JP2004518050A - Method of adjusting steam turbine and steam turbine - Google Patents

Method of adjusting steam turbine and steam turbine Download PDF

Info

Publication number
JP2004518050A
JP2004518050A JP2002529646A JP2002529646A JP2004518050A JP 2004518050 A JP2004518050 A JP 2004518050A JP 2002529646 A JP2002529646 A JP 2002529646A JP 2002529646 A JP2002529646 A JP 2002529646A JP 2004518050 A JP2004518050 A JP 2004518050A
Authority
JP
Japan
Prior art keywords
valve
steam turbine
regulating
valves
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002529646A
Other languages
Japanese (ja)
Other versions
JP4695822B2 (en
Inventor
エインハウゼン ハインリッヒ
シュタインボルン リヒャルト
ヴェルテス ヘリベルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2004518050A publication Critical patent/JP2004518050A/en
Application granted granted Critical
Publication of JP4695822B2 publication Critical patent/JP4695822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/18Final actuators arranged in stator parts varying effective number of nozzles or guide conduits, e.g. sequentially operable valves for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

本発明は蒸気タービン(1)を調整する方法であって、蒸気タービン(1)の蒸気が、少なくとも3つの弁を介して供給され、調整弁(9,11)としての1つの弁を調節し、制御弁(13,15)としての少なくとも2つの弁を制御する方法に関する。The invention relates to a method for regulating a steam turbine (1), wherein the steam of the steam turbine (1) is supplied via at least three valves and regulates one valve as regulating valve (9,11). , A method for controlling at least two valves as control valves (13, 15).

Description

【0001】
本発明は、蒸気タービンを調整する方法において、蒸気タービンの蒸気が少なくとも3つの弁を介して供給される形式のものに関する。本発明はさらに、蒸気流入を調整するための弁群を備えた蒸気タービンに関する。
【0002】
蒸気タービンを調整する方法は、ヨハネス・ダスチヒとハインツ・ウンベハウヘン、マーティン・ベンアウアーとヘリベルト・ヴェルテス(Johannes Dastych und Heinz Unbehauen, Martin Bennauer und Heribert Werthes, ATP 41 (1999) , Heft 5)による論文 ”Praxisgerechte Auslegung von Drehzahl und Leistungsreglern fuer Dampfturbinen”から明らかである。蒸気タービンは回転数若しくは出力に応じて調整される。図2に示す回転数及び出力のための調整回路は、回転数/出力調整部(D−/LR)、生蒸気−調整弁(FD−STV)、受容調整弁(AF−STV)、蒸気発生器(DE)、及びタービン(T)のような機能ブロックと、例えば入力信号のための定数、勾配、及び跳躍関数のような要素的なブロックとから成る。電気的な出力を提供するために、ターボ発電器(Turbosatz)は蒸気を蒸気発生器から供給され、この場合、蒸気供給は調節弁を介して、必要な出力が得られるように調整される。回転数及び出力の調整は、共通の1つの回転数/出力調整部を介して、選択可能な一定の負荷運転のためにも、並びに無負荷運転時の回転数の調整のためにも行われる。回転数/出力調整部の出力信号は、生蒸気弁と受容調節弁とに作用する。蒸気タービンのこのような調整は、非常に複雑な調整回路と、十分に速い調整を可能にする調節弁とを必要とする。これまでは蒸気流入調整のためには、専ら液力により駆動される調節弁が用いられている。なぜなら、そのような液力式の駆動装置を介してのみ、弁行程の十分に速い調節が可能だからである。
【0003】
電動機式の駆動装置を備えた蒸気タービンの弁のための動作システムが、世界知的所有権機構第98/13633号パンフレットにより公知である。このような電動機式の駆動装置は非常に安価であり、さらに液圧油の使用を回避することによって火災危険が減じられる。蒸気弁のためのこのような電動機式の駆動装置は、蒸気導管の急速閉鎖のみが問題となる蒸気タービンの急速閉鎖弁のために使用することができる。しかしながら、蒸気タービン調整のためにはこの電動機式の駆動装置は不適切である。なぜなら、必要な弁行程調節のためには調節時間があまりに短く、弁行程調節があまりに不正確だからである。
【0004】
そこで本発明の課題は、特に非常に安価で、しかも高い作動確実性を達成できる、蒸気タービンを調整する方法を提供することである。本発明の別の課題は、同じ利点を有する蒸気タービンを提供することである。
【0005】
方法に対する課題は、蒸気タービンを調整する本発明に基づく方法において、蒸気タービンの蒸気を少なくとも3つの弁を介して供給し、この場合、1つの弁を調整弁として調整し、少なくとも2つの弁を制御弁として制御することによって解決される。
【0006】
これにより、蒸気タービンを調整する際に、異なる2つのカテゴリの弁を使用するという全く新しい方策が取られている。本発明は、蒸気タービンの効果的で確実かつ迅速な調整のために、これまで通常の見解であったように、全ての弁が調整弁として形成されている必要は決してないという認識から出発している。広範囲にわたるテストの結果、調整弁と制御弁とによるコンビネーションは、蒸気タービンの十分に確実で迅速な調整を実際に可能にするということが、裏付けられた。この場合、制御弁は調整部出力信号に関係して、弁行程の所定の値に調節される。約0の調整差値の保持は、単数、場合によっては複数の調整弁によっても引受けられる。従って、少なくとも2つの調整弁は、極めて単純な制御弁によって代替することができ、これにより調整回路は著しく簡易化される。
【0007】
A)有利には制御弁は電動機式に駆動される。電動機式の駆動装置は、ほぼ電気油圧制御式の駆動装置に比べて、顕著なコスト的利点を有する。さらに、液圧油の不使用により、火災危険が減じられる。調整弁によって精密調整が引受けられることにより、電動機式の駆動装置の小さな調節力でも調整プロセスに使用するために十分である。
【0008】
B)有利には、2つの調整弁と2つの制御弁とが使用されている。通常、蒸気タービンにおける調整プロセスでは4つの弁が使用される。原理的には、新しい調整コンセプトに基づき1つの調整弁で十分であり、該調整弁が3つの制御弁と協働する。しかし、より自由に使用できることを考慮して、2つの調整弁と2つの制御弁とを使用すると有利である。
【0009】
C)蒸気タービンの所定の出力消費での有利な方法においては、まず調整弁が開き、次いで、調整弁の調整のために使用される調整部出力信号が規定された第1の値を越えた場合、かつ正の調整差が生じた場合に、制御弁の1つが開く。さらに有利には、第1の値は最大の調整部出力信号の約1/4のところに位置している。正の調整差は、出力のため若しくはまた回転数の所望の値がまだ得られていないことを表している。
【0010】
D)さらに有利には、調整部出力信号が第2の値を越えた場合、かつ正の調整差が生じた場合に、第2の調整弁が開く。調整部出力信号の第2の値は、このとき、調整部出力信号の第1の値よりも大きい。これにより、出力消費の際の別の段階が達成され、この段階で第3の弁、すなわち第2の調整弁が接続される。さらに有利には、調整部出力信号の第2の値は、ここでは、調整部出力信号の最大値の約半分のところに位置している。
【0011】
E)有利には、調整部出力信号が第3の値を越えた場合、かつ正の調整差が生じた場合に、第2の制御弁が開く。調整部出力信号の第3の値は、ここでは、調整部出力信号の第2の値を越えたところに位置している。これにより、蒸気タービンの出力消費の際のさらに別の段階が達成され、この段階で第2の制御弁が接続される。調整部出力信号の100%では、全ての弁が完全に開かれている。
【0012】
F)有利には、それぞれの制御弁の閉鎖速度は、調整差のそれぞれの大きさに関係して調節される。調整差は、説明した通り、蒸気タービンの回転数若しくは出力の目標値と実測値との間の差異を表している。調整差が大きい場合には、制御弁は大きい速度で目標位置に移動させられる。調整差が小さい場合には、小さい調節速度で十分である。電動機式の駆動装置にとって、特に周波数変換器が調整差の正負符号に関係して、調整弁のための調節方向を決定してよい。
【0013】
AからFまでの段落に示す手段は、任意の形で互いに組合わせることができる。
【0014】
蒸気タービンに対する課題は、本発明によると、蒸気流入を調整するための弁群を備えた本発明に基づく蒸気タービンにおいて、この弁群群が1つの調整弁と、少なくとも2つの制御弁とを有していることにより解決される。
【0015】
このような蒸気タービンの利点は、蒸気タービンを調整する方法の利点についての前述の説明から明らかである。
【0016】
有利には制御弁は電動機式の駆動装置を有している。
【0017】
本発明による実施例を図面に基づいて詳細に説明する。示される図は、概略的であって寸法通りではない。
【0018】
図1は、蒸気タービン装置図、
図2は、対応する制御配線を備えた一連の蒸気流入弁図、
図3は、蒸気流入弁のための特性曲線図である。
【0019】
同じ符号は種々異なる図において、同じ意味を有している。
【0020】
図1は蒸気タービン装置を概略的に示している。蒸気タービン1には、蒸気発生器3からの蒸気が供給管路5を介して供給される。供給管路5には、弁群7が組み込まれている。弁群7は、第1の調整弁9と第2の調整弁11とを有している。弁群7は、さらに第1の制御弁13と第2の制御弁15とを有している。弁群7を介して、蒸気タービン1内に導入される蒸気量が制御される。これは、蒸気タービン1にとって所望の出力若しくは回転数に関係して行われる。このことは、図2及び図3に基づいて詳しく説明する。
【0021】
図2には、図1の弁群7が対応する制御配線と共に示されている。制御部21は、回転数若しくは出力の実測値と、回転数若しくは出力の目標値とに関係して、調整差のために適切に調整部出力信号を発する。調整部出力信号は、第1の調整弁9の第1のサーボ増幅器23に供給される。調整部出力信号は、第2の調整弁11の第2のサーボ増幅器27にも供給される。調整部出力信号は、第1の制御弁13の第1の周波数変換器25にも供給される。調整部出力信号は、第2の制御弁15の第2の周波数変換器29にも供給される。制御方法は図3に基づいて詳しく説明する。
【0022】
図3は、例として弁9,11,13,15それぞれの弁行程を、調整部出力信号に関係して図表で示したものである。データはそれぞれの最大値をパーセントで示している。特性曲線9Kは、第1の調整弁9の弁行程33の経過を、調整部出力信号31に関係して示している。特性曲線13Kは、第1の制御弁13に対応する特性曲線を示している。特性曲線11Kは、第2の調整弁11に対応する特性曲線を示している。特性曲線15Kは、第2の制御弁15に対応する特性曲線を示している。第1の調整弁9は、調整部出力信号31の大きさに比例して開く。調整部出力信号31が22,5%の値になると、第1の制御弁13が開く。調整部出力信号31が47,5%の値になると、第1の調整弁9及び第2の制御弁13のための弁行程33は100%である。この時点から、第2の調整弁11が開く。72.5%の値になると、第2の制御弁15はようやく接続される。調整部出力信号31が100%の値になると、全ての弁9,11,13,15が完全に開かれている。始動、定格回転数への上昇、及び同期化は、第1の調整弁9によって行われる。調整差の大きさは制御弁13,15の開放速度を決定する。負荷低下時には、負の調整差が生じる。負の調整差の大きさは制御弁の閉鎖速度を決定する。図示の実施例において電動機式に駆動される制御弁の調節力の小さいことに基づいて、負荷低下時の調整弁9,11及び制御弁13,15の切換行程「閉鎖」のための応答値は、異なってよい。
【図面の簡単な説明】
【図1】
蒸気タービン装置図である。
【図2】
対応する調整配線を備えた一連の蒸気流入弁図である。
【図3】
蒸気流入弁のための特性曲線図である。
[0001]
The invention relates to a method for regulating a steam turbine, in which the steam of the steam turbine is supplied via at least three valves. The invention further relates to a steam turbine provided with a group of valves for regulating steam inflow.
[0002]
Methods for adjusting steam turbines are described in Johannes Dastych and Heinz Unbeauen, Martin Bennauer, 19th Gersten, Germany, Hertz, Germany. von Drehzahl and Leistungsregler full Dampfurbinen ". The steam turbine is adjusted according to the rotation speed or the output. The adjustment circuit for the rotation speed and the output shown in FIG. 2 includes a rotation speed / output adjustment unit (D- / LR), a live steam-regulation valve (FD-STV), a reception regulation valve (AF-STV), and steam generation. It consists of functional blocks such as the unit (DE) and the turbine (T) and elementary blocks such as constants, gradients and jump functions for the input signal. In order to provide an electrical output, a turbo generator (Turbosatz) is supplied with steam from a steam generator, the steam supply being regulated via a regulating valve to obtain the required output. The speed and power are adjusted via a common speed / power control for selectable constant load operation and also for speed adjustment during no-load operation. . The output signal of the rotation speed / output adjusting section acts on the live steam valve and the receiving control valve. Such regulation of the steam turbine requires a very complicated regulation circuit and a regulation valve which allows a sufficiently fast regulation. Until now, control valves exclusively driven by hydraulic power have been used for steam inflow regulation. This is because only through such a hydraulic drive a sufficiently fast adjustment of the valve stroke is possible.
[0003]
An operating system for a valve of a steam turbine with a motor-driven drive is known from WO 98/13633. Such motorized drives are very inexpensive, and the risk of fire is reduced by avoiding the use of hydraulic oil. Such a motor-driven drive for a steam valve can be used for a quick shut-off valve of a steam turbine where only a quick shut-off of the steam line is a problem. However, this motorized drive is not suitable for steam turbine adjustment. This is because the adjustment time is too short for the necessary valve stroke adjustment and the valve stroke adjustment is too inaccurate.
[0004]
It is an object of the present invention to provide a method for adjusting a steam turbine, which is particularly inexpensive and can achieve high operating reliability. Another object of the invention is to provide a steam turbine having the same advantages.
[0005]
The problem with the method is that in a method according to the invention for regulating a steam turbine, the steam of the steam turbine is supplied via at least three valves, wherein one valve is regulated as a regulating valve and at least two valves are regulated. It is solved by controlling as a control valve.
[0006]
This has taken a completely new approach to using two different categories of valves when regulating steam turbines. The present invention starts with the recognition that for effective, reliable and quick regulation of a steam turbine, not all valves need ever be formed as regulating valves, as has been the usual view. ing. Extensive testing has confirmed that the combination of regulator and control valves actually allows for a sufficiently reliable and quick regulation of the steam turbine. In this case, the control valve is adjusted to a predetermined value of the valve stroke in relation to the adjustment unit output signal. The holding of an adjustment difference value of about 0 is also undertaken by a singular or possibly a plurality of adjusting valves. Thus, the at least two regulating valves can be replaced by a very simple control valve, which greatly simplifies the regulating circuit.
[0007]
A) The control valve is preferably driven by a motor. Motor driven drives have significant cost advantages over substantially electro-hydraulic controlled drives. In addition, fire hazards are reduced by the elimination of hydraulic oil. Due to the fact that the adjustment is undertaken by the adjustment valve, a small adjustment force of the motorized drive is sufficient for use in the adjustment process.
[0008]
B) Preferably, two regulating valves and two control valves are used. Typically, four valves are used in the regulation process in a steam turbine. In principle, one regulating valve is sufficient according to the new regulating concept, which cooperates with three control valves. However, it is advantageous to use two regulating valves and two control valves, in view of their greater freedom of use.
[0009]
C) In an advantageous manner at a given power consumption of the steam turbine, the regulator valve is first opened and then the regulator output signal used for regulating the regulator valve exceeds a defined first value. And if a positive adjustment difference occurs, one of the control valves opens. More advantageously, the first value is located at about 1/4 of the maximum regulator output signal. A positive adjustment difference indicates that the desired value of the output or also of the rotational speed has not yet been obtained.
[0010]
D) Further advantageously, the second regulating valve opens when the regulating unit output signal exceeds the second value and a positive regulation difference occurs. At this time, the second value of the adjustment unit output signal is larger than the first value of the adjustment unit output signal. In this way, a further phase of power consumption is achieved, in which the third valve, the second regulating valve, is connected. More advantageously, the second value of the adjustment unit output signal is here located at about half of the maximum value of the adjustment unit output signal.
[0011]
E) Advantageously, the second control valve opens when the regulator output signal exceeds a third value and a positive regulation difference occurs. The third value of the adjuster output signal is here located above the second value of the adjuster output signal. This achieves a further step in the power consumption of the steam turbine, in which the second control valve is connected. At 100% of the regulator output signal, all valves are fully open.
[0012]
F) Advantageously, the closing speed of the respective control valve is adjusted as a function of the respective magnitude of the adjustment difference. As described above, the adjustment difference indicates a difference between the target value of the rotation speed or the output of the steam turbine and the actually measured value. If the adjustment difference is large, the control valve is moved to the target position at a high speed. If the adjustment difference is small, a small adjustment speed is sufficient. For a motorized drive, in particular, the frequency converter may determine the adjusting direction for the adjusting valve in relation to the sign of the adjusting difference.
[0013]
The measures shown in paragraphs A to F can be combined with one another in any manner.
[0014]
The problem with the steam turbine is that according to the invention, in a steam turbine according to the invention with a valve group for regulating the steam inflow, the valve group has one regulating valve and at least two control valves. It is solved by doing.
[0015]
The advantages of such a steam turbine are apparent from the foregoing description of the advantages of the method of tuning a steam turbine.
[0016]
Preferably, the control valve has a motor-driven drive.
[0017]
An embodiment according to the present invention will be described in detail with reference to the drawings. The figures shown are schematic and not to scale.
[0018]
FIG. 1 is a diagram of a steam turbine device,
FIG. 2 is a series of steam inlet valve diagrams with corresponding control wiring,
FIG. 3 is a characteristic curve diagram for a steam inflow valve.
[0019]
The same reference numbers have the same meaning in the different figures.
[0020]
FIG. 1 schematically shows a steam turbine device. The steam from the steam generator 3 is supplied to the steam turbine 1 via the supply pipe 5. A valve group 7 is incorporated in the supply line 5. The valve group 7 has a first regulating valve 9 and a second regulating valve 11. The valve group 7 further has a first control valve 13 and a second control valve 15. Via the valve group 7, the amount of steam introduced into the steam turbine 1 is controlled. This is performed in relation to the desired output or rotational speed of the steam turbine 1. This will be described in detail with reference to FIGS.
[0021]
FIG. 2 shows the valve group 7 of FIG. 1 together with the corresponding control wiring. The control unit 21 appropriately issues an adjustment unit output signal due to the adjustment difference in relation to the measured value of the rotation speed or the output and the target value of the rotation speed or the output. The adjustment unit output signal is supplied to the first servo amplifier 23 of the first adjustment valve 9. The adjustment section output signal is also supplied to the second servo amplifier 27 of the second adjustment valve 11. The adjustment section output signal is also supplied to the first frequency converter 25 of the first control valve 13. The adjustment unit output signal is also supplied to the second frequency converter 29 of the second control valve 15. The control method will be described in detail with reference to FIG.
[0022]
FIG. 3 shows, as an example, the valve strokes of the valves 9, 11, 13, and 15 in relation to the output signals of the adjusting section. The data show the respective maximum values as a percentage. The characteristic curve 9K shows the course of the valve stroke 33 of the first regulating valve 9 in relation to the regulating unit output signal 31. A characteristic curve 13K indicates a characteristic curve corresponding to the first control valve 13. A characteristic curve 11K indicates a characteristic curve corresponding to the second regulating valve 11. A characteristic curve 15K indicates a characteristic curve corresponding to the second control valve 15. The first regulating valve 9 opens in proportion to the magnitude of the regulating section output signal 31. When the adjusting section output signal 31 has a value of 22.5%, the first control valve 13 is opened. When the regulator output signal 31 has a value of 47.5%, the valve stroke 33 for the first regulating valve 9 and the second control valve 13 is 100%. From this point, the second regulating valve 11 opens. At a value of 72.5%, the second control valve 15 is finally connected. When the regulator output signal 31 reaches a value of 100%, all the valves 9, 11, 13, 15 are completely open. The starting, the increase to the rated speed, and the synchronization are performed by the first regulating valve 9. The magnitude of the adjustment difference determines the opening speed of the control valves 13,15. When the load decreases, a negative adjustment difference occurs. The magnitude of the negative adjustment difference determines the closing speed of the control valve. In the embodiment shown, the response value for the switching stroke “closing” of the regulating valves 9, 11 and the control valves 13, 15 when the load drops is based on the small regulating force of the control valve driven by the electric motor. May be different.
[Brief description of the drawings]
FIG.
It is a steam turbine apparatus figure.
FIG. 2
FIG. 4 is a series of steam inlet valve diagrams with corresponding adjustment wiring.
FIG. 3
FIG. 4 is a characteristic curve diagram for a steam inflow valve.

Claims (9)

蒸気タービン(1)を調整する方法において、蒸気タービン(1)の蒸気を、少なくとも3つの弁(9,11,13,15)を介して供給し、弁(9,11)の1つを調整弁として調整し、少なくとも2つの弁(13,15)を制御弁として制御する、蒸気タービン(1)を制御する方法。In a method for regulating a steam turbine (1), the steam of the steam turbine (1) is supplied via at least three valves (9, 11, 13, 15) and one of the valves (9, 11) is regulated. A method for controlling a steam turbine (1), wherein the method comprises regulating as a valve and controlling at least two valves (13, 15) as control valves. 制御弁(13,15)を電動機式に駆動する、請求項1記載の方法。2. The method as claimed in claim 1, wherein the control valves are driven motor-driven. 2つの調整弁(9,11)と2つの制御弁(13,15)とを使用する、請求項1記載の方法。2. The method as claimed in claim 1, wherein two regulating valves (9, 11) and two control valves (13, 15) are used. 蒸気タービン(1)の出力消費のために、まず調整弁(9,11)を開き、該調整弁(9,11)の調整のために使用される調整部出力信号(31)が、規定された第1の値を超えた場合、かつ正の調整差が生じた場合に、制御弁(13,15)の1つを開く、請求項1記載の方法。For the power consumption of the steam turbine (1), the regulating valves (9, 11) are first opened, and the regulating unit output signal (31) used for regulating the regulating valves (9, 11) is defined. 2. The method according to claim 1, wherein one of the control valves is opened if the first value is exceeded and a positive adjustment difference occurs. 調整部出力信号(31)が第2の値を越えた場合、かつ正の調整差が生じた場合に、第2の調整弁(11)を開く、請求項4又は3記載の方法。4. The method according to claim 4, wherein the second control valve is opened when the control output signal exceeds a second value and a positive control difference occurs. 調整部出力信号(31)が第3の値を越えた場合、かつ正の調整差が生じた場合に、第2の制御弁(15)を開く、請求項4又は3記載の方法。4. The method according to claim 4, wherein the second control valve (15) is opened when the regulator output signal (31) exceeds a third value and a positive regulation difference occurs. それぞれの制御弁(13,15)の閉鎖速度を、調整差のそれぞれの大きさに関係して調節する、請求項1記載の方法。2. The method according to claim 1, wherein the closing speed of the respective control valve is adjusted as a function of the respective magnitude of the adjustment difference. 蒸気流入を調整するための弁群(7)を備えた蒸気タービン(1)において、該弁群(7)が、1つの調整弁(9,11)と、少なくとも2つの制御弁(13,15)とを有している、蒸気タービン。In a steam turbine (1) provided with a valve group (7) for regulating steam inflow, the valve group (7) includes one regulating valve (9, 11) and at least two control valves (13, 15). ) And a steam turbine. 制御弁(13,15)が電動機式の駆動装置を有している、請求項8記載の蒸気タービン。The steam turbine according to claim 8, wherein the control valve (13, 15) has a motor-driven drive.
JP2002529646A 2000-09-20 2001-09-07 Method for regulating a steam turbine and a steam turbine Expired - Fee Related JP4695822B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00120574.9 2000-09-20
EP00120574A EP1191190A1 (en) 2000-09-20 2000-09-20 Method for regulating a steam turbine and steam turbine
PCT/EP2001/010358 WO2002025067A1 (en) 2000-09-20 2001-09-07 Method for regulating a steam turbine, and corresponding steam turbine

Publications (2)

Publication Number Publication Date
JP2004518050A true JP2004518050A (en) 2004-06-17
JP4695822B2 JP4695822B2 (en) 2011-06-08

Family

ID=8169887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002529646A Expired - Fee Related JP4695822B2 (en) 2000-09-20 2001-09-07 Method for regulating a steam turbine and a steam turbine

Country Status (6)

Country Link
EP (2) EP1191190A1 (en)
JP (1) JP4695822B2 (en)
CN (1) CN100335751C (en)
DE (1) DE50115502D1 (en)
ES (1) ES2344591T3 (en)
WO (1) WO2002025067A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079580A (en) * 2011-09-30 2013-05-02 Toshiba Corp Method of operating combined power generating facility and combined power generating facility

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528446A1 (en) 2003-10-29 2005-05-04 Siemens Aktiengesellschaft Method and controller for positioning an actuator and use of the controller
DE102005033292B4 (en) * 2005-07-16 2007-07-26 I.N.T.-Rickert GmbH Ingenieurbüro für neue Technologien Device for applying adhesives or sealants
CN103244203B (en) * 2013-05-21 2014-12-03 国家电网公司 Throttle valve system and working method thereof
CN108252752B (en) * 2017-12-22 2020-05-12 东方电气集团东方汽轮机有限公司 Steam turbine steam inlet adjusting method
WO2019217632A1 (en) 2018-05-09 2019-11-14 Abb Schweiz Ag Turbine control system
CN109356674A (en) * 2018-12-25 2019-02-19 大庆特博科技发展有限公司 A kind of organic working medium turbine of adjustable nozzle quantity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261101U (en) * 1988-10-26 1990-05-07

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE272691C (en) *
NL26523C (en) * 1926-08-28 1900-01-01
NL29786C (en) * 1929-12-30 1932-12-15
FR787271A (en) * 1934-06-21 1935-09-19 Rateau Sa Steam or gas turbine adjustment device
US3763894A (en) * 1971-06-16 1973-10-09 Westinghouse Electric Corp Sequentially operable control valve for a steam turbine
US4245162A (en) * 1973-08-15 1981-01-13 Westinghouse Electric Corp. Steam turbine power plant having improved testing method and system for turbine inlet valves associated with downstream inlet valves preferably having feedforward position managed control
AU537607B2 (en) * 1980-12-02 1984-07-05 Hitachi Limited Combined valve for use in a reheating steam turbine
JPS57188705A (en) * 1981-05-15 1982-11-19 Toshiba Corp Steam turbine
US4604028A (en) * 1985-05-08 1986-08-05 General Electric Company Independently actuated control valves for steam turbine
DE19616178C2 (en) * 1995-07-14 1998-07-16 Ver Energiewerke Ag Method for loading and unloading the high pressure part of a steam turbine operated with a duo steam boiler block
DE59709519D1 (en) * 1996-09-26 2003-04-17 Siemens Ag VALVE OF A TURBINE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261101U (en) * 1988-10-26 1990-05-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079580A (en) * 2011-09-30 2013-05-02 Toshiba Corp Method of operating combined power generating facility and combined power generating facility

Also Published As

Publication number Publication date
ES2344591T3 (en) 2010-09-01
EP1319117B1 (en) 2010-06-02
DE50115502D1 (en) 2010-07-15
CN100335751C (en) 2007-09-05
JP4695822B2 (en) 2011-06-08
CN1461374A (en) 2003-12-10
EP1319117A1 (en) 2003-06-18
EP1191190A1 (en) 2002-03-27
WO2002025067A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
US5867986A (en) Method and unit for controlling the supercharge pressure of a turbodiesel engine with a variable-geometry turbine
JPH09166029A (en) Adjusting method of flow rate of fuel to combustion apparatus of gas turbine
CA1082057A (en) Boiler feed water pump control systems
JPS6158644B2 (en)
JP2004518050A (en) Method of adjusting steam turbine and steam turbine
JP2636989B2 (en) Pressure control method for steam supply device
JP2004320874A (en) Power generation system
JPS6139043Y2 (en)
JP2731147B2 (en) Control unit for hydroelectric power plant
US20040101396A1 (en) Method for regulating a steam turbine, and corresponding steam turbine
JP2768688B2 (en) How to start a variable speed hydropower plant
JPS61215409A (en) Steam turbine controlling equipment
JPH0127243B2 (en)
JPH0243881B2 (en)
JP2818322B2 (en) Steam turbine controller
JP2960950B2 (en) Electric / hydraulic governor
RU2059875C1 (en) Servicing method for small hydroelectric power station unit
JPH0315001B2 (en)
JP2659779B2 (en) Boiler feedwater flow control device
JP2752075B2 (en) Control devices for hydraulic machines
JP3770939B2 (en) Extraction type BFP turbine pressure regulating valve and control device therefor
SU877091A2 (en) Power generating unit power automatic control system
JP2685199B2 (en) How to start a variable speed hydropower plant
Tripathy Digital speed governor for steam turbine
JP2558869B2 (en) Turbine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees