JPS6214041B2 - - Google Patents

Info

Publication number
JPS6214041B2
JPS6214041B2 JP8598779A JP8598779A JPS6214041B2 JP S6214041 B2 JPS6214041 B2 JP S6214041B2 JP 8598779 A JP8598779 A JP 8598779A JP 8598779 A JP8598779 A JP 8598779A JP S6214041 B2 JPS6214041 B2 JP S6214041B2
Authority
JP
Japan
Prior art keywords
water supply
water
temperature
drum
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8598779A
Other languages
Japanese (ja)
Other versions
JPS5610603A (en
Inventor
Teruaki Matsumoto
Joji Fuje
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP8598779A priority Critical patent/JPS5610603A/en
Publication of JPS5610603A publication Critical patent/JPS5610603A/en
Publication of JPS6214041B2 publication Critical patent/JPS6214041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 この発明は廃熱回収蒸気発生装置にかかり、特
にガスタービンの廃熱回収を良好に行う蒸気発生
装置用節炭器における蒸気発生を防止する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waste heat recovery steam generation device, and more particularly to a device for preventing steam generation in an economizer for a steam generation device that effectively recovers waste heat from a gas turbine.

ガスタービンに対し運動エネルギーを与えた高
温のガスの排熱回収を図るため、ガスタービン後
流に廃熱回収蒸気発生装置が置かれる。この場合
の排ガス流量、排ガス温度および蒸発流量の一般
的な特性を第1図により説明すると、ガスタービ
ン負荷が定格負荷Aの3/4以下においてはガス流
量GF1および節炭器入口ガス温度GT1はほぼ一定
であるのに対し、ガスタービン負荷に対し発生蒸
気流量S1は比例したものとなつている。
In order to recover exhaust heat from the high-temperature gas that imparts kinetic energy to the gas turbine, a waste heat recovery steam generator is placed downstream of the gas turbine. The general characteristics of the exhaust gas flow rate, exhaust gas temperature, and evaporation flow rate in this case are explained using Figure 1. When the gas turbine load is 3/4 or less of the rated load A, the gas flow rate GF 1 and the economizer inlet gas temperature GT 1 is almost constant, whereas the generated steam flow rate S 1 is proportional to the gas turbine load.

この場合において、ドラムに供給する節炭器の
出口給水温度をドラム飽和温度近くなるよう設定
することが理論上熱効率を良好にする装置設計の
上において要望されるところである。第2図はこ
の設定値を示し、廃熱ボイラの蒸発器D、節炭器
Eの順に通過する廃ガスはこれら蒸発器D、節炭
Eと熱交換を行うことによりGT2に示す如く温度
が低下する。一方定格負荷時の節炭器Eの給水温
度WT1を節炭器出口において飽和温度STに近づ
けて設定すると、低負荷時の給水温度WT2は節
炭器内で飽和温度STに達し節炭器内で一部が蒸
発し、装置の運転、熱回収等に悪影響を与える。
これは第1図に示した如く、節炭器入口において
タービン負荷3/4までは廃ガス流量、温度はター
ビン負荷に関係なく殆んど一定であるのに対し、
節炭器における回収熱量に対し節炭器を流れる水
量の少いことに起因する。この節炭器内における
蒸気発生を防止するための従来大別して二つの方
法がとられている。その一つは節炭器の伝熱面積
をあらかじめ小さく設定する方法であり、もう一
つは節炭器に対する給水量を全負荷範囲にわたつ
て一定にする方法である。前者は全負荷範囲にお
いて節炭器内での蒸気発生現象を避けるため、第
3図に示す如く、定格時給水温度WT3の出口給
水温を飽和温度STに対して低く設定し、低負荷
時の給水温度WT4の出口給水温度が前記飽和温
度ST以下となるよう設定する。このため定格負
荷時の節炭器での熱吸収量が低くなり、蒸発量が
低下する欠点がある。第5図は後者の方法を実施
する装置を示すが、この図において節炭器Eの給
水流量を全負荷にわたつて一定とするため、節炭
器Eを出た給水のうち、余分な給水は戻し給水配
管7、戻し給水減圧弁16を経て給水配管1に戻
される。この場合、第4図の如く節炭器に対する
給水量が一定となるため定格時の給水温度WT5
の出口温度は飽和温度ST近くまで達しているの
で前者の欠点は解消するが、反対に低負荷時の給
水温度WT6の節炭器出口温度が低下してしま
う。しかし、高温の戻り給水が節炭器入口給水に
混入されるため給水の節炭器入口給水温度は逆に
高くなり、低負荷時には全体として給水と廃ガス
の熱交換効率が低下し、このため低負荷時のガス
温度GT3は定格時のガス温度GT2に比較して高く
なるという欠点がある。
In this case, it is theoretically desirable to set the temperature of the outlet water supplied to the drum so that it is close to the drum saturation temperature in order to improve the thermal efficiency of the device. Figure 2 shows this setting value, and the waste gas passing through the evaporator D and the economizer E of the waste heat boiler exchanges heat with the evaporator D and the economizer E, so that the temperature is increased as shown in GT 2. decreases. On the other hand, if the water supply temperature WT 1 of the economizer E at rated load is set close to the saturation temperature ST at the outlet of the economizer, the water supply temperature WT 2 at low load will reach the saturation temperature ST inside the economizer, resulting in energy savings. A portion of it evaporates inside the vessel, adversely affecting equipment operation, heat recovery, etc.
This is because, as shown in Figure 1, the exhaust gas flow rate and temperature are almost constant at the inlet of the economizer up to 3/4 of the turbine load, regardless of the turbine load.
This is due to the fact that the amount of water flowing through the economizer is small compared to the amount of heat recovered in the economizer. Conventionally, two methods have been used to prevent the generation of steam in the economizer. One method is to set the heat transfer area of the economizer small in advance, and the other is to keep the amount of water supplied to the economizer constant over the entire load range. In the former case, as shown in Figure 3, in order to avoid the steam generation phenomenon in the economizer in the entire load range, the outlet water supply temperature of the rated water supply temperature WT 3 is set lower than the saturation temperature ST, and the The outlet water supply temperature of WT 4 is set to be equal to or lower than the saturation temperature ST. Therefore, there is a drawback that the amount of heat absorbed by the economizer at rated load is low, and the amount of evaporation is reduced. Figure 5 shows a device implementing the latter method. In this figure, in order to keep the water supply flow rate of the economizer E constant over the entire load, the excess water from the water that exits the economizer E is is returned to the water supply pipe 1 via the return water supply pipe 7 and the return water supply pressure reducing valve 16. In this case, as shown in Figure 4, the amount of water supplied to the economizer is constant, so the water supply temperature at the rated time WT 5
Since the outlet temperature of WT 6 has reached nearly the saturation temperature ST, the former drawback is resolved, but on the other hand, the economizer outlet temperature of the feed water temperature WT 6 at low load decreases. However, since high-temperature return water is mixed into the water saver inlet water supply, the temperature of the feed water at the economizer inlet becomes higher, and the overall heat exchange efficiency between the water supply and waste gas decreases during low loads. The disadvantage is that the gas temperature GT 3 at low load is higher than the gas temperature GT 2 at rated conditions.

この発明の目的は上記した従来技術の欠点をな
くし、全負荷域にわたつて節炭器内での給水の蒸
発を防止し、かつ効率の良い蒸発量を得るための
装置を提供することにある。
An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art, and to provide a device that prevents evaporation of feed water within the energy saver over the entire load range and obtains an efficient amount of evaporation. .

要するにこの発明は節炭器出口の給水温度を検
知し、この検知温度に基づいて節炭器に対する給
水の流量を調節する節炭器出口給水温度制御系
と、蒸気発生器のドラムに対する給水貯溜量を一
定に保持する罐水供給流量制御系を設けたもので
ある。
In short, the present invention provides a power economizer outlet water supply temperature control system that detects the temperature of the water supply at the outlet of the economizer and adjusts the flow rate of water to the economizer based on the detected temperature, and an amount of water stored in the drum of a steam generator. This system is equipped with a can water supply flow rate control system that maintains a constant flow rate.

以下この発明の実施例を添付図面を用いて説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第6図において、給水配管1内の給水は給水ポ
ンプ2により加圧され、流量調整弁3を経て節炭
器E内で加熱された後、出口配管5に至る。この
出口配管5に対しては出口給水温度を検知する温
度検出器6が設置され、この検知結果に基づいて
流量調整弁3を操作して、給水流量を調整する。
これにより給水の出口温度を一定に保ち、この温
度検知器6と流量調整弁3により給水温度制御系
を構成する。つまり節炭器出口の給水温度はこの
制御系により第7図に示す如く、低負荷時の温度
WT7の節炭器出口温度が定格負荷時の温度WT8
の節炭器出口温度とほぼ同一となるよう調節され
る。以上の如く、節炭器Eから排出される給水の
量はこの給水出口温度に従つて決定されるため、
ドラム8に対する供給水量と必ずしも一致しな
い。このため不要な給水はドラム水位検出装置9
およびこれに連絡するドラム水位制御弁10によ
り給水排出管20を経て他の装置の熱源として排
出される。すなわち、水位検出装置9の信号に基
づいてドラム水位制御弁10を作動し、ドラム8
内の水位が常に一定となるよう制御する。
In FIG. 6, the water in the water supply pipe 1 is pressurized by the water supply pump 2, passes through the flow rate regulating valve 3, is heated in the economizer E, and then reaches the outlet pipe 5. A temperature detector 6 for detecting the temperature of the outlet water supply is installed on the outlet pipe 5, and the flow rate adjustment valve 3 is operated based on the detection result to adjust the flow rate of the water supply.
This keeps the outlet temperature of the feed water constant, and the temperature detector 6 and flow rate adjustment valve 3 constitute a feed water temperature control system. In other words, the water supply temperature at the outlet of the economizer is determined by this control system, as shown in Figure 7, at low load.
WT 7 's economizer outlet temperature is the temperature at rated load WT 8
The temperature is adjusted to be almost the same as the exit temperature of the economizer. As mentioned above, the amount of water supplied from the economizer E is determined according to the water outlet temperature, so
The amount of water supplied to the drum 8 does not necessarily match. For this reason, unnecessary water supply is carried out by the drum water level detection device 9.
The drum water level control valve 10 connected thereto discharges the water through a water supply and discharge pipe 20 as a heat source for other devices. That is, the drum water level control valve 10 is operated based on the signal from the water level detection device 9, and the drum 8
The water level inside the tank is controlled so that it remains constant.

第8図は第2の実施例を示す。この実施例にお
いては給水温度制御系は前記実施例の場合と同様
であるが、節炭器Eを出た給水は出口配管5から
すべてドラム8内に導入される。このドラム8に
は罐水排出管20aが設けてあり、この管水排出
管にはドラム水位検知装置9と連絡するドラム水
位制御弁10aが配置してあり罐水供給流量制御
系を構成している。この制御系により、ドラム8
内に導入された給水のうち不要分は系外に排出さ
れ各種の熱源として利用される。この場合は、ド
ラム8から排出される罐水は飽和温度に達してい
るため他の装置に対して熱量の高い熱源として利
用される。
FIG. 8 shows a second embodiment. In this embodiment, the feed water temperature control system is the same as in the previous embodiment, but all of the feed water leaving the economizer E is introduced into the drum 8 from the outlet pipe 5. This drum 8 is provided with a can water discharge pipe 20a, and this pipe water discharge pipe is provided with a drum water level control valve 10a that communicates with the drum water level detection device 9, and constitutes a can water supply flow rate control system. There is. With this control system, the drum 8
Unnecessary portions of the water introduced into the system are discharged outside the system and used as various heat sources. In this case, the can water discharged from the drum 8 has reached a saturation temperature and is therefore used as a heat source with a high calorific value for other devices.

第9図は第3の実施例を示し、給水温度制御系
に変更を加えたものである。節炭器Eを出た余分
の給水は戻し給水配管7bに流入する。この戻し
給水配管7bは、給水配管1の給水ポンプ2の上
流側に設置した給水貯蔵タンク11と接続してい
る。
FIG. 9 shows a third embodiment, in which the feed water temperature control system has been modified. Excess water supplied from the energy saver E flows into the return water supply pipe 7b. This return water supply pipe 7b is connected to a water supply storage tank 11 installed on the upstream side of the water supply pump 2 of the water supply pipe 1.

この実施例は給水を他の装置に供給できない場
合に特に有効であり、さらに加温された戻り給水
と低温の給水の間で熱交換を行なわせることによ
り、節炭器に導入すべき給水の温度をある程度高
めておくことができる。
This embodiment is particularly effective when feed water cannot be supplied to other equipment, and furthermore, by causing heat exchange to take place between the heated return feed water and the low temperature feed water, the feed water to be introduced into the economizer is You can raise the temperature to some extent.

第10図は第4の実施例を示す。この実施例に
おいては給水貯蔵タンク11に導入された戻り給
水は低温の給水との熱交換により容器内で減温、
減圧され容器内で再蒸発する。13は容器内の圧
力を検出する圧力検出装置、14は蒸気配管12
に設置され、かつ圧力検出装置13と連絡する圧
力調整弁である。これにより給水貯蔵タンク11
に流入した戻り給水は蒸発し、蒸気配管12によ
り各種の装置に送られ利用される。
FIG. 10 shows a fourth embodiment. In this embodiment, the return feed water introduced into the feed water storage tank 11 is cooled in the container by heat exchange with the low temperature feed water.
It is depressurized and re-evaporated in the container. 13 is a pressure detection device that detects the pressure inside the container; 14 is a steam pipe 12
This is a pressure regulating valve that is installed in the pressure detection device 13 and communicates with the pressure detection device 13. As a result, the water supply storage tank 11
The return water that has flowed into the system is evaporated and sent to various devices via steam piping 12 for use.

第11図は第5の実施例を示す。前記実施例ま
でのすべてが給水温度制御系の構成要素の一つと
して流量調整弁3を用いていたが、この実施例に
おいては給水ポンプ回転数調整装置15を用いた
ものである。具体的には節炭器出口温度検出装置
6とこの給水ポンプ回転数調整装置15を連絡
し、節炭器Eに対する給水の供給量を給水ポンプ
2の回転数を調節することにより制御する。この
実施例においては特に低負荷時の給水ポンプ2の
駆動エネルギーを節約できるという効果が生ず
る。
FIG. 11 shows a fifth embodiment. All of the embodiments up to the above have used the flow rate regulating valve 3 as one of the components of the feed water temperature control system, but in this embodiment, a feed water pump rotation speed regulating device 15 is used. Specifically, the economizer outlet temperature detection device 6 and the water supply pump rotation speed adjustment device 15 are connected, and the amount of water supplied to the economizer E is controlled by adjusting the rotation speed of the water supply pump 2. This embodiment has the advantage that the driving energy of the water supply pump 2 can be saved, especially when the load is low.

この発明によればガスタービンの廃熱蒸気発生
装置の節炭器内での蒸気発生を防止でき装置に悪
影響を与えることがない。
According to the present invention, generation of steam in the economizer of the waste heat steam generation device of a gas turbine can be prevented, and the device will not be adversely affected.

また全負荷範囲にわたつて効率の良い蒸気発生
を行うことができ、ダービン廃ガスの熱エネルギ
ーを有効に利用することができる。
In addition, efficient steam generation can be performed over the entire load range, and the thermal energy of Durbin waste gas can be used effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は廃ガス流量、節炭器入口ガス温度およ
び蒸発流量とガスタービン負荷の関係を示す線
図、第2図は定格時の給水温度と低負荷時の給水
温度の関係を示す線図、第3図は定格時の節炭器
出口温度を低くとつた場合の給水温度の線図、第
4図は節炭器に対する給水流量を一定にした場合
の給水温度を示す線図、第5図は節炭器に対する
従来方法による給水経路を示す系統図、第6図は
この発明の第1の実施例を示す蒸気発生装置の系
統図、第7図はこの発明による給水温度の変化を
示す線図、第8図は第2の実施例を示す蒸気発生
装置の系統図、第9図は第3の実施例を示す蒸気
発生装置の系統図、第10図は第4の実施例を示
す蒸気発生装置の系統図、第11図は第5の実施
例を示す蒸気発生装置の系統図である。 1…給水配管、2…給水ポンプ、3…節炭器給
水流量調整弁、5…節炭器出口給水管、6…給水
温度検出装置、7,7a…戻し給水配管、8…ド
ラム、9…ドラム水位制御装置、10…ドラム水
位制御弁、11…給水貯蔵タンク、12…蒸気配
管、13…圧力検出装置、14…圧力調整弁、1
5…給水ポンプ回転数調整装置、E…節炭器。
Figure 1 is a diagram showing the relationship between waste gas flow rate, economizer inlet gas temperature, evaporation flow rate, and gas turbine load. Figure 2 is a diagram showing the relationship between feed water temperature at rated time and feed water temperature at low load. , Fig. 3 is a diagram of the water supply temperature when the outlet temperature of the economizer is kept low at the rated time, Fig. 4 is a diagram showing the water supply temperature when the water supply flow rate to the economizer is kept constant, and Fig. 5 Fig. 6 is a system diagram showing the water supply route according to the conventional method for the energy saver, Fig. 6 is a system diagram of the steam generator showing the first embodiment of the present invention, and Fig. 7 shows changes in the temperature of the feed water according to the present invention. 8 is a system diagram of a steam generator showing a second embodiment, FIG. 9 is a system diagram of a steam generator showing a third embodiment, and FIG. 10 is a system diagram of a steam generator showing a fourth embodiment. System diagram of steam generator FIG. 11 is a system diagram of a steam generator showing a fifth embodiment. DESCRIPTION OF SYMBOLS 1... Water supply pipe, 2... Water supply pump, 3... Economizer water supply flow rate adjustment valve, 5... Energy saver outlet water supply pipe, 6... Water supply temperature detection device, 7, 7a... Return water supply pipe, 8... Drum, 9... Drum water level control device, 10...Drum water level control valve, 11...Water supply storage tank, 12...Steam piping, 13...Pressure detection device, 14...Pressure adjustment valve, 1
5... Water pump rotation speed adjustment device, E... Energy saver.

Claims (1)

【特許請求の範囲】 1 廃ガスを利用して蒸気を発生させる蒸気発生
器、およびこの蒸気発生器に供給する給水を前記
廃ガスにより加熱する節炭器を有するものにおい
て、節炭器に対する給水量を制御して全負荷範囲
にわたり節炭器出口給水の温度を飽和温度以下に
制御する節炭器出口給水温度制御系と、蒸気発生
器のドラムの水位を一定に保持する缶水供給流量
制御系を設けたことを特徴とする廃熱回収蒸気発
生装置。 2 節炭器出口給水温度制御系を節炭器出口給水
配管に設けた節炭器出口給水温度検出装置と、こ
の温度検出装置の信号により作動する節炭器給水
流量調整弁としたことを特徴とする特許請求の範
囲第1項記載の廃熱回収蒸気発生装置。 3 節炭器出口給水温度制御系を節炭器出口給水
温度検出装置およびこの温度検出装置の信号によ
り作動する給水ポンプ回転数調整装置としたこと
を特徴とする特許請求の範囲第1項記載の廃熱回
収蒸気発生装置。 4 缶水供給流量制御系を蒸気発生器のドラムに
設けたドラム水位検出装置および給水排出管に設
置されかつこの検出装置の信号により作動するド
ラム水位制御弁としたことを特徴とする特許請求
の範囲第1項または第2項または第3項記載の廃
熱回収蒸気発生装置。 5 缶水供給流量制御系をドラム水位検出装置,
缶水排出管およびこの缶水排出管に設置されかつ
前記水位検出装置の信号で作動するドラム水位制
御弁としたことを特徴とする特許請求の範囲第1
項ないし第3項のいずれかに記載の廃熱回収蒸気
発生装置。 6 缶水供給流量制御系をドラム水位検出装置,
配水配管の給水ポンプ上流に設けた給水貯蔵タン
ク、この給水貯蔵タンクに接続する戻し給水配管
に設置されかつドラム水位検出装置の信号により
作動するドラム水位制御弁としたことを特徴とす
る特許請求の範囲第1項ないし第3項のいずれか
に記載の廃熱回収蒸気発生装置。 7 缶水供給流量制御系の給水貯蔵タンクに圧力
検出器および蒸気配管を設け、この蒸気配管に圧
力検出器の信号で作動する圧力調整弁を設けたこ
とを特徴とする特許請求の範囲第6項記載の廃熱
回収蒸気発生装置。
[Scope of Claims] 1. A steam generator that generates steam using waste gas, and a water economizer that heats water supplied to the steam generator using the waste gas, in which the water supply to the energy saver is Economizer outlet feed water temperature control system that controls the temperature of the economizer outlet feed water to below the saturation temperature over the entire load range, and canned water supply flow rate control that maintains the water level in the steam generator drum at a constant level. A waste heat recovery steam generation device characterized by having a system. 2. The economizer outlet water supply temperature control system is characterized by a economizer outlet water supply temperature detection device installed in the economizer outlet water supply piping, and a economizer water supply flow rate adjustment valve that is activated by a signal from this temperature detection device. A waste heat recovery steam generation device according to claim 1. 3. The power supply water supply temperature control system at the outlet of the cost saver is comprised of a temperature detection device for the water supply temperature at the outlet of the cost savings device and a water supply pump rotation speed adjustment device that is activated by a signal from the temperature detection device. Waste heat recovery steam generator. 4. A patent claim characterized in that the canned water supply flow rate control system is a drum water level detection device installed in the drum of a steam generator and a drum water level control valve installed in a water supply and discharge pipe and activated by a signal from the detection device. The waste heat recovery steam generator according to item 1, item 2, or item 3. 5 The canned water supply flow rate control system is connected to a drum water level detection device,
Claim 1: A drum water level control valve installed in a can water discharge pipe and a drum water level control valve that is operated by a signal from the water level detection device.
The waste heat recovery steam generation device according to any one of Items 1 to 3. 6 The canned water supply flow rate control system is connected to a drum water level detection device,
A water supply storage tank provided upstream of a water supply pump in a water distribution pipe, and a drum water level control valve installed in a return water supply pipe connected to the water supply storage tank and operated by a signal from a drum water level detection device. The waste heat recovery steam generation device according to any one of items 1 to 3. 7. Claim 6, characterized in that the water supply storage tank of the canned water supply flow rate control system is provided with a pressure detector and steam piping, and the steam piping is provided with a pressure regulating valve that is activated by a signal from the pressure detector. The waste heat recovery steam generation device described in Section 1.
JP8598779A 1979-07-09 1979-07-09 Waste heat recovering steam generator Granted JPS5610603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8598779A JPS5610603A (en) 1979-07-09 1979-07-09 Waste heat recovering steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8598779A JPS5610603A (en) 1979-07-09 1979-07-09 Waste heat recovering steam generator

Publications (2)

Publication Number Publication Date
JPS5610603A JPS5610603A (en) 1981-02-03
JPS6214041B2 true JPS6214041B2 (en) 1987-03-31

Family

ID=13874029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8598779A Granted JPS5610603A (en) 1979-07-09 1979-07-09 Waste heat recovering steam generator

Country Status (1)

Country Link
JP (1) JPS5610603A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184803A (en) * 1981-05-09 1982-11-13 Babcock Hitachi Kk Recovering boiler for waste heat
JPS57204704A (en) * 1981-06-13 1982-12-15 Babcock Hitachi Kk Method of operating waste heat recovery boiler
JPH07122485B2 (en) * 1986-01-13 1995-12-25 株式会社日立製作所 Steamer steam prevention device for once-through thermal power generation boiler system
JP4950324B2 (en) * 2010-06-29 2012-06-13 株式会社桜井技術研究所 Waste heat recovery system

Also Published As

Publication number Publication date
JPS5610603A (en) 1981-02-03

Similar Documents

Publication Publication Date Title
JP4786504B2 (en) Heat medium supply facility, solar combined power generation facility, and control method thereof
JP2001108201A (en) Multiple pressure waste heat boiler
JPS6214041B2 (en)
JPH08246814A (en) Combined cycle generation plant using refuse incinerator
JP2000303803A (en) Power generation system
JP4283633B2 (en) Double-effect absorption chiller / heater with exhaust heat recovery unit
JPH07217802A (en) Waste heat recovery boiler
JPH11148603A (en) Controller for coal/residual oil gassifying combined power generation plant
JP2971597B2 (en) Waste heat recovery boiler
JPS6135441B2 (en)
JP2839195B2 (en) Waste heat recovery boiler water supply control device
JPH10176804A (en) Vertical waste heat recovery boiler and operating method thereof
JPH03241204A (en) Coal saving device recirculation control apparatus
JPH11294713A (en) Water supply device for exhaust heat recovery boiler
JPS5814909A (en) Degassing apparatus
JPH07248101A (en) Boiler system
JPH05296005A (en) Thermal power plant
JPH0330762B2 (en)
JPS6211283Y2 (en)
JP2019132572A (en) Pressure drain recovery system
JPH0619201B2 (en) How to stop the exhaust heat recovery boiler
JP2001021273A (en) Method for leveling load in high pressure steam condensor of waste processing facility and device for leveling load
JPH0238841B2 (en)
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JPH0335562B2 (en)