JPH06146815A - Gas turbine composite power generator - Google Patents
Gas turbine composite power generatorInfo
- Publication number
- JPH06146815A JPH06146815A JP29853292A JP29853292A JPH06146815A JP H06146815 A JPH06146815 A JP H06146815A JP 29853292 A JP29853292 A JP 29853292A JP 29853292 A JP29853292 A JP 29853292A JP H06146815 A JPH06146815 A JP H06146815A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- hot water
- gas turbine
- heat recovery
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガスタービンと同ガス
タービンの排ガスによる排熱回収装置からの蒸気で駆動
される蒸気タービンによって発電を行うガスタービン複
合発電装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine combined power generation apparatus for generating electric power by means of a steam turbine driven by steam from a gas turbine and exhaust heat recovery apparatus for exhaust gas from the gas turbine.
【0002】[0002]
【従来の技術】従来例を図8にもとづいて説明する。図
8に於てガスタービン01からの高温排ガスは排熱回収
装置02に導かれ蒸気を発生させる。発生蒸気は蒸気タ
ービン11に導かれ仕事をし、次いで復水器16にて凝
縮し、復水ポンプ17,脱気器29,給水ポンプ03を
経て一巡する。電力需要の少ない時には、ガスタービン
を停止又は部分負荷運転させる事となる。2. Description of the Related Art A conventional example will be described with reference to FIG. In FIG. 8, the high temperature exhaust gas from the gas turbine 01 is guided to the exhaust heat recovery device 02 to generate steam. The generated steam is guided to the steam turbine 11 to perform work, is then condensed in the condenser 16, and is circulated through the condensate pump 17, the deaerator 29, and the water supply pump 03. When the power demand is low, the gas turbine is stopped or operated under partial load.
【0003】[0003]
【発明が解決しようとする課題】前記したように従来の
ガスタービン複合発電装置においては電力需要が少いと
きにガスタービンを停止させることを行うので装置全体
を停止させたときは装置の発停に伴う損失及び温度変化
に伴う低サイクル疲労による材料の損傷が誘起され、他
の良い方法が待望されていた。本発明は、ガスタービン
を連続運転したまゝ電力需要の変動に応じて発生出力を
変えながら経済的運転を行うことのできるガスタービン
複合発電装置を提供することを課題としている。As described above, in the conventional gas turbine combined cycle power generator, the gas turbine is stopped when the power demand is small. Therefore, when the entire device is stopped, the start / stop of the device is started. The loss of material and the damage of material due to low cycle fatigue accompanying temperature change were induced, and another good method was desired. An object of the present invention is to provide a gas turbine combined cycle power generator that can perform economical operation while continuously operating the gas turbine and changing the generated output in accordance with fluctuations in power demand.
【0004】[0004]
【課題を解決するための手段】本発明は前述の問題点を
解決するために、ガスタービンは電力需要過少期にも運
転するが排熱回収装置での熱回収を蒸気でなく熱水にて
行う事とし熱回収した熱水を貯える蓄熱装置を採用す
る。蒸気タービンは電力需要過少期には主に停止される
が需要過多期には排熱回収ボイラからの蒸気の他に、電
力需要過少期に貯蔵していた熱水からのフラッシュ蒸気
をも蒸気タービンの駆動源として用いる。In order to solve the above-mentioned problems, the present invention operates a gas turbine even during a period of shortage of electric power demand, but heat recovery by an exhaust heat recovery device is performed by hot water instead of steam. A heat storage device that stores the hot water that has been recovered is adopted. Steam turbines are mainly shut down during periods of insufficient power demand, but during periods of excessive demand, in addition to steam from exhaust heat recovery boilers, flash steam from hot water stored during periods of insufficient power demand is also used in steam turbines. It is used as a driving source of.
【0005】従って本発明によるガスタービン複合発電
装置では、蒸気タービンとして排熱回収装置からの直接
の蒸気以外に排熱回収装置で得られた熱水のフラッシュ
蒸気をも駆動源とする蒸気タービンを採用する。また本
発明による装置では、蒸気タービンとして高圧熱水をも
駆動源とする蒸気タービンを含むものの採用も考える。Therefore, in the gas turbine combined cycle power generator according to the present invention, a steam turbine that uses, as a drive source, not only direct steam from the exhaust heat recovery device but also flash steam of hot water obtained by the exhaust heat recovery device, is used as the steam turbine. adopt. Further, in the apparatus according to the present invention, it is considered to employ a steam turbine including a steam turbine which also uses high-pressure hot water as a drive source.
【0006】更にまた本発明においては、排熱回収装置
で得られた高圧熱水から蒸気を得るのに多段のフラッシ
ャーを用い、同フラッシャーの途中段における熱水をガ
スタービンの排ガスで加熱する熱水加熱器をも採用でき
る。Furthermore, in the present invention, a multi-stage flasher is used to obtain steam from the high-pressure hot water obtained by the exhaust heat recovery device, and the hot water in the middle stage of the flasher is heated by the exhaust gas of the gas turbine. A water heater can also be used.
【0007】また、本発明においては、排熱回収装置が
貫流形のボイラおよび蒸気を発生しない温水ボイラのい
づれか一方のボイラのときは、蒸気タービンとして排熱
回収装置で得た熱水のフラッシュ蒸気を駆動源とするフ
ラッシュ蒸気タービンを採用する。Further, in the present invention, when the exhaust heat recovery device is one of the once-through type boiler and the hot water boiler that does not generate steam, the flash steam of hot water obtained by the exhaust heat recovery device as a steam turbine is used. A flash steam turbine driven by is used.
【0008】更に本発明においては排熱回収装置とし
て、水蒸気および水以外の熱媒体が加熱される熱媒体加
熱部が内部に設けられたものを採用し、同熱媒体を貯蔵
する熱媒体貯槽及び同熱媒体を加熱源とし前記蒸気ター
ビンに供給する水蒸気を発生する熱媒体熱交換器、なら
びに同熱媒体熱交換器と前記熱媒体貯槽の間で前記熱媒
体を循環させる熱媒体ポンプを有する構成をも採用す
る。Further, in the present invention, as the exhaust heat recovery device, a device having a heat medium heating section for heating a heat medium other than water vapor and water is adopted, and a heat medium storage tank for storing the heat medium and A configuration including a heat medium heat exchanger that uses the heat medium as a heat source to generate steam to be supplied to the steam turbine, and a heat medium pump that circulates the heat medium between the heat medium heat exchanger and the heat medium storage tank. Is also adopted.
【0009】[0009]
【作用】本発明によるガスタービン複合発電装置では前
記した構成を採用しているので、電力重要過少期には蒸
気タービンを停止し、ガスタービン排ガスを使った排熱
回収装置では熱水を得てそれを貯える。この貯えられた
熱水は電力需要過多期において蒸気タービンの駆動に使
われる。Since the gas turbine combined cycle power generator according to the present invention employs the above-mentioned configuration, the steam turbine is stopped during the period of the critically low power consumption, and hot water is obtained in the exhaust heat recovery device using the gas turbine exhaust gas. Store it. The stored hot water is used to drive the steam turbine during periods of excessive power demand.
【0010】すなわち、本発明により、蒸気タービンと
して熱水のフラッシュ蒸気をも駆動源とするものを採用
すれば貯えられた熱水をフラッシュさせその蒸気を駆動
源とすることができる。また、本発明によって高圧熱水
をも駆動源とする蒸気タービンを採用すれば、高圧熱水
をそのまゝタービン駆動に用いることができる。That is, according to the present invention, if a steam turbine that also uses flash steam of hot water as a driving source is adopted, the stored hot water can be flashed and the steam can be used as a driving source. Further, if the steam turbine that also uses high-pressure hot water as a drive source is adopted according to the present invention, the high-pressure hot water can be used for driving the turbine as it is.
【0011】また、本発明によってフラッシャーの途中
段における熱水を熱水加熱器で加熱するようにした多段
のフラッシャーを採用すれば、フラッシャーでの発生蒸
気量を増やして効果的な発電を行うことができる。ま
た、本発明によれば、蒸気タービンとしてフラッシュ蒸
気タービンを採用して貫流形のボイラや温水ボイラを排
熱回収装置とした発電プラントにおいても、電力需要の
変動に対し経済的に対応できる。Further, according to the present invention, if a multi-stage flasher in which hot water in the middle stage of the flasher is heated by a hot water heater is adopted, the amount of steam generated in the flasher can be increased for effective power generation. You can Further, according to the present invention, even in a power plant in which a flash steam turbine is adopted as a steam turbine and a once-through type boiler or a hot water boiler is used as an exhaust heat recovery device, it is possible to economically respond to fluctuations in power demand.
【0012】更に、本発明によって、水蒸気および水以
外の熱媒体が加熱される熱媒体加熱部が設けられた排熱
回収装置を用いると、電力需要過少期にはその熱媒体に
高温状態で蓄熱できそれを電力需要過多期に有効に利用
し電力発生を行うことができる。Further, according to the present invention, when the exhaust heat recovery device provided with the heat medium heating section for heating the heat medium other than steam and water is used, the heat medium is accumulated in a high temperature state in the heat medium during the period when the electric power demand is insufficient. It can be used effectively in the period of excessive power demand to generate electricity.
【0013】このように、本発明によれば前述の手段を
採用する事により、ガスタービンの信頼性を損う事な
く、電力需要の変動に追従することが容易となる。As described above, according to the present invention, by adopting the above-mentioned means, it becomes easy to follow the fluctuation of the power demand without deteriorating the reliability of the gas turbine.
【0014】[0014]
【実施例】以下本発明による装置を図示した実施例に基
いて具体的に説明する。なお、以下の図面において同一
符号は同等の部分を示しており、また、図8に示す従来
の装置における部分と同等の部分には同符号を付してあ
りそれらの説明は省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The device according to the present invention will be described in detail below with reference to the illustrated embodiments. In the following drawings, the same reference numerals denote the same parts, and the same parts as those in the conventional device shown in FIG. 8 are given the same reference numerals and the description thereof will be omitted.
【0015】(第1実施例)まず、図1に示す第1実施
例について説明する。ガスタービン01からの高温排ガ
スが排熱回収ボイラ02に導かれると、そこで蒸気や高
圧熱水を発生する。即ち、電力需要過多期にはぼゞ従来
技術と同様、給水ポンプ03からの高圧給水が排熱回収
ボイラ02に送られ高圧節炭器25,高圧蒸発器26,
高圧加熱器27を経て主蒸気が作られ、蒸気タービン1
1に送りこまれる。(First Embodiment) First, the first embodiment shown in FIG. 1 will be described. When the high temperature exhaust gas from the gas turbine 01 is guided to the exhaust heat recovery boiler 02, steam and high pressure hot water are generated there. That is, in the period of excessive power demand, the high-pressure feed water from the water feed pump 03 is sent to the exhaust heat recovery boiler 02, and the high-pressure economizer 25, the high-pressure evaporator 26, and the like as in the conventional technology.
Main steam is produced through the high-pressure heater 27, and the steam turbine 1
Be sent to 1.
【0016】その上、電力需要過多期には、電力需要過
少期に後記するように高圧熱水貯槽04にためられてい
た高圧熱水が第1フラッシャー07−1に送り込まれそ
こで蒸気と熱水とに分離し、蒸気は配管09−1を通っ
て蒸気タービン11に送り込まれる。一方、熱水は第2
フラッシャー07−2に送り込まれ、そこで蒸気と熱水
とに分離され蒸気は配管09−2を通じて蒸気タービン
11に送り込まれ、一方熱水は第3フラッシャー07−
3に送り込まれて蒸気と熱水とに分離され、蒸気は配管
09−3を通じて蒸気タービン11に送り込まれる。Moreover, during the period of excessive power demand, the high-pressure hot water stored in the high-pressure hot water storage tank 04 is sent to the first flasher 07-1, as described later in the period of insufficient power demand, and steam and hot water are there. The steam is sent to the steam turbine 11 through the pipe 09-1. On the other hand, hot water is second
It is sent to the flasher 07-2, where it is separated into steam and hot water, and the steam is sent to the steam turbine 11 through the pipe 09-2, while hot water is supplied to the third flasher 07-.
3 and is separated into steam and hot water, and the steam is sent to the steam turbine 11 through the pipe 09-3.
【0017】第三フラッシャー07−3にて蒸気になら
なかった残りの熱水はポンプ31にて給水タンク32に
送り込まれ必要量が脱気器給水ポンプ33を通じて排ガ
スボイラ02に送り込まれる。蒸気タービン11に送り
込まれた蒸気は仕事を終えたあと復水器16にて冷却さ
れて凝縮し、復水ポンプ17にて復水タンク18に送り
込まれる。The remaining hot water that has not been turned into steam by the third flasher 07-3 is sent to the water supply tank 32 by the pump 31 and the required amount is sent to the exhaust gas boiler 02 through the deaerator water supply pump 33. After finishing the work, the steam sent to the steam turbine 11 is cooled by the condenser 16 and condensed, and then sent to the condensate tank 18 by the condensate pump 17.
【0018】一方電力需要過少期には復水タンク18か
らの復水も給水タンク32に送り込まれ次いで脱気器給
水ポンプ33によって排ガスボイラ02に送り込まれた
給水は脱気器節炭器28,脱気器29,脱気器蒸発器3
0を経て給水ポンプ03にて昇圧され、高圧節炭器25
にて高圧熱水が作られ、基本的に開となっているバルブ
06−3を経て、高圧熱水貯槽04に送り込まれる。な
お高圧蒸発器26及び高圧加熱器27からの蒸気は極力
少なくなるよう、入口側のバルブ06−4を必要最小限
の開度とする。また、必要に応じて再循環ポンプ04−
2を作動させると熱水の温度は高められる事となる。On the other hand, the condensate from the condensate tank 18 is also sent to the water supply tank 32 during the power demand shortage period, and then the water supplied to the exhaust gas boiler 02 by the deaerator water supply pump 33 is the deaerator economizer 28. Deaerator 29, Deaerator Evaporator 3
High pressure economizer 25
The high-pressure hot water is produced at and is sent to the high-pressure hot water storage tank 04 through the valve 06-3 which is basically open. The valve 06-4 on the inlet side is set to the minimum required opening so that the vapor from the high-pressure evaporator 26 and the high-pressure heater 27 is reduced as much as possible. If necessary, the recirculation pump 04-
When 2 is activated, the temperature of hot water will be raised.
【0019】(第2実施例)図2によって本発明の第二
実施例について説明する。基本構成は第1実施例と同じ
であるが次の点で異っている。すなわち、本排ガスボイ
ラ02は基本的にはドラムのない貫流ボイラであって、
かつ、ボイラ出口のボイド率が大きく変化できるような
構成としている。この第2実施例の装置では、電力需要
過多期には主に蒸気を発生させ、ミストセパレータ05
を介して蒸気タービン11へ導入し、一方、電力需要過
少期には貫流ボイラ02では主に熱水を発生させ熱水貯
槽04へ導入する。(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG. The basic structure is the same as that of the first embodiment, but is different in the following points. That is, the exhaust gas boiler 02 is basically a once-through boiler without a drum,
Moreover, the configuration is such that the void ratio at the boiler outlet can be changed significantly. In the device of the second embodiment, steam is mainly generated during the period of excessive power demand, and the mist separator 05
Is introduced into the steam turbine 11 via the, while the once-through boiler 02 mainly generates hot water and introduces the hot water into the hot water storage tank 04 during the power demand shortage period.
【0020】また、フラッシャー07を大きく2分割
し、第二フラッシャー出口の熱水を熱水加熱器10に導
き、昇温させ、第三フラッシャー07−3での発生蒸気
の増加を計る。また、図1の第1実施例との相違とし
て、図1の装置では復水タンク18からの復水の一部又
は全部を弁35−2を介して貯槽04へ、及び/あるい
は給水タンク32からの給水の一部を弁36−2を介し
て高圧熱水貯槽04に導ける構成となっているのに対
し、本第2実施例ではそのような構成とはなっていな
い。Further, the flasher 07 is roughly divided into two, the hot water at the outlet of the second flasher is introduced into the hot water heater 10, and the temperature is raised to measure the increase of steam generated in the third flasher 07-3. Further, as a difference from the first embodiment of FIG. 1, in the device of FIG. 1, a part or all of the condensate from the condensate tank 18 is transferred to the storage tank 04 via the valve 35-2 and / or the water supply tank 32. While a part of the water supply from the above can be guided to the high pressure hot water storage tank 04 via the valve 36-2, the second embodiment does not have such a structure.
【0021】(第3実施例)図3によって本発明の第3
実施例について説明する。基本構成は第1及び第2実施
例と同じであるが、蒸気タービン11が2区分されてお
り、高圧熱水を直接に送り込む事のできるタービン11
−2を備えた点が相違している。高圧熱水を直接送り込
まれるタービン11−2の排気は蒸気と熱水とに分離す
るので蒸気はタービン11−1の途中段へ送り込まれ、
熱水はフラッシャー07−1に送り込まれる。その他
は、第1及び第2実施例の場合と同様なので説明を省略
する。(Third Embodiment) The third embodiment of the present invention will be described with reference to FIG.
Examples will be described. The basic configuration is the same as that of the first and second embodiments, but the steam turbine 11 is divided into two, and the turbine 11 capable of directly feeding high-pressure hot water.
-2 is different. Exhaust gas from the turbine 11-2, to which high-pressure hot water is directly sent, is separated into steam and hot water, so the steam is sent to an intermediate stage of the turbine 11-1.
The hot water is sent to the flasher 07-1. Others are the same as in the case of the first and second embodiments, and the description thereof will be omitted.
【0022】(第4実施例)図4は本発明の第4実施例
を示しており、第1実施例から第3実施例までと異なる
のはガスタービン01及び排ガスボイラ02が各2系列
あり、一方、蒸気タービン11,高圧熱水貯槽04,復
水器16系は1系列としている点である。その他の構成
および作用は前述の実施例と同様なので説明を省略す
る。(Fourth Embodiment) FIG. 4 shows a fourth embodiment of the present invention. The difference from the first to third embodiments is that each of the gas turbine 01 and the exhaust gas boiler 02 has two series. On the other hand, the steam turbine 11, the high-pressure hot water storage tank 04, and the condenser 16 system are one system. The rest of the configuration and operation are the same as those of the above-mentioned embodiment, so the explanation is omitted.
【0023】(第5実施例)図5は本発明の第5実施例
を示している。この第5実施例が前述した第1実施例か
ら第4実施例と異っているのは排熱回収装置02が電力
需要過多期に於ても蒸気を発生させないいわゆる温水
(又は熱水)ボイラである点である。従って、排熱回収
装置02からの熱水は通常フラッシャー07へ送られる
が電力需要過少期には高圧熱水貯槽04へ送られて貯え
られる。その他の構成及び作用については説明を省略す
る。(Fifth Embodiment) FIG. 5 shows a fifth embodiment of the present invention. The fifth embodiment differs from the above-described first to fourth embodiments in that a so-called hot water (or hot water) boiler in which the exhaust heat recovery device 02 does not generate steam even during an excessive power demand period That is the point. Therefore, the hot water from the exhaust heat recovery device 02 is normally sent to the flasher 07, but is sent to and stored in the high-pressure hot water storage tank 04 during the period when the power demand is insufficient. Description of other configurations and operations will be omitted.
【0024】(第6実施例)図6は本発明の第6実施例
を示しており、これまでの実施例と異なるのは次の点で
ある。即ち排熱回収装置02からは常時蒸気が発生させ
られ、通常はその蒸気によって高圧蒸気タービン11−
2にて仕事をする事としている点である。一方、電力需
要過少期には高圧タービン11−2の出口蒸気を熱交換
器40を経て高圧熱水貯槽04に貯める事としている。
その他の構成及び作用については説明を省略する。(Sixth Embodiment) FIG. 6 shows a sixth embodiment of the present invention, which is different from the previous embodiments in the following points. That is, the exhaust heat recovery device 02 constantly generates steam, and normally the high-pressure steam turbine 11-
The point is to work at 2. On the other hand, the outlet steam of the high-pressure turbine 11-2 is to be stored in the high-pressure hot water storage tank 04 via the heat exchanger 40 during the power demand shortage period.
Description of other configurations and operations will be omitted.
【0025】(第7実施例)図7は本発明の第7実施例
であり、これまでの実施例と異なるのは次の点である。
即ち、排熱回収装置02での熱回収は例えばナトリウム
などの熱媒体加熱器43による熱媒体の昇温及び温水
(又は熱水)発生を行わせ、電力需要の変動によっても
これを基本的には変えない。しかるに電力需要過少期に
は、その末期に熱媒体は媒体タンク42にてより高温の
状態(例えば400〜500℃)に保たれ、いわゆる蓄
熱状態となる。電力需要過多期には、媒体タンク42中
の熱交部42−2に於て熱水の蒸発(実線で示す)やフ
ラッシュ蒸気の加熱(点線で示す)に供される。その他
の構成・作用は先の実施例と同じなので説明を省略す
る。(Seventh Embodiment) FIG. 7 shows a seventh embodiment of the present invention, which is different from the previous embodiments in the following points.
That is, the heat recovery in the exhaust heat recovery device 02 causes the heat medium heater 43 such as sodium to raise the temperature of the heat medium and generate hot water (or hot water). Does not change However, during the power demand shortage period, the heat medium is kept at a higher temperature (for example, 400 to 500 ° C.) in the medium tank 42 at the end of the period, and a so-called heat storage state is obtained. In the excessive power demand period, the heat exchanger 42-2 in the medium tank 42 is used for evaporation of hot water (shown by a solid line) and heating of flash steam (shown by a dotted line). Other configurations and operations are the same as those of the above-described embodiment, and thus the description thereof will be omitted.
【0026】以上本発明による装置を図示した実施例に
ついて具体的に説明したが、本発明がこれらの実施例に
限定されないことはいうまでもない。The embodiments of the apparatus according to the present invention have been specifically described above, but it goes without saying that the present invention is not limited to these embodiments.
【0027】[0027]
【発明の効果】本発明による装置では、排熱回収装置で
熱回収して得た熱水を貯える蓄熱装置を有し、蒸気ター
ビンとして排熱回収装置からの直接の蒸気以外に同排熱
回収装置で得られた熱水のフラッシュ蒸気をも駆動源と
する蒸気タービンを採用するので、電力需要過少時に熱
水の形で貯えたエネルギーを電力需要過多期にその熱水
を用いて蒸気タービンで電力を発生することができる。The apparatus according to the present invention has a heat storage device for storing hot water obtained by recovering heat by the exhaust heat recovery device, and the exhaust heat recovery device is a steam turbine in addition to the direct steam from the exhaust heat recovery device. Since a steam turbine that uses the flash steam of hot water obtained from the equipment as a drive source is also adopted, the energy stored in the form of hot water when the power demand is insufficient is used in the steam turbine by using the hot water during the period when the power demand is excessive. Electric power can be generated.
【0028】また、本発明によって蒸気タービンとして
高圧熱水をも駆動力とする蒸気タービンを採用すれば、
貯えた熱水を使って効果的に発電することができる。更
に、本発明に従って高圧熱水から蒸気を得る多段のフラ
ッシャーを設け、同フラッシャーの途中段における熱水
をガスタービンの排ガスで加熱する給水加熱器を設けれ
ば熱水から得られる蒸気の量を増やし、蒸気タービンに
おける熱水利用率を高めることができる。Further, according to the present invention, if a steam turbine which also uses high-pressure hot water as a driving force is adopted as the steam turbine,
It is possible to effectively generate electricity using the stored hot water. Further, according to the present invention, a multi-stage flasher for obtaining steam from high-pressure hot water is provided, and if a feed water heater for heating hot water in the middle stage of the flasher with exhaust gas of a gas turbine is provided, the amount of steam obtained from hot water can be increased. It is possible to increase the utilization rate of hot water in the steam turbine.
【0029】また、排熱回収装置が貫流形のボイラおよ
び蒸気を発生しない温水ボイラのいづれか一方のボイラ
の場合は、本発明によって蒸気タービンとして排熱回収
装置で得た熱水のフラッシュ蒸気を駆動源とするフラッ
シュ蒸気タービンを採用することによって、電力需要過
少時に得た熱水を使って電力需要過多期に有効に電力を
発生することができる。In the case where the exhaust heat recovery device is either one of a once-through type boiler and a hot water boiler that does not generate steam, the flash steam of hot water obtained by the exhaust heat recovery device according to the present invention is driven by the present invention. By adopting a flash steam turbine as a power source, it is possible to effectively generate electric power during an excessive power demand period by using hot water obtained when the electric power demand is insufficient.
【0030】また、本発明によって排熱回収装置に、水
蒸気および水以外の熱媒体が加熱される熱媒体加熱部を
採用すれば電力需要過少期に高温状態の熱媒体を得、こ
れを貯槽に蓄えておくことにより電力需要過多期にこれ
を使って電力を発生させることができる。このように本
発明によれば電力需要の変動に応じて発生出力を変動さ
せ、全体として経済的な運用が可能となる。Further, if a heat medium heating unit for heating a heat medium other than steam and water is adopted in the exhaust heat recovery device according to the present invention, a heat medium in a high temperature state is obtained during a period of power demand shortage, and the heat medium is stored in a storage tank. By storing it, it can be used to generate electricity during periods of excessive power demand. As described above, according to the present invention, the generated output is changed according to the change in the power demand, and the economical operation can be performed as a whole.
【図1】本発明の第1実施例を示すガスタービン複合発
電装置の構成図。FIG. 1 is a configuration diagram of a gas turbine combined cycle power generator showing a first embodiment of the present invention.
【図2】本発明の第2実施例を示すガスタービン複合発
電装置の構成図。FIG. 2 is a configuration diagram of a gas turbine combined cycle power generator showing a second embodiment of the present invention.
【図3】本発明の第3実施例を示すガスタービン複合発
電装置の構成図。FIG. 3 is a configuration diagram of a gas turbine combined cycle generator showing a third embodiment of the present invention.
【図4】本発明の第4実施例を示すガスタービン複合発
電装置の構成図。FIG. 4 is a configuration diagram of a gas turbine combined cycle generator showing a fourth embodiment of the present invention.
【図5】本発明の第5実施例を示すガスタービン複合発
電装置の構成図。FIG. 5 is a configuration diagram of a gas turbine combined cycle power generator showing a fifth embodiment of the present invention.
【図6】本発明の第6実施例を示すガスタービン複合発
電装置の構成図。FIG. 6 is a configuration diagram of a gas turbine combined cycle power generation apparatus showing a sixth embodiment of the present invention.
【図7】本発明の第7実施例を示すガスタービン複合発
電装置の構成図。FIG. 7 is a configuration diagram of a gas turbine combined cycle power generation apparatus showing a seventh embodiment of the present invention.
【図8】従来のガスタービン複合発電装置の構成図。FIG. 8 is a configuration diagram of a conventional gas turbine combined cycle generator.
01 ガスタービン 02 排ガスボイラ 03 給水ポンプ 04 高圧熱水貯槽 07 フラッシャー 10 熱水加熱器 11 蒸気タービン 16 復水器 18 復水タンク 32 給水タンク 01 Gas turbine 02 Exhaust gas boiler 03 Water supply pump 04 High-pressure hot water storage tank 07 Flasher 10 Hot water heater 11 Steam turbine 16 Condenser 18 Condensate tank 32 Water supply tank
Claims (5)
に対する排熱回収装置からの蒸気で駆動される蒸気ター
ビンによって発電するガスタービン複合発電装置におい
て、前記蒸気タービンは前記排熱回収装置からの直接の
蒸気以外に同排熱回収装置で得られた熱水のフラッシュ
蒸気をも駆動源とする蒸気タービンであり、かつ、前記
排熱回収装置で熱回収した熱水を前記蒸気タービンの駆
動用の熱水として貯える蓄熱装置を有することを特徴と
するガスタービン複合発電装置。1. A gas turbine combined cycle power generator for generating electric power by a gas turbine and a steam turbine driven by steam from an exhaust heat recovery device for exhaust gas of the gas turbine, wherein the steam turbine is directly connected to the exhaust heat recovery device. In addition to steam, it is a steam turbine that also uses flash steam of hot water obtained by the exhaust heat recovery device as a drive source, and the hot water recovered by the exhaust heat recovery device is used as heat for driving the steam turbine. A gas turbine combined power generation device having a heat storage device for storing as water.
とする蒸気タービンを含むことを特徴とする請求項1記
載のガスタービン複合発電装置。2. The gas turbine combined cycle power generator according to claim 1, wherein the steam turbine includes a steam turbine that also uses high-pressure hot water as a driving force.
ら蒸気を得る多段のフラッシャーを有し、同フラッシャ
ーの途中段における前記熱水を前記ガスタービンの排ガ
スで加熱する熱水加熱器を有することを特徴とする請求
項1または2記載のガスタービン複合発電装置。3. A hot water heater having a multi-stage flasher for obtaining steam from the high-pressure hot water obtained by the exhaust heat recovery apparatus, and heating the hot water at an intermediate stage of the flasher with exhaust gas of the gas turbine. The gas turbine combined power generation device according to claim 1 or 2, further comprising:
に対する排熱回収装置からの蒸気で駆動される蒸気ター
ビンによって発電するガスタービン複合発電装置におい
て、前記排熱回収装置が貫流形のボイラおよび蒸気を発
生しない温水ボイラのいづれか一方のボイラであり、前
記蒸気タービンが前記排熱回収装置で得た熱水のフラッ
シュ蒸気を駆動源とするフラッシュ蒸気タービンである
ことを特徴とするガスタービン複合発電装置。4. A gas turbine combined cycle power generator for generating power by a gas turbine and a steam turbine driven by steam from an exhaust heat recovery device for exhaust gas of the gas turbine, wherein the exhaust heat recovery device generates a once-through boiler and steam. A gas turbine combined cycle power generation device, characterized in that it is either one of hot water boilers that does not occur, and the steam turbine is a flash steam turbine that uses flash steam of hot water obtained in the exhaust heat recovery device as a drive source.
外の熱媒体が加熱される熱媒体加熱部が内部に設けられ
ており、同熱媒体を貯蔵する熱媒体貯槽及び同熱媒体を
加熱源として前記蒸気タービンに供給する水蒸気を発生
する熱媒体熱交換器、ならびに前記熱媒体加熱部と前記
熱媒体貯槽の間で前記熱媒体を循環させる熱媒体ポンプ
を有することを特徴とする請求項1〜4のいづれかに記
載のガスタービン複合発電装置。5. The heat recovery unit is provided with a heat medium heating unit for heating a heat medium other than steam and water, and heats the heat medium storage tank for storing the heat medium and the heat medium. A heat medium heat exchanger that generates steam to be supplied to the steam turbine as a source, and a heat medium pump that circulates the heat medium between the heat medium heating unit and the heat medium storage tank. The gas turbine combined cycle power generator according to any one of 1 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29853292A JPH06146815A (en) | 1992-11-09 | 1992-11-09 | Gas turbine composite power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29853292A JPH06146815A (en) | 1992-11-09 | 1992-11-09 | Gas turbine composite power generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06146815A true JPH06146815A (en) | 1994-05-27 |
Family
ID=17860952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29853292A Withdrawn JPH06146815A (en) | 1992-11-09 | 1992-11-09 | Gas turbine composite power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06146815A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011102408A1 (en) * | 2010-02-19 | 2011-08-25 | 株式会社Ihi | Exhaust heat recovery system, energy supply system, and exhaust heat recovery method |
JP2012193909A (en) * | 2011-03-17 | 2012-10-11 | Kawasaki Heavy Ind Ltd | Waste heat recovery power generation plant for sintering facility |
CN107218094A (en) * | 2017-04-21 | 2017-09-29 | 昆明理工大学 | A kind of multiple pressure flashes the device of organic Rankine bottoming cycle cogeneration |
CN109563746A (en) * | 2016-08-04 | 2019-04-02 | 西门子股份公司 | Power plant with hot memory |
US11408339B2 (en) | 2017-08-31 | 2022-08-09 | Mitsubishi Heavy Industries, Ltd. | Steam turbine system and combined cycle plant |
US11834968B2 (en) | 2019-11-28 | 2023-12-05 | Mitsubishi Heavy Industries, Ltd. | Steam generation apparatus and exhaust gas heat recovery plant |
-
1992
- 1992-11-09 JP JP29853292A patent/JPH06146815A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011102408A1 (en) * | 2010-02-19 | 2011-08-25 | 株式会社Ihi | Exhaust heat recovery system, energy supply system, and exhaust heat recovery method |
JP2012198018A (en) * | 2010-02-19 | 2012-10-18 | Ihi Corp | Exhaust heat recovery system, energy supply system, and exhaust heat recovery method |
JP5062380B2 (en) * | 2010-02-19 | 2012-10-31 | 株式会社Ihi | Waste heat recovery system and energy supply system |
JP2012193909A (en) * | 2011-03-17 | 2012-10-11 | Kawasaki Heavy Ind Ltd | Waste heat recovery power generation plant for sintering facility |
CN109563746A (en) * | 2016-08-04 | 2019-04-02 | 西门子股份公司 | Power plant with hot memory |
JP2019527791A (en) * | 2016-08-04 | 2019-10-03 | シーメンス アクティエンゲゼルシャフト | Power plant with thermal reservoir |
US10794226B2 (en) | 2016-08-04 | 2020-10-06 | Siemens Aktiengesellschaft | Power plant with heat reservoir |
CN107218094A (en) * | 2017-04-21 | 2017-09-29 | 昆明理工大学 | A kind of multiple pressure flashes the device of organic Rankine bottoming cycle cogeneration |
US11408339B2 (en) | 2017-08-31 | 2022-08-09 | Mitsubishi Heavy Industries, Ltd. | Steam turbine system and combined cycle plant |
US11834968B2 (en) | 2019-11-28 | 2023-12-05 | Mitsubishi Heavy Industries, Ltd. | Steam generation apparatus and exhaust gas heat recovery plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070017207A1 (en) | Combined Cycle Power Plant | |
JPH07259510A (en) | Cooling method of thermally loaded component of gas turbine group | |
JPH0758043B2 (en) | Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator | |
JPH07174003A (en) | Improving method of whole generation of available energy in energy utilizer and liquid-cooled thermal power engine carrying out improving method | |
KR20130025907A (en) | Energy recovery and steam supply for power augmentation in a combined cycle power generation system | |
CA2026494C (en) | Deaerator heat exchanger for combined cycle power plant | |
SU1521284A3 (en) | Power plant | |
US6301873B2 (en) | Gas turbine and steam turbine installation | |
JP3925985B2 (en) | Combined cycle power plant | |
JPH0392508A (en) | Method and equipment for forming steam and power for starting and auxiliarily operat- ing steam power station | |
JP3905967B2 (en) | Power generation / hot water system | |
JP2001012211A (en) | Method to operate steam electric power station and steak electric power station to carry out this method | |
JPH06146815A (en) | Gas turbine composite power generator | |
JPH11173110A (en) | Generating plant | |
JPS6365807B2 (en) | ||
JP2002371861A (en) | Steam injection gas turbine generator | |
JPS5922043B2 (en) | Cold energy power generation plant | |
JP2750784B2 (en) | Waste heat recovery method | |
RU2067668C1 (en) | Combined-cycle plant operation process | |
JP4051322B2 (en) | Combined power plant | |
JP2002309908A (en) | Turbine equipment and method for operating turbine equipment | |
JP3882068B2 (en) | Turbine system | |
RU2067667C1 (en) | Combined-cycle plant operation method | |
JPH0233845B2 (en) | JOKITAABIN PURANTONONTENHOHO | |
JP3059115B2 (en) | Hydrogen combustion turbine plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000201 |