JPH0243881B2 - - Google Patents

Info

Publication number
JPH0243881B2
JPH0243881B2 JP57124201A JP12420182A JPH0243881B2 JP H0243881 B2 JPH0243881 B2 JP H0243881B2 JP 57124201 A JP57124201 A JP 57124201A JP 12420182 A JP12420182 A JP 12420182A JP H0243881 B2 JPH0243881 B2 JP H0243881B2
Authority
JP
Japan
Prior art keywords
steam
control
pressure
signal
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57124201A
Other languages
Japanese (ja)
Other versions
JPS5915608A (en
Inventor
Hiroya Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12420182A priority Critical patent/JPS5915608A/en
Publication of JPS5915608A publication Critical patent/JPS5915608A/en
Publication of JPH0243881B2 publication Critical patent/JPH0243881B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/14Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to other specific conditions

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、地熱蒸気を利用する蒸気タービンプ
ラントにおける、地熱蒸気タービンの制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a geothermal steam turbine in a steam turbine plant that utilizes geothermal steam.

〔発明の技術的背景およびその問題点〕[Technical background of the invention and its problems]

一般に地熱を利用した発電プラントにおいて
は、蒸気タービンに流入する蒸気圧は、蒸気井戸
の状態、噴出蒸気量等によつて異なる。そのため
蒸気タービンへの流入蒸気圧が定格値よりも高く
なることがたびたびある。定格圧力で定格負荷運
転されている蒸気タービンは、蒸気圧の上昇によ
つて蒸気タービンへの流入蒸気量を増し、蒸気タ
ービンの負荷は過負荷状態となる。この過負荷運
転をさけるために従来は、蒸気加減弁の出口圧力
(ボール圧力)を、ある値以上に上昇しないよう
に、蒸気加減弁を絞り込む制御を行なつている。
また、地熱発電プラントの場合、従来部分負荷効
率を余り重視していない面もあり、スロツトル制
御方式を採用することが一般的であり、しかもこ
の場合、蒸気加減弁後流のノズル入口で蒸気が合
流するため、いずれかの蒸気加減弁を絞り込め
ば、蒸気加減弁全体としての流入が減少し、蒸気
加減弁出口圧力を規定値以内に押さえることがで
きる。またこのスロツトル制御の場合には、蒸気
加減弁出口圧力と蒸気タービンの出力とはほぼ比
例状態にあるため、蒸気タービンの出力が定格以
上の状態でしか、蒸気加減弁出口圧力が規定値以
上になることはない。したがつて、蒸気加減弁出
口圧力の制御は比較的容易に行なうことができ
る。
Generally, in a power generation plant using geothermal heat, the pressure of steam flowing into a steam turbine varies depending on the state of the steam well, the amount of steam ejected, and the like. Therefore, the steam pressure flowing into the steam turbine is often higher than the rated value. A steam turbine operated at a rated pressure and a rated load increases the amount of steam flowing into the steam turbine due to an increase in steam pressure, and the load on the steam turbine becomes overloaded. In order to avoid this overload operation, conventionally, control is performed to throttle the steam regulating valve so that the outlet pressure (ball pressure) of the steam regulating valve does not rise above a certain value.
Furthermore, in the case of geothermal power generation plants, there has been an aspect in which partial load efficiency has not been given much importance in the past, and a throttle control method is generally adopted, and in this case, steam is Therefore, if any one of the steam control valves is narrowed down, the inflow to the steam control valve as a whole is reduced, and the steam control valve outlet pressure can be kept within a specified value. In addition, in the case of this throttle control, the steam regulator valve outlet pressure and the steam turbine output are almost proportional, so the steam regulator valve outlet pressure will only exceed the specified value when the steam turbine output is above the rated value. It won't happen. Therefore, the steam control valve outlet pressure can be controlled relatively easily.

すなわち、第1図は従来の制御方式による蒸気
加減弁出口圧力制御を組み込まれた地熱蒸気ター
ビン制御装置の系統図であつて、井戸1から噴出
する蒸気は、ドレンセパータ2によつて蒸気と熱
水とに分離され、ドレンセパレータ2を出た蒸気
は、アイソレーシヨン弁3および主蒸気止め弁4
a,4bを経て、蒸気加減弁5a,5bに入り、
その蒸気加減弁5a,5bで蒸気タービン6への
流入蒸気量が調整され、蒸気タービン6に流入す
る。蒸気タービン6に流入した蒸気は、そこで仕
事を行ない、発電機7を駆動するとともに、蒸気
タービン6からの排気は復水器8に流入し、そこ
で復水され地中に還元される。
That is, FIG. 1 is a system diagram of a geothermal steam turbine control device incorporating steam control valve outlet pressure control using a conventional control method. Steam ejected from a well 1 is separated into steam and hot water by a drain separator 2. The steam that exits the drain separator 2 is passed through the isolation valve 3 and the main steam stop valve 4.
a, 4b, enters the steam control valves 5a, 5b,
The amount of steam flowing into the steam turbine 6 is adjusted by the steam control valves 5a and 5b, and the steam flows into the steam turbine 6. The steam flowing into the steam turbine 6 performs work there and drives the generator 7, and the exhaust gas from the steam turbine 6 flows into the condenser 8, where it is condensed and returned to the ground.

ところで、上記蒸気タービン6のロータ軸に
は、歯車9が直結されており、その歯車9と対向
して非接触形電磁ピツクアツプ10が配設され、
その非接触形電磁ピツクアツプ10によつて、タ
ービン回転数に比例した周波数信号が検出される
ようにしてある。上記電磁ピツクアツプ10によ
つて検出された周波数信号は、周波数/電圧変換
器11によつて、タービン回転数に比例したアナ
ログ量に変換され、加算器12に印加される。
By the way, a gear 9 is directly connected to the rotor shaft of the steam turbine 6, and a non-contact electromagnetic pickup 10 is disposed opposite the gear 9.
The non-contact electromagnetic pickup 10 detects a frequency signal proportional to the turbine rotation speed. The frequency signal detected by the electromagnetic pickup 10 is converted by a frequency/voltage converter 11 into an analog quantity proportional to the turbine rotation speed, and is applied to an adder 12.

上記加算器12においては、周波数/電圧変換
器11からの回転数信号が、速度設定器13から
の設定信号と比較演算され、その誤差信号は、調
定率回路14によつて、調定率に合つた速度制御
信号を作り出し、低値優先回路15に印加され
る。低値優先回路15では、上記速度制御信号
と、負荷制限器16からの制限信号と、後記する
蒸気加減弁出口圧力制御回路からの圧力制御信号
とが比較演算され、いずれかの低い制御信号が、
低値優先回路15の出力信号となる。この出力信
号の一方は、パワーアンプ17aにて電力増幅さ
れたうえで、電気/油圧変換器18aの入力とな
る。上記電気/油圧変換器18aでは、入力電流
に比例した機械的な変位量に変換され、その変位
量によつて蒸気加減弁油筒19aの制御パイロツ
ト等が作動せしめられ、油筒19aの開度位置が
制御され、この油筒19aによつて蒸気加減弁5
aの開度が制御され、蒸気タービンへの流入蒸気
量が制御される。低値優先回路15の出力の他方
は、前記一方と同様に、パワーアンプ17b、電
油変換器18bおよび蒸気加減弁油筒19bを経
て、蒸気加減弁5bの開度を制御する。第1図は
蒸気加減弁を2弁有する例で、この場合は双方の
蒸気加減弁5a,5bが同一動作をすることを示
している。
In the adder 12, the rotation speed signal from the frequency/voltage converter 11 is compared with the setting signal from the speed setter 13, and the error signal is sent to the adjustment rate circuit 14 to match the adjustment rate. A speed control signal is generated and applied to the low value priority circuit 15. The low value priority circuit 15 compares and calculates the speed control signal, a limit signal from the load limiter 16, and a pressure control signal from a steam control valve outlet pressure control circuit (to be described later), and determines which of the lower control signals is selected. ,
This becomes the output signal of the low value priority circuit 15. One of the output signals is power amplified by the power amplifier 17a and then input to the electric/hydraulic converter 18a. The electric/hydraulic converter 18a converts the input current into a mechanical displacement proportional to the input current, and the displacement operates the control pilot of the steam control valve oil cylinder 19a, thereby controlling the opening of the oil cylinder 19a. The position of the steam control valve 5 is controlled by this oil cylinder 19a.
The opening degree of a is controlled, and the amount of steam flowing into the steam turbine is controlled. The other output of the low value priority circuit 15 controls the opening degree of the steam control valve 5b through a power amplifier 17b, an electro-hydraulic converter 18b, and a steam control valve oil cylinder 19b, similarly to the above-mentioned one. FIG. 1 shows an example in which there are two steam control valves, and in this case both steam control valves 5a and 5b perform the same operation.

蒸気加減弁5a,5bの出口圧力は、流入蒸気
がタービンケーシング内で混合されるため、いず
れの出口圧力でも同一となる。この圧力が圧力検
出器20にて検出され、その検出圧力信号は、加
算器21に印加され、その加算器21において、
圧力設定器22からの設定信号と比較演算され
て、圧力誤差信号が得られ、その圧力誤差信号
は、圧力制御回路23によつて、圧力調定率に添
つた圧力制御信号が作り出される。この圧力制御
信号は、除外回路24を経て低値優先回路15の
入力となる。圧力設定値は、一般に規定値より高
く設定され、制限圧力一ぱいに設定されるのが普
通である。従つて、蒸気加減弁入口圧力が規定値
で、定格負荷運転時においては、圧力制御回路2
3からの出力信号は、蒸気加減弁を全開させる開
度制御信号となつており、蒸気加減弁の入口圧力
が規定値より高くなり、蒸気加減弁の出口圧力が
規定値より高くなると、加算器21の出力誤差信
号は小さくなり、圧力制御回路23の出力も小さ
くなる。これがために圧力制御信号は、速度制御
回路からの速度制御信号より小さくなり、低値優
先回路15の出力は、圧力制御信号が優先するこ
とにより、蒸気タービンは速度制御から圧力制御
へ自動的に移行する。
Since the incoming steam is mixed within the turbine casing, the outlet pressures of the steam control valves 5a and 5b are the same regardless of the outlet pressure. This pressure is detected by the pressure detector 20, and the detected pressure signal is applied to the adder 21.
A pressure error signal is obtained by comparison with the setting signal from the pressure setting device 22, and the pressure control circuit 23 generates a pressure control signal according to the pressure adjustment rate from the pressure error signal. This pressure control signal passes through the exclusion circuit 24 and becomes an input to the low value priority circuit 15. The pressure setting value is generally set higher than the specified value, and is usually set to the limit pressure. Therefore, when the steam control valve inlet pressure is at the specified value and the pressure is at the rated load operation, the pressure control circuit 2
The output signal from 3 is an opening control signal that fully opens the steam regulating valve, and when the inlet pressure of the steam regulating valve becomes higher than the specified value and the outlet pressure of the steam regulating valve becomes higher than the specified value, the adder The output error signal of 21 becomes smaller, and the output of pressure control circuit 23 also becomes smaller. For this reason, the pressure control signal becomes smaller than the speed control signal from the speed control circuit, and the output of the low value priority circuit 15 is such that the pressure control signal takes priority, so that the steam turbine automatically switches from speed control to pressure control. Transition.

第2図は、スロツトル制御方式における蒸気加
減弁5a,5bと、ノズル6aとの関係を示し、
ノズルは全周に設けられており、各々の蒸気加減
弁5a,5bからの流入蒸気は、ノズル6aの前
で混合してノズルへ流入する。そのため前述のよ
うに蒸気加減弁5a,5bの出口圧力は同一圧力
となる。
FIG. 2 shows the relationship between the steam control valves 5a, 5b and the nozzle 6a in the throttle control system,
Nozzles are provided around the entire circumference, and the incoming steam from each steam control valve 5a, 5b is mixed in front of the nozzle 6a and flows into the nozzle. Therefore, as described above, the outlet pressures of the steam control valves 5a and 5b are the same pressure.

しかしながら、最近の地熱発電プラントにおい
ては、部分負荷運転が重要視される場合が多くな
り、部分負荷における効率を向上させるために、
ノズル制御方式の採用が多くなつている。ところ
で、このノズル制御方式の場合には、部分負荷に
おける効率を向上させるために、蒸気加減弁をシ
ーケンシヤルに開くようにしてあり、また、分割
されたノズルと蒸気加減弁とは対をなしており、
各蒸気加減弁の出口圧力は蒸気タービンの負荷に
よつて異なることになる。つまり部分負荷におい
ても、蒸気加減弁が全開状態にあるものは、蒸気
圧の上昇によつて蒸気加減弁の出口圧力は規定値
以上に上昇することになる。しかも地熱タービン
の主蒸気圧は比較的低いため、容量の大きい蒸気
タービンでは翼が長く、蒸気加減弁出口圧力が規
定値以上まで上昇すると、翼の強度上の問題が生
ずる。
However, in recent geothermal power plants, partial load operation is often considered important, and in order to improve efficiency at partial load,
Nozzle control methods are increasingly being adopted. By the way, in the case of this nozzle control method, in order to improve efficiency at partial loads, the steam control valves are opened sequentially, and the divided nozzles and steam control valves are paired. ,
The outlet pressure of each steam control valve will differ depending on the load of the steam turbine. In other words, even under partial load, if the steam control valve is fully open, the outlet pressure of the steam control valve will rise above the specified value due to the rise in steam pressure. Moreover, since the main steam pressure of a geothermal turbine is relatively low, a large-capacity steam turbine has long blades, and if the steam control valve outlet pressure rises to a specified value or higher, a problem arises in the strength of the blades.

したがつて、ノズル制御方式を用いたタービン
制御装置に、従来のスロツトル制御方式における
制御装置をそのまゝ使用することは不可能であ
る。
Therefore, it is impossible to use a conventional throttle control system control system as is in a turbine control system using a nozzle control system.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、ノズル制御方式
を用いたタービン制御装置において、蒸気井戸側
の発生蒸気圧が上昇した場合、全開状態にある蒸
気加減弁の出口圧力が規定値以上になることを防
止し、蒸気タービンの過負荷を確実に防止し得る
ようにした蒸気タービンの制御装置を提供するこ
とを目的とする。
In view of these points, the present invention provides a turbine control device using a nozzle control method, in which when the generated steam pressure on the steam well side increases, the outlet pressure of the steam control valve in the fully open state becomes equal to or higher than a specified value. An object of the present invention is to provide a steam turbine control device that can reliably prevent steam turbine overload.

〔発明の概要〕[Summary of the invention]

本発明は、複数個の蒸気加減弁を順次開くよう
にし、しかも先に開いた蒸気加減弁が全開または
全開附近まで開いた状態で、次の蒸気加減弁が開
くようにしたノズル制御方式を有する地熱蒸気タ
ービンプラントの蒸気タービンの制御装置におい
て、最初に全開に達する蒸気加減弁の出口圧力信
号を検出し、その圧力信号を圧力制御回路の入力
信号とし、蒸気加減弁の出口圧力が規定値以上に
上昇した場合、圧力制御回路が作動し、まず全開
している蒸気加減弁の開度を絞り込むようにした
ことを特徴とする。
The present invention has a nozzle control method in which a plurality of steam control valves are opened in sequence, and the next steam control valve is opened when the first steam control valve is fully open or close to fully open. In the steam turbine control device of a geothermal steam turbine plant, the outlet pressure signal of the steam regulator valve that first reaches full open is detected, and that pressure signal is used as an input signal to the pressure control circuit, and the outlet pressure of the steam regulator valve is determined to be equal to or higher than a specified value. When the pressure rises to 1, the pressure control circuit is activated to first narrow down the opening degree of the steam control valve, which is already fully open.

〔発明の実施例〕[Embodiments of the invention]

以下、第3図乃至第5図を参照して、本発明を
一実施例について説明する。なお、第1図と同一
部分には同一符号を付しその説明を省略する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 3 to 5. Note that the same parts as in FIG. 1 are given the same reference numerals, and the explanation thereof will be omitted.

第3図はノズル制御方式による蒸気加減弁出口
圧力制御を有する、地熱タービンの制御装置を示
し、そのノズル制御方式による蒸気タービンの制
御方法は、各蒸気加減弁とノズルが、それぞれ仕
切板によつて仕切られており、各蒸気加減弁が全
開したときに、その蒸気加減弁とノズルが最高効
率となるように、設計されているため、部分負荷
における効率を高めることができる。また、ノズ
ル制御の場合、各蒸気加減弁を順次開くことによ
つて、各蒸気加減弁の全開点がそれぞれ最高効率
点となる。第3図において、蒸気加減弁5aと5
bは第1図と同一に記載してあるが、前記したよ
うに第3図の場合は、ノズル制御方式であり、蒸
気加減弁5a,5bの出口は、各々仕切られたノ
ズルへと配管によつて接続される。
Figure 3 shows a geothermal turbine control device that has steam control valve outlet pressure control using a nozzle control method. The steam control valves and nozzles are designed so that they are at their highest efficiency when each steam control valve is fully open, increasing efficiency at partial loads. Further, in the case of nozzle control, by sequentially opening each steam regulating valve, the full opening point of each steam regulating valve becomes the highest efficiency point. In FIG. 3, steam control valves 5a and 5
b is written the same as in Fig. 1, but as mentioned above, the nozzle control system is used in Fig. 3, and the outlets of the steam control valves 5a and 5b are connected to pipes to separate nozzles. It is then connected.

第4図は、ノズル制御方式における蒸気加減弁
とノズルの接続を示したもので、図示したように
ノズル6aと6bは、仕切板6c,6d,6e,
6fによつて仕切られており、蒸気加減弁5a
は、ノズル6aと、蒸気加減弁5bはノズル6b
とそれぞれ接続される。
FIG. 4 shows the connection between the steam control valve and the nozzle in the nozzle control system. As shown, the nozzles 6a and 6b are connected to the partition plates 6c, 6d, 6e,
6f, and a steam control valve 5a.
is the nozzle 6a, and the steam control valve 5b is the nozzle 6b.
are connected to each other.

また、ノズル制御方式の場合には、各蒸気加減
弁を順次開く方法がとられるために、低値優先回
路15を出た制御信号の一方は、最初に開く蒸気
加減弁5aの制御信号となり、定数25によつて
蒸気加減弁5aの開き速度を調整する。すなわ
ち、スロツトル制御方式の場合は、低値優先回路
15の出力信号によつて、すべての蒸気加減弁は
同じように全閉、全開させればよかつたが、ノズ
ル制御方式においては、蒸気加減弁を順次開く方
式をとるため、制御信号に対する各蒸気加減弁の
開き速度を大きくとる必要がある。
In addition, in the case of the nozzle control method, since each steam control valve is sequentially opened, one of the control signals output from the low value priority circuit 15 becomes the control signal for the steam control valve 5a that is opened first. The constant 25 adjusts the opening speed of the steam control valve 5a. In other words, in the case of the throttle control method, it was sufficient to fully close and fully open all the steam control valves in the same way according to the output signal of the low value priority circuit 15, but in the nozzle control method, the steam control Since the valves are opened sequentially, it is necessary to increase the opening speed of each steam control valve in response to the control signal.

低値優先回路15の出力の他方は、加算器26
によつて、蒸気加減弁開き始めバイアス27か
ら、第1弁5aが全開した時点から第2弁5bを
開くように調整するための、マイナス信号である
バイアス信号が加算される。バアイス信号を加え
られた制御信号は、定数28にて、定数25と同
様の意味で、制御信号の増加速度を大きくする。
圧力検出器20の検出座は、第1弁が最初に開き
最初に全開する弁であるため、蒸気加減弁第1弁
の出口側に設けられる。すなわち、全開している
蒸気加減弁の出口圧力が最大であり、この圧力に
よつて圧力制御を行なえば、他のすべての蒸気加
減弁の出口圧力を規定値圧力以内に押えることに
なる。この圧力検出信号は、加算器21によつて
圧力設定器22からの設定値と比較演算される。
この誤差信号は、圧力制御回路23によつて、圧
力調定率に添つた圧力制御信号を作り出す。この
圧力制御信号は、除外回路24を経て、一方は蒸
気加減弁5aの制御信号と、第1の低値優先回路
29によつて接続される。除外回路24を出た他
方の圧力制御信号は、蒸気加減弁5bの制御信号
と、第2の低値優先回路30によつて接続され
る。
The other output of the low value priority circuit 15 is sent to the adder 26
Accordingly, a bias signal, which is a negative signal, is added to the steam control valve opening start bias 27 to adjust the second valve 5b to open from the time when the first valve 5a is fully opened. The control signal to which the bias signal is added increases the rate of increase of the control signal at constant 28, which has the same meaning as constant 25.
The detection seat of the pressure detector 20 is provided on the outlet side of the first steam control valve because the first valve is the first valve to open and the first to fully open. That is, the outlet pressure of the fully open steam regulating valve is the maximum, and if pressure control is performed using this pressure, the outlet pressures of all other steam regulating valves will be held within the specified pressure. This pressure detection signal is compared with a set value from a pressure setting device 22 by an adder 21.
This error signal is used by the pressure control circuit 23 to generate a pressure control signal in accordance with the pressure adjustment rate. This pressure control signal passes through an exclusion circuit 24 and is connected on the one hand to the control signal of the steam control valve 5a by a first low value priority circuit 29. The other pressure control signal leaving the exclusion circuit 24 is connected by a second low value priority circuit 30 to the control signal of the steam control valve 5b.

圧力制御回路の圧力設定は、蒸気加減弁の出口
圧力が規定値以内であれば、圧力制御回路からの
出力信号は、各蒸気加減弁を全開させる制御信号
となるように設定する。蒸気加減弁出口圧力が規
定値を越えると、加算器21からの誤差信号は減
少し、蒸気加減弁を絞り込む制御信号を作り出
す。この制御信号は、それぞれの低値優先回路2
9,30によつて接続されており、速度制御回路
からの蒸気加減弁信号とそれぞれ比較演算し、速
度制御回路からの制御信号より小さくなると、そ
の蒸気加減弁は圧力制御へと移行する。
The pressure of the pressure control circuit is set so that if the outlet pressure of the steam control valve is within a specified value, the output signal from the pressure control circuit is a control signal that fully opens each steam control valve. When the steam regulator outlet pressure exceeds a specified value, the error signal from the adder 21 decreases, producing a control signal that throttles the steam regulator. This control signal is applied to each low value priority circuit 2.
9 and 30, each of which compares and calculates the steam control valve signal from the speed control circuit, and when it becomes smaller than the control signal from the speed control circuit, the steam control valve shifts to pressure control.

しかして、スロツトル制御の場合は、蒸気加減
弁の出口圧力が規定値を越えると、すべての蒸気
加減弁を絞り込んで、蒸気加減弁の出口圧力を規
定値を越えないように制御したが、本実施例にお
けるノズル制御方式の場合、圧力制御信号は各蒸
気弁ごとに、低値優先回路29,30によつて接
続してあるため、蒸気タービンの出力が定格以下
においても、蒸気加減弁入口圧力が高くなり、全
開している蒸気加減弁の出口圧力が規定値を越え
た場合、圧力制御回路は、その蒸気加減弁を絞り
込む信号を作り出し、その圧力制御信号が速度制
御回路からの蒸気加減弁制御信号より低い蒸気加
減弁のみ、圧力制御へと移行する。すなわち、ノ
ズル制御方式の場合、蒸気タービンの負荷に応じ
て蒸気加減弁を順次開く方式がとられており、部
分負荷の場合、すべての蒸気加減弁が全開してい
るのではない。このため全開している蒸気加減弁
あるいは、全開附近で速度制御している蒸気加減
弁が、先に圧力制御へと移行することになる。地
熱プラントの場合、蒸気加減弁を閉じることによ
つて、入口蒸気圧力は高くなる方向にあるが、そ
の上昇率は蒸気加減弁を絞り込むことによつて、
低下する蒸気加減弁出口圧力より小さいため、あ
る程度の蒸気加減弁の絞り込みによつて、蒸気加
減弁の出口圧力は、規定値内に押えることができ
る。
However, in the case of throttle control, when the outlet pressure of the steam regulating valve exceeds a specified value, all the steam regulating valves are throttled down to control the outlet pressure of the steam regulating valve so as not to exceed the specified value. In the case of the nozzle control system in the embodiment, the pressure control signal is connected to each steam valve by the low value priority circuits 29 and 30, so even if the output of the steam turbine is below the rated value, the steam regulator valve inlet pressure remains unchanged. If the pressure at the outlet of a fully open steam regulator exceeds the specified value, the pressure control circuit generates a signal that throttles the steam regulator; Only steam control valves lower than the control signal transition to pressure control. That is, in the case of the nozzle control method, the steam control valves are sequentially opened according to the load of the steam turbine, and in the case of partial load, all the steam control valves are not fully opened. Therefore, the steam control valve that is fully open or the steam control valve that is controlling the speed near full open will shift to pressure control first. In the case of a geothermal plant, the inlet steam pressure tends to increase by closing the steam control valve, but the rate of increase can be controlled by narrowing the steam control valve.
Since it is smaller than the decreasing steam regulating valve outlet pressure, the steam regulating valve outlet pressure can be held within the specified value by narrowing down the steam regulating valve to some extent.

第5図は、本発明における圧力制御の状態を示
し、第5図において、X軸は時間の経過を、Y軸
はそれぞれの状態を示す。またAは蒸気加減弁5
aの弁開度、Bは蒸気加減弁5bの弁開度、Cは
蒸気タービンの回転数、Dは蒸気タービンの出
力、Eは圧力制御回路の出力信号、Fは蒸気加減
弁出口圧力、Gは蒸気加減弁の入口圧力の状態を
示す。a点はタービンの起動点で、b点において
定格回転数に到達し、併入後タービンの負荷上昇
が始まる。C点は蒸気加減弁の第1弁5aが全開
となり、第2弁5bが開き始める。d点で第2弁
も全開し、定格負荷運転となる。この状態で主蒸
気圧力(蒸気加減弁入口圧力)の上昇がある(e
点)と、その圧力上昇に従つて、蒸気加減弁出口
圧力も上昇し、蒸気タービンの出力も増加を始め
る。蒸気加減弁の出口圧力が規定値を越える(f
点)と、圧力制御回路の出力は減少を開始し、蒸
気加減弁5aと5bは絞り込みを開始する(g
点)。圧力制御回路は、蒸気加減弁の出口圧力を
規定値まで絞り込み、規定値に達したら、その圧
力を保持するように圧力制御が継続される。蒸気
加減弁の入口圧力が低下し、規定値圧力以下とな
ると、圧力制御回路は再び蒸気加減弁を全開する
制御信号となるため、蒸気タービンは速度制御の
状態へと移行する。第5図は第1弁5a、第2弁
5bとも全開の状態での圧力上昇における制御状
態を示したが、第1弁5aのみ全開の状態におい
て圧力上昇が起きても、同様の制御が行なわれ
る。ただし、この場合は第1弁のみ圧力制御へ移
行し、第2弁5bは速度制御のままの状態とな
る。
FIG. 5 shows the state of pressure control in the present invention. In FIG. 5, the X-axis shows the passage of time, and the Y-axis shows the respective states. Also, A is the steam control valve 5
A is the valve opening degree, B is the valve opening degree of the steam regulator valve 5b, C is the rotation speed of the steam turbine, D is the output of the steam turbine, E is the output signal of the pressure control circuit, F is the steam regulator valve outlet pressure, G indicates the state of the inlet pressure of the steam control valve. Point a is the starting point of the turbine, and the rated rotational speed is reached at point b, and the load on the turbine begins to increase after joining. At point C, the first valve 5a of the steam control valve becomes fully open, and the second valve 5b begins to open. At point d, the second valve is also fully opened, resulting in rated load operation. In this state, the main steam pressure (steam control valve inlet pressure) increases (e
point), and as the pressure rises, the steam control valve outlet pressure also rises, and the output of the steam turbine also begins to increase. The outlet pressure of the steam control valve exceeds the specified value (f
point), the output of the pressure control circuit starts decreasing, and the steam control valves 5a and 5b start throttling (g
point). The pressure control circuit throttles the outlet pressure of the steam control valve to a specified value, and once the specified value is reached, pressure control is continued to maintain that pressure. When the inlet pressure of the steam regulating valve decreases and becomes equal to or less than the specified value pressure, the pressure control circuit generates a control signal to fully open the steam regulating valve again, so that the steam turbine shifts to a speed control state. Although FIG. 5 shows the control state when the pressure rises when both the first valve 5a and the second valve 5b are fully open, the same control is performed even if the pressure rises when only the first valve 5a is fully open. It will be done. However, in this case, only the first valve shifts to pressure control, and the second valve 5b remains under speed control.

〔発明の効果〕〔Effect of the invention〕

複数個の蒸気加減弁を順次開くようにし、しか
も先に開いた蒸気加減弁が全開または全開附近ま
で開いた状態で、次の蒸気加減弁が開くようにし
た、ノズル制御方式を有する地熱発電プラントの
蒸気タービンの制御装置において、最初に全開に
達する蒸気加減弁の出口圧力信号に対応して蒸気
加減弁制御信号を出力する圧力制御回路と、ター
ビン回転数信号に対応して蒸気加減弁制御信号を
出力する速度制御回路と、上記速度制御回路およ
び圧力制御回路からの出力信号の低値信号を上記
最初に全開に達する蒸気加減弁の制御信号として
出力する第1の低値優先回路と、次に全開に達す
る蒸気加減弁への速度制御回路からの出力信号と
前記圧力制御回路からの出力信号との低値信号を
上記次に全開に達する蒸気加減弁の制御信号とし
て出力する第2の低値優先回路とを設けたので、
部分負荷運転中において、蒸気井戸の状態、噴出
蒸気量の変動等によつて蒸気タービンに流入する
蒸気圧が規定値以上になつたような場合には、全
開または全開附近まで開いている蒸気加減弁のみ
が圧力制御へと移行され、蒸気タービンの過負荷
が防止され、他の蒸気加減弁は速度制御回路から
の出力信号によつて制御される。したがつて、全
ての蒸気加減弁が同時に圧力制御に移るようなこ
とがなくて、必要以上に負荷が絞り込まれること
がなく、タービンの出力を所定値に維持すること
ができ、蒸気圧等が変動し易い地熱の利用を効果
的に行なうことができる。しかも、各蒸気加減弁
が互いに仕切られたノズルのいずれかと対応する
ように接続されていにもかかわらず、最初に全開
に達する蒸気加減弁の出口部に圧力検出器を設け
るだけで、各蒸気加減弁を順次圧力制御に移行せ
しめることができ、その構成もきわめて簡単なも
のとすることができる等の効果を奏する。
A geothermal power generation plant having a nozzle control method in which a plurality of steam control valves are opened in sequence, and the next steam control valve is opened when the first steam control valve is fully open or close to fully open. A steam turbine control device includes a pressure control circuit that outputs a steam regulating valve control signal in response to an outlet pressure signal of the steam regulating valve that first reaches full open, and a pressure control circuit that outputs a steam regulating valve control signal in response to a turbine rotational speed signal. a first low value priority circuit that outputs a low value signal of the output signals from the speed control circuit and the pressure control circuit as a control signal for the steam control valve that first reaches full open; A second low-value signal that outputs the low value signal of the output signal from the speed control circuit to the steam control valve that reaches full open and the output signal from the pressure control circuit as a control signal for the steam control valve that reaches full open next. Since a value priority circuit is provided,
During partial load operation, if the steam pressure flowing into the steam turbine exceeds the specified value due to the condition of the steam well, fluctuations in the amount of steam ejected, etc., the steam control valve, which is fully open or close to fully open, may Only the valves are transferred to pressure control to prevent overloading of the steam turbine, and the other steam control valves are controlled by the output signal from the speed control circuit. Therefore, all the steam control valves do not shift to pressure control at the same time, the load is not reduced more than necessary, the output of the turbine can be maintained at a predetermined value, and the steam pressure etc. It is possible to effectively utilize geothermal heat, which is subject to fluctuations. Moreover, even though each steam control valve is connected to correspond to one of the nozzles partitioned off from each other, each steam control valve can be adjusted by simply installing a pressure sensor at the outlet of the steam control valve that reaches full open first. The valves can be sequentially shifted to pressure control, and the configuration can be extremely simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスロツトル制御方式による蒸気
加減弁出口圧力制御を組み込んだ、地熱発電プラ
ントにおける蒸気タービンの制御装置系統図、第
2図はスロツトル制御方式における蒸気加減弁と
ノズルの接続を示す系統図、第3図は本発明の一
実施例による地熱発電プラントにおける蒸気ター
ビンの制御装置系統図、第4図はノズル制御方式
における蒸気加減弁とノズルの接続状態を示す系
統図、第5図は本発明における蒸気加減弁出口圧
力制御時の蒸気加減弁、圧力制御回路の出力、蒸
気加減弁入口および出口の圧力の変化を示す線図
である。 5a,5b……蒸気加減弁、6……蒸気タービ
ン、6a,6b……ノズル、6c,6d,6e,
6f……仕切板、10……電磁ピツクアツプ、1
1……周波数/電圧変換器、12,21,26…
…加算器、13……速度設定器、15,29,3
0……低値優先回路、17a,17b……パワー
アンプ、18a,18b……電気/油圧変換器、
19a,19b……蒸気加減弁油筒、22……圧
力設定器、23……圧力制御回路、27……バイ
アス。
Figure 1 is a system diagram of a control system for a steam turbine in a geothermal power plant that incorporates steam regulator outlet pressure control using the conventional throttle control method. Figure 2 is a system showing the connection between the steam regulator and nozzle in the throttle control method. 3 is a system diagram of a control system for a steam turbine in a geothermal power plant according to an embodiment of the present invention, FIG. 4 is a system diagram showing the connection state of a steam control valve and a nozzle in a nozzle control system, and FIG. FIG. 3 is a diagram showing changes in the steam regulator, the output of the pressure control circuit, and the pressures at the steam regulator inlet and outlet during steam regulator outlet pressure control in the present invention. 5a, 5b...Steam control valve, 6...Steam turbine, 6a, 6b...Nozzle, 6c, 6d, 6e,
6f...Partition plate, 10...Electromagnetic pick-up, 1
1... Frequency/voltage converter, 12, 21, 26...
... Adder, 13 ... Speed setting device, 15, 29, 3
0...Low value priority circuit, 17a, 17b...Power amplifier, 18a, 18b...Electric/hydraulic converter,
19a, 19b...Steam control valve oil cylinder, 22...Pressure setting device, 23...Pressure control circuit, 27...Bias.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の蒸気加減弁を順次開くようにし、し
かも先に開いた蒸気加減弁が全開または全開附近
まで開いた状態で、次の蒸気加減弁が開くように
した、ノズル制御方式を有する地熱発電プラント
の蒸気タービンの制御装置において、最初に全開
に達する蒸気加減弁の出口圧力信号に対応して蒸
気加減弁制御信号を出力する圧力制御回路と、タ
ービン回転数信号に対応して蒸気加減弁制御信号
を出力する速度制御回路と、上記速度制御回路お
よび圧力制御回路からの出力信号の低値信号を上
記最初に全開に達する蒸気加減弁の制御信号とし
て出力する第1の低値優先回路と、次に全開に達
する蒸気加減弁への速度制御回路からの出力信号
と前記圧力制御回路からの出力信号との低値信号
を上記次に全開に達する蒸気加減弁の制御信号と
して出力する第2の低値優先回路とを有すること
を特徴とする、蒸気タービンの制御装置。
1 Geothermal power generation with a nozzle control method in which multiple steam control valves are opened in sequence, and the next steam control valve is opened when the first steam control valve is fully open or close to fully open. In a control device for a steam turbine in a plant, there is a pressure control circuit that outputs a steam regulating valve control signal in response to an outlet pressure signal of the steam regulating valve that first reaches full open, and a steam regulating valve control circuit that outputs a steam regulating valve control signal in response to a turbine rotation speed signal. a speed control circuit that outputs a signal; a first low value priority circuit that outputs a low value signal of the output signals from the speed control circuit and the pressure control circuit as a control signal for the steam control valve that first reaches full open; A second controller outputs a low value signal between the output signal from the speed control circuit and the output signal from the pressure control circuit to the steam control valve that next reaches full open as a control signal for the steam control valve that next reaches full open. A control device for a steam turbine, comprising a low value priority circuit.
JP12420182A 1982-07-16 1982-07-16 Controller of steam turbine Granted JPS5915608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12420182A JPS5915608A (en) 1982-07-16 1982-07-16 Controller of steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12420182A JPS5915608A (en) 1982-07-16 1982-07-16 Controller of steam turbine

Publications (2)

Publication Number Publication Date
JPS5915608A JPS5915608A (en) 1984-01-26
JPH0243881B2 true JPH0243881B2 (en) 1990-10-02

Family

ID=14879481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12420182A Granted JPS5915608A (en) 1982-07-16 1982-07-16 Controller of steam turbine

Country Status (1)

Country Link
JP (1) JPS5915608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459558A (en) * 1990-06-27 1992-02-26 Sakae Urushizaki Roll type adhesive tape

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139906A (en) * 1985-12-13 1987-06-23 Toshiba Corp Geothermal turbine
JP7284203B2 (en) * 2021-02-25 2023-05-30 三菱重工業株式会社 Power generation systems and controllers for power generation systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187603A (en) * 1975-01-31 1976-07-31 Tokyo Shibaura Electric Co
JPS5395402A (en) * 1977-01-31 1978-08-21 Toshiba Corp Pressure controller for atomic turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187603A (en) * 1975-01-31 1976-07-31 Tokyo Shibaura Electric Co
JPS5395402A (en) * 1977-01-31 1978-08-21 Toshiba Corp Pressure controller for atomic turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459558A (en) * 1990-06-27 1992-02-26 Sakae Urushizaki Roll type adhesive tape

Also Published As

Publication number Publication date
JPS5915608A (en) 1984-01-26

Similar Documents

Publication Publication Date Title
JPS6344922B2 (en)
JPS6158644B2 (en)
JPH0243881B2 (en)
JPS5820363B2 (en) steam turbine equipment
JP2749123B2 (en) Power plant control method and device
JP2653798B2 (en) Boiler and turbine plant control equipment
JPS6214684B2 (en)
JPS642762B2 (en)
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JPH0133767Y2 (en)
JPH0631813B2 (en) Turbine controller for nuclear reactor plant
JPS6158903A (en) Turbine controller for nuclear reactor
JP2504939Y2 (en) Boiler level controller
JP4060654B2 (en) Water supply pump recirculation flow control device
JPH0315001B2 (en)
JPS6115244B2 (en)
JPS6156401B2 (en)
JPS61225696A (en) Turbine controller
JPH04342806A (en) Steam turbine control device for combined power plant
JPH0128202B2 (en)
JPH0368204B2 (en)
JPH02201003A (en) Electric-hydraulic governor apparatus
JPH0127243B2 (en)
JP2000064810A (en) Control of high and low pressure bypass valve for boiler equipment
JPS58200005A (en) Controlling method of turbine speed