による力が発生することとなる
。同様に、高圧蒸気タービン1の主蒸気加減弁20の第3弁に対応する入り口GV#3で
は、図面右上の矢印方向に蒸気による力が発生し、高圧蒸気タービン1の主蒸気加減弁2
0の第4弁に対する入り口GV#4では、図面左上の矢印方向に蒸気による力が発生する
こととなる。
Furthermore, depending on the flow direction of the main steam, the governing stage nozzle 21 of the high-pressure steam turbine 1 has
At the entrance GV # 1 corresponding to the first valve of the main steam control valve 20 of the high-pressure steam turbine 1, a force due to steam is generated in the arrow direction at the lower left of the drawing, and the second valve of the main steam control valve 20 of the high-pressure steam turbine 1 is generated. At the entrance GV # 2, a force due to steam is generated in the direction of the arrow at the lower right of the drawing. Similarly, at the entrance GV # 3 corresponding to the third valve of the main steam control valve 20 of the high-pressure steam turbine 1, a force due to steam is generated in the arrow direction at the upper right of the drawing, and the main steam control valve 2 of the high-pressure steam turbine 1 is generated.
At the entrance GV # 4 with respect to the fourth valve of 0, a force by steam is generated in the arrow direction at the upper left of the drawing.

ここで、第1の実施形態のコンバインド発電設備の運転方法は、高圧蒸気タービン1の
入口の圧力を上昇させる方法として、調速段ノズル21を部分挿入とすることとした。こ
こで、部分挿入とは、高圧蒸気タービン1の蒸気通路部を構成する調速段ノズル21の蒸
気が流れる部分の一部を閉止することである。
Here, in the operation method of the combined power generation facility of the first embodiment, as the method for increasing the pressure at the inlet of the high-pressure steam turbine 1, the governing stage nozzle 21 is partially inserted. Here, the partial insertion is to close a part of the portion through which the steam of the governing stage nozzle 21 constituting the steam passage portion of the high-pressure steam turbine 1 flows.

また、第1の実施形態のコンバインド発電設備の運転方法は、調速段ノズル21を部分
挿入する方法として、全4弁から構成される主蒸気加減弁20及び第2主蒸気加減弁21
のアドミッションにより、部分挿入することとした。ここで、アドミッションとは、主蒸
気加減弁20の開弁パターンを意味する。
Moreover, the operating method of the combined power generation equipment of 1st Embodiment is the main steam control valve 20 and the 2nd main steam control valve 21 which consist of all four valves as a method of inserting the speed control stage nozzle 21 partially.
It was decided to insert part by admission. Here, the admission means a valve opening pattern of the main steam control valve 20.

ここで、図3、図4を参照して、第1の実施形態のコンバインド発電設備の運転方法の
主蒸気加減弁の弁開度の制御を示す。図3は、第1の実施形態のコンバインド発電設備の
運転方法の主蒸気加減弁の弁開度を示すグラフ、図4は、第1の実施形態のコンバインド
発電設備の運転方法の主蒸気加減弁の制御を示すフローチャート図である。
Here, with reference to FIG. 3 and FIG. 4, control of the valve opening degree of the main steam control valve of the operation method of the combined power generation facility of the first embodiment is shown. FIG. 3 is a graph showing the valve opening of the main steam control valve of the combined power generation facility operating method of the first embodiment, and FIG. 4 is the main steam control valve of the combined power generation facility operating method of the first embodiment. It is a flowchart figure which shows this control.

図3に示すように、図3の縦軸は、主蒸気加減弁20である主蒸気加減弁の弁開度を表
し、横軸は、コンバインド化改修後の既設蒸気タービンである高圧蒸気タービン1、中圧
蒸気タービン2、低圧蒸気タービン3の負荷を表している。
As shown in FIG. 3, the vertical axis in FIG. 3 represents the valve opening of the main steam control valve that is the main steam control valve 20, and the horizontal axis is the high-pressure steam turbine 1 that is an existing steam turbine after combined modification. , The loads of the intermediate pressure steam turbine 2 and the low pressure steam turbine 3 are shown.

ここで、図3では、主蒸気加減弁20の弁開度は、ガスタービン10とその燃焼排ガス
を用いて蒸気タービン駆動用蒸気を発生させる排熱回収ボイラ9からの蒸気流量に併せて
、制御部22によって、最適な弁開度パターンを選定・固定して、蒸気タービンである高
圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タービン3の効率の良い運転を行うよ
うに制御される。ここで、図3では、例えば、最適な弁開度数が2弁であることから、全
4弁中4つの弁の弁開度を制御する制御方式から、全4弁中2つの弁の弁開度を同時に制
御する制御方式に改修して運転する場合について、以下説明する。
Here, in FIG. 3, the valve opening degree of the main steam control valve 20 is controlled in accordance with the steam flow rate from the exhaust heat recovery boiler 9 that generates steam for driving the steam turbine using the gas turbine 10 and its combustion exhaust gas. By selecting and fixing an optimal valve opening pattern by the unit 22, the high pressure steam turbine 1, the intermediate pressure steam turbine 2, and the low pressure steam turbine 3, which are steam turbines, are controlled to perform efficient operation. Here, in FIG. 3, for example, since the optimal number of valve openings is two, the control method for controlling the valve openings of four of all four valves is used to open two of the four valves. The case where the operation is modified to the control method for controlling the degree simultaneously will be described below.

図3、図4に示すように、主蒸気加減弁20のうち、主蒸気加減弁20の第1弁及び第
2弁の弁開度について、制御部22は、コンバインド化改修後の既設蒸気タービンである
高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タービン3への主蒸気流量が大きく
なるにつれて(図4のステップ1のYes)、徐々に弁開度を大きくしていき、既設蒸気タ
ービンである高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タービン3への主蒸気
流量が最大のときに(図4のステップ2のYes)、主蒸気加減弁20の第3弁及び第4弁
の弁は開けず、かつ、主蒸気加減弁20の第1弁及び第2弁の弁開度が100%となるよ
うに制御する(図4のステップS3)。つまり、図2に示す蒸気加減弁20の第1弁、第2
弁に対応する入り口GV#1、GV#2に主蒸気が流れ込むことになり、蒸気加減弁20
の第3弁、第4弁に対応する入り口GV#3、GV#4には主蒸気が流れ込まないことと
なる。
As shown in FIG. 3 and FIG. 4, among the main steam control valves 20, the control unit 22 uses the existing steam turbine after the combined retrofit for the first and second valve openings of the main steam control valve 20. As the main steam flow to the high-pressure steam turbine 1, medium-pressure steam turbine 2, and low-pressure steam turbine 3 increases (Yes in step 1 in FIG. 4), the valve opening is gradually increased, and the existing steam turbine When the main steam flow rate to the high-pressure steam turbine 1, the intermediate-pressure steam turbine 2, and the low-pressure steam turbine 3 is maximum (Yes in step 2 in FIG. 4), the third valve and the fourth valve of the main steam control valve 20 Is not opened, and the opening degree of the first valve and the second valve of the main steam control valve 20 is controlled to be 100% (step S3 in FIG. 4). That is, the first and second valves of the steam control valve 20 shown in FIG.
The main steam flows into the inlets GV # 1 and GV # 2 corresponding to the valves, and the steam control valve 20
The main steam does not flow into the inlets GV # 3 and GV # 4 corresponding to the third and fourth valves.

ここで、主蒸気加減弁20の第1弁及び第2弁を同時に制御するのは、主蒸気の流れに
よって発生する力によって、高圧蒸気タービン1が振動を起こさないようにするためであ
る。
Here, the reason why the first valve and the second valve of the main steam control valve 20 are simultaneously controlled is to prevent the high-pressure steam turbine 1 from vibrating due to the force generated by the flow of the main steam.

なお、主蒸気加減弁20の第3弁及び第4弁の弁を開けない制御を行うことにより、こ
れまで、主蒸気流量に合わせて、全4弁の弁開度を制御する制御方式であったものが、主
蒸気加減弁20の第3弁及び第4弁の弁は開かないように制御され、主蒸気加減弁20の
第1弁及び第2弁のみの弁開度を制御する制御方式となる。
In addition, by performing control that does not open the third valve and the fourth valve of the main steam control valve 20, a control method for controlling the valve openings of all four valves according to the main steam flow has been used so far. However, the third and fourth valves of the main steam control valve 20 are controlled not to open, and the control system controls the valve openings of only the first and second valves of the main steam control valve 20. It becomes.

また、蒸気タービンである高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タービ
ン3の回転数が変動した場合の制御としては、制御部21は、調速段ノズル21の部分挿
入においては、主蒸気加減弁20の第1弁から第4弁の弁開度を適正に制御する。
In addition, as a control when the rotation speeds of the high pressure steam turbine 1, the intermediate pressure steam turbine 2, and the low pressure steam turbine 3, which are steam turbines, are varied, the control unit 21 is mainly used in the partial insertion of the governing stage nozzle 21. The valve opening degree of the first to fourth valves of the steam control valve 20 is appropriately controlled.

以上から、第1の実施形態のコンバインド発電設備の運転方法では、従来、主蒸気加減
弁20の全4弁の弁開度を制御する制御方式であったものが、主蒸気加減弁20の第3弁
及び第4弁の弁は開かないように制御して、図2に示す蒸気加減弁20の第3弁、第4弁
に対応する入り口GV#3、GV#4には主蒸気が流れ込まないようにするとともに、主
蒸気加減弁20の第1弁及び第2弁のみの弁開度を制御して、図2に示す蒸気加減弁20
の第1弁、第2弁に対応する入り口GV#1、GV#2には主蒸気が流れ込む制御方式に
して運転することで、高圧蒸気タービン1の入口圧力を高圧にすることが可能となる。よ
って、既設蒸気タービンである高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気ター
ビン3の性能を向上させることができる。
From the above, in the operation method of the combined power generation facility of the first embodiment, the control method for controlling the valve opening degree of all four valves of the main steam control valve 20 in the related art is the first of the main steam control valves 20. The main valves flow into the inlets GV # 3 and GV # 4 corresponding to the third and fourth valves of the steam control valve 20 shown in FIG. 2 and controlling the valve opening degree of only the first valve and the second valve of the main steam control valve 20, the steam control valve 20 shown in FIG.
It is possible to increase the inlet pressure of the high-pressure steam turbine 1 by operating the inlet GV # 1 and GV # 2 corresponding to the first valve and the second valve in a control system in which the main steam flows. . Therefore, the performance of the high-pressure steam turbine 1, the intermediate-pressure steam turbine 2, and the low-pressure steam turbine 3 that are existing steam turbines can be improved.

なお、第1の実施形態に挙げたガスタービン10、排熱回収ボイラ9の台数は、あくま
でも、既設蒸気タービンである高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気ター
ビン3への流入主蒸気流量が最適流量よりも少ない場合の例であり、各機器の数はこの限
りではない。
The number of gas turbines 10 and exhaust heat recovery boilers 9 listed in the first embodiment is only the main steam flowing into the high-pressure steam turbine 1, the intermediate-pressure steam turbine 2, and the low-pressure steam turbine 3, which are existing steam turbines. This is an example where the flow rate is less than the optimum flow rate, and the number of devices is not limited to this.

(第2の実施形態)
以下、第2の実施形態のコンバインド発電設備の運転方法について、図面を用いて説明す
る。なお、以下の図面の記載において、同一または類似の部分には同一または類似の符号
が付してある。
(Second Embodiment)
Hereinafter, the operation method of the combined power generation facility of 2nd Embodiment is demonstrated using drawing. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.

第2の実施形態が第1の実施形態と異なる点は、ガスタービン15、空気圧縮機16、
発電機17、排熱回収ボイラ14、給水ポンプ13をさらに有している点であり、ガスタ
ービン15、空気圧縮機16、発電機17、排熱回収ボイラ14、給水ポンプ13の表記
以外は第1の実施形態と同じであるので、同一部分には、同一符号を付して詳細な説明は
省略する。
The second embodiment differs from the first embodiment in that the gas turbine 15, the air compressor 16,
The generator 17, the exhaust heat recovery boiler 14, and the feed water pump 13 are further provided. The gas turbine 15, the air compressor 16, the generator 17, the exhaust heat recovery boiler 14, and the feed water pump 13 are not described. Since it is the same as that of 1 embodiment, the same code | symbol is attached | subjected to the same part and detailed description is abbreviate | omitted.

図5は、第2の実施形態のコンバインド発電設備の概略図である。図5は、既設蒸気タ
ービンへの流入主蒸気流量が最適である例として、2台のガスタービン10、15とその
排熱を利用して蒸気タービンを駆動するための蒸気を発生させる2台の排熱回収ボイラ9
、14と、既設蒸気タービンから構成されるコンバインド発電設備である。
FIG. 5 is a schematic diagram of the combined power generation facility of the second embodiment. FIG. 5 shows an example in which the flow rate of the main steam flowing into the existing steam turbine is optimal. Two gas turbines 10 and 15 and two units that generate steam for driving the steam turbine using the exhaust heat thereof are shown. Waste heat recovery boiler 9
, 14 and a combined power generation facility composed of existing steam turbines.

ここで、図5に示すように、第2の実施形態のコンバインド発電設備は、ガスタービン
10、15の燃焼排ガスから蒸気タービン駆動用の蒸気を発生させる再加熱器を有する排
熱回収ボイラ9、14と、排熱回収ボイラ9、14の主蒸気により駆動する高圧蒸気ター
ビン1と、再熱器により再加熱された高圧蒸気タービン1の排気により駆動する中圧蒸気
タービン2と、中圧蒸気タービン2の排気蒸気と排熱回収ボイラ9、14の低圧混入蒸気
により駆動する低圧蒸気タービン3と、を備える。
Here, as shown in FIG. 5, the combined power generation facility of the second embodiment includes an exhaust heat recovery boiler 9 having a reheater that generates steam for driving the steam turbine from the combustion exhaust gas of the gas turbines 10 and 15. 14, a high pressure steam turbine 1 driven by main steam of the exhaust heat recovery boilers 9, 14, an intermediate pressure steam turbine 2 driven by exhaust of the high pressure steam turbine 1 reheated by a reheater, and an intermediate pressure steam turbine And the low-pressure steam turbine 3 driven by the low-pressure mixed steam of the exhaust heat recovery boilers 9 and 14.

ここで、ガスタービン10、15は、外部から供給される燃料と空気圧縮機11、16
から供給される空気を取り込んで燃焼させて、ガスタービン10、15の軸とはそれぞれ
同一の軸である発電機12、17を駆動して発電する。また、ガスタービン10、15は
、燃焼した後に発生する排熱を排熱回収ボイラ9、14に排気する。
Here, the gas turbines 10 and 15 include fuel and air compressors 11 and 16 supplied from the outside.
The air supplied from the engine is taken in and burned, and the generators 12 and 17 having the same shafts as the shafts of the gas turbines 10 and 15 are driven to generate power. The gas turbines 10 and 15 exhaust the exhaust heat generated after combustion to the exhaust heat recovery boilers 9 and 14.

排熱回収ボイラ9、14は、ガスタービン10、15からの排熱と高圧蒸気タービン1
、中圧蒸気タービン2、低圧蒸気タービン3への給水または蒸気とを熱交換し、高圧蒸気
タービン1、中圧蒸気タービン2、低圧蒸気タービン3を駆動するための蒸気を発生させ
る。
The exhaust heat recovery boilers 9 and 14 are connected to the exhaust heat from the gas turbines 10 and 15 and the high pressure steam turbine 1.
The intermediate water steam turbine 2 and the low pressure steam turbine 3 are heat-exchanged with water or steam to generate steam for driving the high pressure steam turbine 1, the intermediate pressure steam turbine 2 and the low pressure steam turbine 3.

また、高圧蒸気タービン1は、排熱回収ボイラ9、14より供給される主蒸気によって
最初に仕事をして発電機5を駆動する。
Further, the high-pressure steam turbine 1 drives the generator 5 by first performing work with the main steam supplied from the exhaust heat recovery boilers 9 and 14.

また、中圧蒸気タービン2は、蒸気の流れにおいて、高圧蒸気タービン1と低圧蒸気タ
ービン2の間に位置しており、高圧蒸気タービン1の抽気蒸気を排熱ボイラ9にて再加熱
した再熱蒸気によって仕事をして発電機5を駆動する。
The intermediate pressure steam turbine 2 is located between the high pressure steam turbine 1 and the low pressure steam turbine 2 in the steam flow, and reheats the extracted steam of the high pressure steam turbine 1 reheated by the exhaust heat boiler 9. The generator 5 is driven by working with steam.

さらに、低圧蒸気タービン3は、蒸気の流れにおいて最後に仕事をし、発電機5を駆動
して発電する。また、その排気は排気を凝縮する復水器4に導入される。また、復水器4
において凝縮された低圧蒸気タービン3の排気は、復水器4と復水ポンプ6、グランド蒸
気コンデンサ7および給水ポンプ8、給水ポンプ13を介して、排熱回収ボイラ9、14
に供給される。
Furthermore, the low-pressure steam turbine 3 finally works in the steam flow, and drives the generator 5 to generate electricity. The exhaust gas is introduced into a condenser 4 that condenses the exhaust gas. In addition, condenser 4
The exhaust gas from the low-pressure steam turbine 3 condensed in the above is discharged into the exhaust heat recovery boilers 9 and 14 via the condenser 4 and the condensate pump 6, the ground steam condenser 7, the feed water pump 8, and the feed water pump 13.
To be supplied.

また、制御部22は、図5の点線矢印に示すように、高圧蒸気タービン1、中圧蒸気タ
ービン2、低圧蒸気タービン3の主蒸気量を常に計測している。さらに、制御部22は、
図5の点線矢印に示すように、高圧蒸気タービン1の後述する主蒸気加減弁20の第1弁
乃至第4弁の弁開度を計測するとともに、当該主蒸気加減弁20の第1弁乃至第4弁の弁
開度を制御する制御信号を高圧蒸気タービン1に送信している。また、制御部22は、図
5の点線矢印に示すように、排熱回収ボイラ9、14からの蒸気流量を常に計測している
Further, the control unit 22 constantly measures the main steam amounts of the high-pressure steam turbine 1, the intermediate-pressure steam turbine 2, and the low-pressure steam turbine 3 as indicated by the dotted arrows in FIG. 5. Furthermore, the control unit 22
As shown by the dotted line arrows in FIG. 5, the valve openings of the first to fourth valves of the main steam control valve 20, which will be described later, of the high-pressure steam turbine 1 are measured, and the first valve to the main steam control valve 20 of the main steam control valve 20 are measured. A control signal for controlling the valve opening degree of the fourth valve is transmitted to the high-pressure steam turbine 1. Moreover, the control part 22 is always measuring the steam flow rate from the exhaust heat recovery boilers 9 and 14, as shown by the dotted line arrow of FIG.

ここで、第2の実施形態の既設蒸気タービン発電設備を用いたコンバインド発電設備で
は、高圧蒸気タービン1への主蒸気流量が最適な流量とする。このような主蒸気条件では
、第1の実施形態の既設蒸気タービンを流用したコンバインド発電設備の運転方法では、
特に、高圧蒸気タービン1の入口圧力が過剰に高くなり、許容圧力を超えて、機器の損傷
を招く可能性がある。
Here, in the combined power generation facility using the existing steam turbine power generation facility of the second embodiment, the main steam flow rate to the high-pressure steam turbine 1 is set to an optimal flow rate. Under such main steam conditions, in the combined power generation facility operation method using the existing steam turbine of the first embodiment,
In particular, the inlet pressure of the high-pressure steam turbine 1 becomes excessively high, and may exceed the allowable pressure, resulting in equipment damage.

次に、第2の実施形態のコンバインド発電設備の運転方法について、説明する。図6は
、第2の実施形態の既設蒸気タービンを流用したコンバインド発電設備の運転方法の主蒸
気加減弁の弁開度を示すグラフ、図7は、第2の実施形態のコンバインド発電設備の運転
方法の主蒸気加減弁の制御を示すフローチャート図である。
Next, a method for operating the combined power generation facility according to the second embodiment will be described. FIG. 6 is a graph showing the valve opening of the main steam control valve in the operation method of the combined power generation facility using the existing steam turbine of the second embodiment, and FIG. 7 is the operation of the combined power generation facility of the second embodiment. It is a flowchart figure which shows control of the main steam control valve of a method.

図6、図7を参照して、第2の実施形態のコンバインド発電設備の運転方法の主蒸気加
減弁の弁開度の制御を示す。図6の縦軸は、主蒸気加減弁20である主蒸気加減弁の弁開
度を表し、横軸は、コンバインド化改修後の既設蒸気タービンである高圧蒸気タービン1
、中圧蒸気タービン2、低圧蒸気タービン3の負荷を表している。
With reference to FIG. 6, FIG. 7, control of the valve opening degree of the main steam control valve of the operation method of the combined power generation equipment of 2nd Embodiment is shown. The vertical axis of FIG. 6 represents the valve opening degree of the main steam control valve, which is the main steam control valve 20, and the horizontal axis represents the high-pressure steam turbine 1 that is an existing steam turbine after combined modification.
, The loads of the intermediate pressure steam turbine 2 and the low pressure steam turbine 3 are shown.

ここで、図6では、主蒸気加減弁20の弁開度は、ガスタービン10、15とその燃焼
排ガスを用いて蒸気タービン駆動用蒸気を発生させる排熱回収ボイラ9、14からの蒸気
流量に併せて、制御部22によって、最適な弁開度パターンに選定・固定して、蒸気ター
ビンである高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タービン3の効率の良い
運転を行うように制御される。ここで、図6では、例えば、全4弁中4つの弁の弁開度を
制御する制御方式に改修する場合について、以下説明する。
Here, in FIG. 6, the valve opening degree of the main steam control valve 20 is the steam flow rate from the exhaust heat recovery boilers 9 and 14 that generate steam turbine driving steam using the gas turbines 10 and 15 and the combustion exhaust gas thereof. At the same time, the control unit 22 selects and fixes the optimum valve opening pattern so that the high-pressure steam turbine 1, the intermediate-pressure steam turbine 2, and the low-pressure steam turbine 3 that are the steam turbines are operated efficiently. Is done. Here, in FIG. 6, for example, a case where the control system is modified to control the valve opening degrees of four of all four valves will be described below.

図6、図7に示すように、制御部22は、主蒸気加減弁20のうち、主蒸気加減弁20
の第1弁及び第2弁の弁開度について、コンバインド化改修後の既設蒸気タービンである
高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タービン3への主蒸気流量が大きく
なるにつれて(図7のステップS11のYes)、徐々に弁開度を大きくしていき、排熱回
収ボイラ9、14のうち1台からの供給蒸気量が定格流量になったときに(図7のステッ
プS12のYes)、主蒸気加減弁20の第1弁及び第2弁の弁開度が100%となるよ
うに制御する(図7のステップS13)。つまり、図2に示す蒸気加減弁20の第1弁、第
2弁に対応する入り口GV#1、GV#2に主蒸気が流れ込むことになる。ここで、主蒸
気加減弁20の第1弁及び第2弁を同時に制御するのは、主蒸気の流れによって発生する
力によって、高圧蒸気タービン1が振動を起こさないようにするためである。
As shown in FIGS. 6 and 7, the control unit 22 includes the main steam control valve 20 among the main steam control valves 20.
As for the valve opening degree of the first valve and the second valve, as the main steam flow rate to the high-pressure steam turbine 1, the intermediate-pressure steam turbine 2, and the low-pressure steam turbine 3 which are the existing steam turbines after the combined retrofit increases (FIG. 7 (Yes in step S11), the valve opening is gradually increased, and when the amount of steam supplied from one of the exhaust heat recovery boilers 9 and 14 reaches the rated flow rate (in step S12 in FIG. 7). Yes), control is performed so that the valve openings of the first and second valves of the main steam control valve 20 become 100% (step S13 in FIG. 7). That is, the main steam flows into the inlets GV # 1 and GV # 2 corresponding to the first valve and the second valve of the steam control valve 20 shown in FIG. Here, the reason why the first valve and the second valve of the main steam control valve 20 are simultaneously controlled is to prevent the high-pressure steam turbine 1 from vibrating due to the force generated by the flow of the main steam.

さらに、制御部22は、主蒸気加減弁20の第3弁及び第4弁の弁開度については、主
蒸気加減弁20の第1弁及び第2弁の弁開度が全開近くになった後、徐々に弁開度を大き
くしていき、排熱回収ボイラ9、14の2台からの供給蒸気量が定格流量になったときに
(図7のステップS14のYes)、主蒸気加減弁20の第3弁及び第4弁の弁開度が、各
々100%近傍となるように制御する(図7のステップS15)。つまり、図2に示す蒸気
加減弁20の第3弁、第4弁に対応する入り口GV#3、GV#4に主蒸気が流れ込むこ
とになる。
Furthermore, regarding the valve opening degrees of the third valve and the fourth valve of the main steam control valve 20, the control unit 22 has the valve openings of the first valve and the second valve of the main steam control valve 20 close to full open. After that, gradually increase the valve opening, when the amount of steam supplied from the two exhaust heat recovery boilers 9 and 14 reaches the rated flow rate.
(Yes in step S14 in FIG. 7), the third valve and the fourth valve of the main steam control valve 20 are controlled to be close to 100% (step S15 in FIG. 7). That is, the main steam flows into the inlets GV # 3 and GV # 4 corresponding to the third and fourth valves of the steam control valve 20 shown in FIG.

以上から、第2の実施形態のコンバインド発電設備の運転方法では、第1の実施形態と
比較して、ガスタービン15、排熱回収ボイラ14をさらに備えることで、主蒸気加減弁
20の全4弁の弁開度を制御する制御方式にして定格出力での運用を行うことで、高圧蒸
気タービン1の入口圧力を高圧にすることが可能であるとともに、高圧蒸気タービン1の
入口圧力が過剰に高くなり、許容圧力を超えて、機器の損傷を招くことを防止することが
できる。このような弁開度の制御方式によって、高圧蒸気タービン1の調速ノズル21へ
の主蒸気量が最適な流量となり、既設蒸気タービンである高圧蒸気タービン1、中圧蒸気
タービン2、低圧蒸気タービン3の性能を向上させることができる。
From the above, in the operation method of the combined power generation facility of the second embodiment, as compared with the first embodiment, the gas turbine 15 and the exhaust heat recovery boiler 14 are further provided, so that all four main steam control valves 20 can be provided. By operating at the rated output by using a control system that controls the valve opening, the inlet pressure of the high-pressure steam turbine 1 can be increased, and the inlet pressure of the high-pressure steam turbine 1 is excessive. It becomes high and it can prevent that it exceeds an allowable pressure and causes the damage of an apparatus. By such a valve opening control method, the main steam amount to the governing nozzle 21 of the high-pressure steam turbine 1 becomes an optimum flow rate, and the high-pressure steam turbine 1, the intermediate-pressure steam turbine 2, and the low-pressure steam turbine that are existing steam turbines. 3 performance can be improved.

なお、第2の実施形態に挙げたガスタービン10、15、排熱回収ボイラ9、14の台
数は、あくまでも、既設蒸気タービンである高圧蒸気タービン1、中圧蒸気タービン2、
低圧蒸気タービン3への流入主蒸気流量が最適流量よりも少ない場合の例であり、各機器
の数はこの限りではない。
The numbers of the gas turbines 10 and 15 and the exhaust heat recovery boilers 9 and 14 listed in the second embodiment are only the high-pressure steam turbine 1, the intermediate-pressure steam turbine 2, which are existing steam turbines,
This is an example in which the main steam flow rate flowing into the low-pressure steam turbine 3 is less than the optimum flow rate, and the number of devices is not limited to this.

以上説明した少なくとも一つの実施形態のコンバインド発電設備の運転方法及びコンバ
インド発電設備によれば、主蒸気加減弁20の弁開度の改良により、調速段ノズル21の
部分挿入を行なうことにより、調速段ノズル21の構造的な改造を必要とせず、既設蒸気
タービンである高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タービン3へ流入す
る蒸気流量が最適な流量より少ない条件、最適な条件において、高圧蒸気タービン1の調
速段ノズル22における主蒸気量を最適とすることが可能となる。
According to the operation method and the combined power generation facility of the combined power generation facility of at least one embodiment described above, by adjusting the valve opening of the main steam control valve 20, the speed control stage nozzle 21 is partially inserted, thereby adjusting the speed. The structural change of the high speed nozzle 21 is not required, and the conditions for the flow rate of the steam flowing into the existing steam turbine, the high pressure steam turbine 1, the intermediate pressure steam turbine 2, and the low pressure steam turbine 3, are less than the optimum flow rate, and the optimum condition , The amount of main steam in the governing stage nozzle 22 of the high-pressure steam turbine 1 can be optimized.

さらに、以上説明した少なくとも一つの実施形態のコンバインド発電設備の運転方法及
びコンバインド発電設備によれば、改修コストを抑えた最小限の改造により、高い熱効率
を有する既設蒸気タービンである高圧蒸気タービン1、中圧蒸気タービン2、低圧蒸気タ
ービン3を流用したコンバインド発電設備を提供することができる。
Furthermore, according to the operation method and combined power generation facility of the combined power generation facility of at least one embodiment described above, the high-pressure steam turbine 1, which is an existing steam turbine having high thermal efficiency, with a minimum modification with reduced repair cost, A combined power generation facility using the intermediate-pressure steam turbine 2 and the low-pressure steam turbine 3 can be provided.

なお、本発明は、上記した各実施の形態には限定されず、種々変形して実施できること
は言うまでもない。
Needless to say, the present invention is not limited to the above-described embodiments and can be implemented with various modifications.

要するに、本発明は上記各実施形態そのままに限定されるものではなく、実施段階では
その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に
開示されている複数の構成要素の適宜な組合せにより、種々の形態を形成できる。例えば
、実施形態に示される全構成要素から幾つかの構成要素を省略してもよい。さらに、異な
る実施形態にわたる構成要素を適宜組み合わせてもよい。
In short, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Moreover, various forms can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1…高圧蒸気タービン
2…中圧蒸気タービン
3…低圧蒸気タービン
4…復水器
5…発電機
6…復水ポンプ
7…グランド蒸気コンデンサ
8…給水ポンプ
9…排熱回収ボイラ
10…ガスタービン
11…空気圧縮機
12…発電機
13…給水ポンプ
14…排熱回収ボイラ
15…ガスタービン
16…空気圧縮機
17…発電機
20…主蒸気加減弁
21…調速段ノズル
22…制御部
DESCRIPTION OF SYMBOLS 1 ... High pressure steam turbine 2 ... Medium pressure steam turbine 3 ... Low pressure steam turbine 4 ... Condenser 5 ... Generator 6 ... Condensate pump 7 ... Ground steam condenser 8 ... Feed water pump 9 ... Waste heat recovery boiler 10 ... Gas turbine 11 DESCRIPTION OF SYMBOLS ... Air compressor 12 ... Generator 13 ... Feed water pump 14 ... Exhaust heat recovery boiler 15 ... Gas turbine 16 ... Air compressor 17 ... Generator 20 ... Main steam control valve 21 ... Regulating stage nozzle 22 ... Control part

Claims (8)

ガスタービンの燃焼排ガスを用いて蒸気を発生させる排熱回収ボイラから排気される蒸
気流量に応じて、4つの蒸気加減弁のうち、第3の蒸気加減弁及び第4の蒸気加減弁の弁
を開けず、かつ、第1の蒸気加減弁及び第2の蒸気加減弁の弁開度を制御する工程と、
前記主蒸気加減弁の前記第1の蒸気加減弁及び前記第2の蒸気加減弁の弁開度の制御によ
って調速段ノズルへ流入する主蒸気の流量を制御する工程と、
前記調速段ノズルの主蒸気の流量に応じて蒸気タービンを仕事させる工程と、
前記蒸気タービンが行う仕事によって発電機を駆動する工程と、
を具備するコンバインド発電設備の運転方法。
Of the four steam control valves, the third steam control valve and the fourth steam control valve are selected according to the flow rate of steam exhausted from the exhaust heat recovery boiler that generates steam using the combustion exhaust gas of the gas turbine. Not opening and controlling the valve opening of the first steam control valve and the second steam control valve;
Controlling the flow rate of the main steam flowing into the governing stage nozzle by controlling the valve opening of the first steam control valve and the second steam control valve of the main steam control valve;
Working the steam turbine according to the flow rate of the main steam of the governing stage nozzle;
Driving the generator by work performed by the steam turbine;
A method for operating a combined power generation facility comprising:
複数台のガスタービンの燃焼排ガスを用いて蒸気を発生させる複数台の排熱回収ボイラ
から排気される蒸気流量に応じて、4つの主蒸気加減弁のうち、第1の蒸気加減弁乃至第
4の蒸気加減弁の弁開度を制御する工程と、
前記主蒸気加減弁の前記第1の蒸気加減弁乃至前記第4の蒸気加減弁の弁開度の制御によ
って調速段ノズルへ流入する主蒸気の流量を制御する工程と、
前記調速段ノズルの主蒸気の流量に応じて蒸気タービンを仕事させる工程と、
前記蒸気タービンが行う仕事によって発電機を駆動する工程と、
を具備するコンバインド発電設備の運転方法。
Of the four main steam control valves, the first steam control valve to the fourth steam control valve are used in accordance with the flow rate of steam exhausted from the plurality of exhaust heat recovery boilers that generate steam using the combustion exhaust gas of the plurality of gas turbines. Controlling the valve opening of the steam control valve of
Controlling the flow rate of the main steam flowing into the governing stage nozzle by controlling the valve opening of the first steam control valve to the fourth steam control valve of the main steam control valve;
Working the steam turbine according to the flow rate of the main steam of the governing stage nozzle;
Driving the generator by work performed by the steam turbine;
A method for operating a combined power generation facility comprising:
前記主蒸気加減弁は、前記蒸気タービンのうち、高圧蒸気タービンに設けられている請
求項1、2記載のコンバインド発電設備の運転方法。
The operation method of the combined power generation facility according to claim 1, wherein the main steam control valve is provided in a high-pressure steam turbine among the steam turbines.
前記主蒸気加減弁の前記第1の蒸気加減弁及び前記第2の蒸気加減弁の弁開度を同時に
制御する請求項1、2記載のコンバインド発電設備の運転方法。
The method of operating a combined power generation facility according to claim 1 or 2, wherein the first steam control valve and the second steam control valve of the main steam control valve are simultaneously controlled.
前記ガスタービンと前記排熱回収ボイラより発生される蒸気流量が変化した場合、前記
主蒸気加減弁の弁開度を変更する請求項1乃至4のいずれか1項記載のコンバインド発電
設備の運転方法。
The operating method of the combined power generation facility according to any one of claims 1 to 4, wherein when the flow rate of steam generated from the gas turbine and the exhaust heat recovery boiler changes, the valve opening degree of the main steam control valve is changed. .
前記調速段ノズルの前記主蒸気加減弁の弁に対応する入り口は、前記第1の蒸気加減弁
から前記第4の蒸気加減弁まで、反時計回りにて分けられている請求項1乃至5のいずれ
か1項に記載のコンバインド発電設備の運転方法。
6. The inlet corresponding to the valve of the main steam control valve of the governing stage nozzle is divided counterclockwise from the first steam control valve to the fourth steam control valve. The operation method of the combined power generation facility of any one of these.
ガスタービンの燃焼排ガスを用いて蒸気を発生させる排熱回収ボイラから排気される蒸
気流量に応じて、4つの蒸気加減弁のうち、第3の蒸気加減弁及び第4の蒸気加減弁の弁
を開けず、かつ、第1の蒸気加減弁及び第2の蒸気加減弁の弁開度を制御する手段と、
前記主蒸気加減弁の前記第1の蒸気加減弁及び前記第2の蒸気加減弁の弁開度の制御によ
って調速段ノズルへ流入する主蒸気の流量を制御する手段と、を有する制御部と、
前記調速段ノズルの主蒸気の流量に応じて蒸気タービンを仕事させる手段と、
前記蒸気タービンが行う仕事によって発電機を駆動する手段と、
を具備するコンバインド発電設備。
Of the four steam control valves, the third steam control valve and the fourth steam control valve are selected according to the flow rate of steam exhausted from the exhaust heat recovery boiler that generates steam using the combustion exhaust gas of the gas turbine. Means for controlling the valve openings of the first steam control valve and the second steam control valve;
Means for controlling the flow rate of the main steam flowing into the governing stage nozzle by controlling the valve openings of the first steam control valve and the second steam control valve of the main steam control valve; ,
Means for causing the steam turbine to work according to the flow rate of the main steam of the governing stage nozzle;
Means for driving a generator by work performed by the steam turbine;
Combined power generation facility equipped with.
複数台のガスタービンの燃焼排ガスを用いて蒸気を発生させる複数台の排熱回収ボイラ
から排気される蒸気流量に応じて、4つの主蒸気加減弁のうち、第1の蒸気加減弁乃至第
4の蒸気加減弁の弁開度を制御する手段と、
前記主蒸気加減弁の前記第1の蒸気加減弁乃至前記第4の蒸気加減弁の弁開度の制御によ
って調速段ノズルへ流入する主蒸気の流量を制御する手段と、を有する制御部と、
前記調速段ノズルの主蒸気の流量に応じて蒸気タービンを仕事させる手段と、
前記蒸気タービンが行う仕事によって発電機を駆動する手段と、
を具備するコンバインド発電設備。
Of the four main steam control valves, the first steam control valve to the fourth steam control valve are used in accordance with the flow rate of steam exhausted from the plurality of exhaust heat recovery boilers that generate steam using the combustion exhaust gas of the plurality of gas turbines. Means for controlling the valve opening of the steam control valve of
Means for controlling the flow rate of the main steam flowing into the governing stage nozzle by controlling the valve opening of the first steam control valve to the fourth steam control valve of the main steam control valve; ,
Means for causing the steam turbine to work according to the flow rate of the main steam of the governing stage nozzle;
Means for driving a generator by work performed by the steam turbine;
Combined power generation facility equipped with.
JP2011218684A 2011-09-30 2011-09-30 Method of operating combined power generating facility and combined power generating facility Pending JP2013079580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011218684A JP2013079580A (en) 2011-09-30 2011-09-30 Method of operating combined power generating facility and combined power generating facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011218684A JP2013079580A (en) 2011-09-30 2011-09-30 Method of operating combined power generating facility and combined power generating facility

Publications (1)

Publication Number Publication Date
JP2013079580A true JP2013079580A (en) 2013-05-02

Family

ID=48526147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011218684A Pending JP2013079580A (en) 2011-09-30 2011-09-30 Method of operating combined power generating facility and combined power generating facility

Country Status (1)

Country Link
JP (1) JP2013079580A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107218085A (en) * 2017-07-25 2017-09-29 大唐阳城发电有限责任公司 The septum valve air intake control system and its control method of a kind of steam turbine in thermal power plant
US20180334947A1 (en) * 2017-05-18 2018-11-22 Hyundai Motor Company Temperature management method for hybrid vehicle
JP2020193612A (en) * 2019-05-30 2020-12-03 株式会社東芝 Steam regulating valve system, power generation plant, and method for operating steam regulating valve
CN113914941A (en) * 2021-09-30 2022-01-11 杭州意能电力技术有限公司 Valve sequence optimization method and system for inhibiting steam flow excitation of large steam turbine generator unit
CN114658498A (en) * 2020-12-23 2022-06-24 上海电气电站设备有限公司 Steam turbine combined valve and design method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036011A (en) * 1976-01-28 1977-07-19 Westinghouse Electric Corporation Multiple valve sequential control for a combined cycle power plant
JPS6365103A (en) * 1986-09-04 1988-03-23 Toshiba Corp Controller of steam turbine
JPS63186902A (en) * 1987-01-30 1988-08-02 Hitachi Ltd Turbine control device
JPH01163406A (en) * 1987-12-18 1989-06-27 Hitachi Ltd Method for operating combined plant and its equipment
JPH03115707A (en) * 1989-09-28 1991-05-16 Hitachi Ltd Combined power plant
JPH04259609A (en) * 1991-02-13 1992-09-16 Toshiba Corp Combined cycle control device
JPH08200016A (en) * 1995-01-23 1996-08-06 Hitachi Ltd Load control system of composite cycle power plant
JPH08232607A (en) * 1994-12-24 1996-09-10 Abb Patent Gmbh Valve for steam turbine
JP2001317304A (en) * 2000-05-11 2001-11-16 Babcock Hitachi Kk Combination system of plural boilers and steam turbine, and power generation plant
JP2004518050A (en) * 2000-09-20 2004-06-17 シーメンス アクチエンゲゼルシヤフト Method of adjusting steam turbine and steam turbine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036011A (en) * 1976-01-28 1977-07-19 Westinghouse Electric Corporation Multiple valve sequential control for a combined cycle power plant
JPS6365103A (en) * 1986-09-04 1988-03-23 Toshiba Corp Controller of steam turbine
JPS63186902A (en) * 1987-01-30 1988-08-02 Hitachi Ltd Turbine control device
JPH01163406A (en) * 1987-12-18 1989-06-27 Hitachi Ltd Method for operating combined plant and its equipment
JPH03115707A (en) * 1989-09-28 1991-05-16 Hitachi Ltd Combined power plant
JPH04259609A (en) * 1991-02-13 1992-09-16 Toshiba Corp Combined cycle control device
JPH08232607A (en) * 1994-12-24 1996-09-10 Abb Patent Gmbh Valve for steam turbine
JPH08200016A (en) * 1995-01-23 1996-08-06 Hitachi Ltd Load control system of composite cycle power plant
JP2001317304A (en) * 2000-05-11 2001-11-16 Babcock Hitachi Kk Combination system of plural boilers and steam turbine, and power generation plant
JP2004518050A (en) * 2000-09-20 2004-06-17 シーメンス アクチエンゲゼルシヤフト Method of adjusting steam turbine and steam turbine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180334947A1 (en) * 2017-05-18 2018-11-22 Hyundai Motor Company Temperature management method for hybrid vehicle
US10428722B2 (en) * 2017-05-18 2019-10-01 Hyundai Motor Company Temperature management method for hybrid vehicle
CN107218085A (en) * 2017-07-25 2017-09-29 大唐阳城发电有限责任公司 The septum valve air intake control system and its control method of a kind of steam turbine in thermal power plant
JP2020193612A (en) * 2019-05-30 2020-12-03 株式会社東芝 Steam regulating valve system, power generation plant, and method for operating steam regulating valve
JP7269098B2 (en) 2019-05-30 2023-05-08 株式会社東芝 Steam control valve system, power plant and steam control valve operation method
CN114658498A (en) * 2020-12-23 2022-06-24 上海电气电站设备有限公司 Steam turbine combined valve and design method thereof
CN114658498B (en) * 2020-12-23 2024-03-19 上海电气电站设备有限公司 Combined valve of steam turbine and design method thereof
CN113914941A (en) * 2021-09-30 2022-01-11 杭州意能电力技术有限公司 Valve sequence optimization method and system for inhibiting steam flow excitation of large steam turbine generator unit

Similar Documents

Publication Publication Date Title
US8505309B2 (en) Systems and methods for improving the efficiency of a combined cycle power plant
US7107774B2 (en) Method and apparatus for combined cycle power plant operation
JP2002155709A (en) Combined cycle power plant
JP2005330866A (en) Combined power generation plant
JP2013079580A (en) Method of operating combined power generating facility and combined power generating facility
US20140283518A1 (en) Turbine system
JP2010242673A (en) Steam turbine system and method for operating the same
JP5694112B2 (en) Uniaxial combined cycle power plant and operation method thereof
CN111868354B (en) Additional power generation for combined cycle power plants
JP4862338B2 (en) Multi-axis combined cycle power generation facility
KR101520238B1 (en) Gas turbine cooling system, and gas turbine cooling method
JP5977504B2 (en) Steam-driven power plant
JP2006161698A (en) Overload operation device and method for steam turbine
US20140069078A1 (en) Combined Cycle System with a Water Turbine
KR101887971B1 (en) Low load turndown for combined cycle power plants
JP2012145108A (en) Apparatus and method for controlling oxygen emission from gas turbine
JP2013060931A (en) Steam turbine
JP2020084948A (en) Steam turbine equipment and combined cycle plant comprising the same, and modification method of steam turbine equipment
JP5475315B2 (en) Combined cycle power generation system
JP2766687B2 (en) Combined power plant
JP3122234B2 (en) Steam power plant repowering system
JP2003343213A (en) Combined plant constructed with closed steam cooling gas turbine
JP2019027387A (en) Combined cycle power generation plant, and its operation method and modification method
JP2000220412A (en) Repowering system of steam power generating equipment
JP2019218867A (en) Combined cycle power generation plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150109