JPH0619201B2 - How to stop the exhaust heat recovery boiler - Google Patents
How to stop the exhaust heat recovery boilerInfo
- Publication number
- JPH0619201B2 JPH0619201B2 JP59195745A JP19574584A JPH0619201B2 JP H0619201 B2 JPH0619201 B2 JP H0619201B2 JP 59195745 A JP59195745 A JP 59195745A JP 19574584 A JP19574584 A JP 19574584A JP H0619201 B2 JPH0619201 B2 JP H0619201B2
- Authority
- JP
- Japan
- Prior art keywords
- drum
- boiler
- pressure
- steam
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、脱硝装置を備えた排熱回収ボイラの停止方法
に関する。The present invention relates to a method for stopping an exhaust heat recovery boiler equipped with a denitration device.
最近の電力需要の変化に応じて、ピーク負荷用としてガ
スタービンを採用する傾向が高まつている。このよう
に、ガスタービンを用いた場合、ガスタービンに対して
運動エネルギを与えた高温ガスは排熱回収ボイラに導か
れ、当該排熱回収ボイラでは、その熱を利用して蒸気を
発生させる。発生した蒸気は蒸気タービンに導かれ、こ
れを駆動して発電を行なう。以上のようにして、ガスタ
ービンと蒸気タービンによる複合サイクル発電が実施さ
れ、これにより省エネルギが図られる。In response to recent changes in power demand, there is a growing tendency to adopt gas turbines for peak loads. As described above, when the gas turbine is used, the high temperature gas that gives the kinetic energy to the gas turbine is guided to the exhaust heat recovery boiler, and the exhaust heat recovery boiler uses the heat to generate steam. The generated steam is guided to a steam turbine and drives it to generate electricity. As described above, combined cycle power generation is performed by the gas turbine and the steam turbine, and thus energy saving is achieved.
通常、上記の排熱回収ボイラには、タービンからの排ガ
ス中に含まれる窒素酸化物(NOx)を除去するため脱
硝装置が組込まれている。この脱硝装置にあつては、触
媒が効果的に作用するのは一定の温度域に限られ、この
温度域から外れた温度では触媒の効果は大幅に減少す
る。これを図により説明する。Normally, the above-mentioned exhaust heat recovery boiler is equipped with a denitration device for removing nitrogen oxides (NO x ) contained in the exhaust gas from the turbine. In this denitration device, the catalyst effectively acts only in a certain temperature range, and the effect of the catalyst is greatly reduced at a temperature outside this temperature range. This will be described with reference to the drawings.
第5図は脱硝装置の脱硝有効温度範囲を示すグラフであ
る。図で、横軸には時間、縦軸には温度がとつてある。
図の斜線で示される範囲が脱硝有効範囲であり、その上
限の温度がT2、下限の温度がT1で示されている。温
度T2は約400℃であり、温度T1は約200℃であ
る。したがつて、排ガス温度が上記斜線の温度範囲にな
いと有効な脱硝は行なわれず、排煙中に多量のNOxが
含まれることとなる。FIG. 5 is a graph showing the denitration effective temperature range of the denitration device. In the figure, the horizontal axis represents time and the vertical axis represents temperature.
The hatched range in the figure is the denitration effective range, with the upper limit temperature being T 2 and the lower limit temperature being T 1 . The temperature T 2 is about 400 ° C. and the temperature T 1 is about 200 ° C. Therefore, if the exhaust gas temperature is not within the temperature range indicated by the diagonal lines, effective denitration is not performed, and a large amount of NO x is contained in the flue gas.
[発明が解決しようとする課題] 一方、最近のボイラ運転においては、その高効率化を計
るため、変圧運転方式が採用されている。これを第6図
(a)に示す。図で、横軸には負荷、縦軸にはドラム圧力
がとつてある。図に示すように、変圧運転方式において
は、負荷が小さい場合はドラム圧力を一定の低い値と
し、ある負荷点を超えると負荷の大きさにほぼ比例して
ドラム圧力を変化するような運転を行なう。このため、
ボイラ停止時にはドラム圧力は低くなる。この状態か
ら、ボイラバンキングに入ると、再起動時のドラム圧力
は第6図(b)に示すようにさらに低下する。図で、横軸
には時間、縦軸にはドラム圧力がとつてある。図示のよ
うに、ドラム圧力はバンキング開始から時間が経過する
につれて徐々に低下してゆき、ドラムの再起動時には極
めて低い圧力となる。1例を挙げると、8時間のボイラ
バンキング中に、ドラム圧力は約20atg降下して1
0atg(飽和温度183℃)前後の残圧となる。[Problems to be Solved by the Invention] On the other hand, in recent boiler operation, a transformer operation method is adopted in order to improve efficiency. Figure 6
Shown in (a). In the figure, load is plotted on the horizontal axis and drum pressure is plotted on the vertical axis. As shown in the figure, in the variable pressure operation method, the drum pressure is set to a certain low value when the load is small, and when the load exceeds a certain load point, the drum pressure is changed almost in proportion to the magnitude of the load. To do. For this reason,
The drum pressure drops when the boiler is stopped. When boiler banking is entered from this state, the drum pressure at the time of restart is further reduced as shown in Fig. 6 (b). In the figure, the horizontal axis represents time and the vertical axis represents drum pressure. As shown in the figure, the drum pressure gradually decreases as time elapses from the start of banking, and becomes extremely low when the drum is restarted. For example, during 8 hours of boiler banking, the drum pressure dropped about 20 atg.
The residual pressure is around 0 atg (saturation temperature 183 ° C).
上述した脱硝有効温度範囲および変圧運転方式のため、
ボイラ再起動時にはボイラから排出される排煙中に多く
のNOxが含まれることとなる。即ち、ボイラ再起動時
に排ガスがボイラに供給されるが、脱硝装置の上流側に
は過熱器、蒸発器等の伝熱管群が配置されており、又、
再起動時のドラム残圧が低いため上記伝熱管群内の受熱
媒体温度が低く、供給された排ガスはこれらの伝熱管群
に多くの熱を奪われる。この結果、ボイラ再起動時に脱
硝装置に流入する排ガス温度は、第5図の曲線Aに示す
ように温度T3(約180℃)となり、触媒が効果的に
作用する温度(以下、触媒好適温度という)以下とな
る。そして、触媒好適温度に達するまでにはボイラ再起
動後相当長時間を要することになる。したがつて、ボイ
ラ再起動時から排ガス温度が触媒好適温度に達するまで
の間、排ガス中に含まれるNOxは脱硝装置において有
効に除去されず、この間、排煙中のNOxの量が増加す
ることとなる。Because of the above-mentioned denitration effective temperature range and variable pressure operation method,
When the boiler is restarted, a large amount of NO x is included in the smoke emitted from the boiler. That is, although the exhaust gas is supplied to the boiler at the time of restarting the boiler, a heat transfer tube group such as a superheater and an evaporator is arranged on the upstream side of the denitration device.
Since the residual pressure of the drum at restart is low, the temperature of the heat receiving medium in the heat transfer tube group is low, and the supplied exhaust gas is deprived of a large amount of heat by these heat transfer tube groups. As a result, the temperature of the exhaust gas flowing into the denitration device when the boiler is restarted becomes the temperature T 3 (about 180 ° C.) as shown by the curve A in FIG. 5, and the temperature at which the catalyst effectively acts (hereinafter referred to as the catalyst suitable temperature That is the following. Then, it takes a considerably long time after the boiler is restarted to reach the catalyst suitable temperature. Therefore, the NO x contained in the exhaust gas is not effectively removed by the denitration device from the time when the boiler is restarted until the exhaust gas temperature reaches the catalyst optimum temperature, and during this period, the amount of NO x in the flue gas increases. Will be done.
本発明は、このような事情に鑑みてなされたものであ
り、その目的は、上記従来の問題点を解決し、何等特殊
の装置を用いることなく、ボイラ再起動時、ボイラから
排出されるNOxを低減することができる排熱回収ボイ
ラの停止方法を提供するにある。The present invention has been made in view of the above circumstances, and an object thereof is to solve the above-mentioned conventional problems and to discharge NO from the boiler at the time of restarting the boiler without using any special device. Another object of the present invention is to provide a method for stopping an exhaust heat recovery boiler that can reduce x .
[課題を解決するための手段] 上記の目的を達成するため、本発明は、蒸気を発生する
ドラムと、このドラムの缶水を排ガスにより加熱する蒸
発器と、発生した前記蒸気を負荷に供給する主蒸気管
と、この主蒸気管に接続されて前記負荷をバイパスする
バイパス管と、前記排ガス中の窒素酸化物を除去する脱
硝装置とを備えた排熱回収ボイラにおいて、この排熱回
収ボイラの停止時、前記主蒸気管および前記バイパス管
を通過する蒸気量をそれぞれ制御して前記ドラムの圧力
を昇圧し、ボイラ再起動時の前記ドラムの残圧を高める
ことを特徴とする。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a drum that generates steam, an evaporator that heats can water of the drum with exhaust gas, and the generated steam that is supplied to a load. In the exhaust heat recovery boiler, the exhaust heat recovery boiler is provided with a main steam pipe, a bypass pipe connected to the main steam pipe to bypass the load, and a denitration device for removing nitrogen oxides in the exhaust gas. When stopping, the amount of steam passing through the main steam pipe and the bypass pipe is respectively controlled to increase the pressure of the drum and increase the residual pressure of the drum when the boiler is restarted.
[作用] ボイラ停止時に、主蒸気管およびバイパス管を通過する
蒸気量をそれぞれ制御してドラムの圧力を上昇させ、こ
れにより、ボイラ再起動時のドラムの残圧を高めて脱硝
装置の排ガス上流側の伝熱管群の受熱媒体の温度を高く
保持し、ボイラ再起動時の排ガス温度が触媒好適温度に
なるようにする。[Operation] When the boiler is stopped, the amount of steam passing through the main steam pipe and the bypass pipe is individually controlled to increase the pressure of the drum, thereby increasing the residual pressure of the drum when the boiler is restarted and increasing the exhaust gas upstream of the denitration device. The temperature of the heat receiving medium of the side heat transfer tube group is kept high so that the exhaust gas temperature at the time of restarting the boiler becomes the catalyst suitable temperature.
[実施例] 以下、本発明を図示の実施例に基づいて説明する。[Examples] Hereinafter, the present invention will be described based on illustrated examples.
第1図(a),(b),(c)は本発明の実施例に係る排熱回収
ボイラの停止方法を示すタイムチャート、第2図は第1
図(a)乃至(c)に示す停止方法を適用する通常の排熱回収
ボイラの系統図である。まず、第2図に示す排熱回収ボ
イラについて説明する。図で、1はガスタービン、2は
ガスタービン1からの排ガスGを導入する排ガスダク
ト、3は過熱器、4は第1の蒸発器、5は脱硝装置、6
は第2の蒸発器、7は節炭器である。過熱器3、第1お
よび第2の蒸発器4,6、脱硝装置5、節炭器7は排ガ
スダクト2で構成される排ガス流路内に配置されてい
る。8は蒸気を発生するドラム、9はドラム8で発生し
た蒸気により駆動される蒸気タービン、10は蒸気を凝
縮して水に戻す復水器、11は復水器10の水をドラム
8に給水する復水ポンプである。FIGS. 1 (a), (b) and (c) are time charts showing a method of stopping an exhaust heat recovery boiler according to an embodiment of the present invention, and FIG.
FIG. 7 is a system diagram of an ordinary exhaust heat recovery boiler to which the stopping method shown in FIGS. First, the exhaust heat recovery boiler shown in FIG. 2 will be described. In the figure, 1 is a gas turbine, 2 is an exhaust gas duct for introducing exhaust gas G from the gas turbine 1, 3 is a superheater, 4 is a first evaporator, 5 is a denitration device, and 6
Is a second evaporator, and 7 is a economizer. The superheater 3, the first and second evaporators 4 and 6, the denitration device 5, and the economizer 7 are arranged in the exhaust gas flow path constituted by the exhaust gas duct 2. 8 is a drum for generating steam, 9 is a steam turbine driven by the steam generated in the drum 8, 10 is a condenser for condensing the steam to return it to water, and 11 is water for supplying water from the condenser 10 to the drum 8. It is a condensate pump.
復水器10の水は復水ポンプ11により給水Wとなつて
節炭器7で排ガスGにより予熱されてドラム8内に供給
される。ドラム8の水は下降管13を通つて下降し、管
路1a,14bを経て蒸発器4,6へ導入され管路15
a,15bを経てドラム8内に戻る。このようにして、
循環流動する間に、蒸発器4,6において排ガスGの加
熱により生じた蒸気は飽和蒸気管16により過熱器3に
導入され、ここで排ガスGにより過熱され、過熱蒸気と
して主蒸気管17を経て蒸気タービン9へ供給される。
18は主蒸気管に接続され、蒸気タービン9をバイパス
して蒸気を直接復水器10に導くタービンバイパス管で
ある。又、19は蒸気タービンへの蒸気の流量を調節す
る蒸気タービン加減弁、20は蒸気タービン9への蒸気
の供給量により蒸気のバイパス量を調節するタービンバ
イパス弁、21は排ガスダクト2のダンパである。上記
の蒸気発生動作中、脱硝装置5は排ガスG中のNOxを
除去する動作を行なう。The water in the condenser 10 is supplied to the water W by the condensate pump 11, is preheated by the exhaust gas G in the economizer 7, and is supplied into the drum 8. The water in the drum 8 descends through the descending pipe 13, is introduced into the evaporators 4 and 6 via the pipes 1a and 14b, and the pipe 15
It returns to the inside of the drum 8 through a and 15b. In this way
While circulating, the steam generated by heating the exhaust gas G in the evaporators 4 and 6 is introduced into the superheater 3 by the saturated steam pipe 16, where it is superheated by the exhaust gas G and passes through the main steam pipe 17 as superheated steam. It is supplied to the steam turbine 9.
Reference numeral 18 is a turbine bypass pipe that is connected to the main steam pipe and bypasses the steam turbine 9 to directly guide steam to the condenser 10. Further, 19 is a steam turbine control valve for adjusting the flow rate of steam to the steam turbine, 20 is a turbine bypass valve for adjusting the steam bypass amount by the supply amount of steam to the steam turbine 9, and 21 is a damper of the exhaust gas duct 2. is there. During the above-described steam generating operation, the denitration device 5 performs an operation of removing NO x in the exhaust gas G.
ここで、第1図に示すグラフに基づいて、ボイラ停止に
伴なう本実施例のプラント停止過程を説明する。プラン
ト停止の際、蒸気タービン9の停止時のメタル温度を高
く保持して際起動時の起動時間を短縮するために、ガス
タービン1をある負荷で保持した状態において、蒸気タ
ービン9を先行して停止する。この状態が第1図(a),
(c)に示される。蒸気タービン9の停止は蒸気タービン
加減弁19を調節して第1図(a)に示すように蒸気流量
を減少させて行なわれ、この間余剰蒸気量はタービンバ
イパス弁20によりドラム8のドラム圧力を制御しなが
らタービンバイパス管18を経て復水器10へダンプさ
れる。第1図(a)で斜線部分が余剰蒸気量となる。蒸気
タービン9が停止した後、第1図(c)に示すように、ガ
スタービン1が停止過程に入る。Here, the plant shutdown process of the present embodiment accompanying the boiler shutdown will be described based on the graph shown in FIG. When the plant is stopped, in order to keep the metal temperature at the time of stopping the steam turbine 9 high and to shorten the start-up time at the time of start-up, the steam turbine 9 is preceded with the gas turbine 1 held at a certain load. Stop. This state is shown in Fig. 1 (a),
It is shown in (c). The steam turbine 9 is stopped by adjusting the steam turbine control valve 19 to reduce the steam flow rate as shown in FIG. 1 (a). During this period, the surplus steam amount changes the drum pressure of the drum 8 by the turbine bypass valve 20. It is dumped to the condenser 10 via the turbine bypass pipe 18 while controlling. In Figure 1 (a), the shaded area is the amount of excess steam. After the steam turbine 9 is stopped, the gas turbine 1 enters a stop process as shown in FIG.
従来の停止方法においては、ガスタービン1が停止過程
に入ると、これに伴なつて冷却によりドラム8の圧力が
第1図(b)の実線Cで示すように圧力P0から低下して
ゆき、ガスタービン1の停止時には圧力P1に低下す
る。そして、この状態でボイラの出口ダンパ21が全閉
されてボイラバンキング状態に入る。バンキング中、ボ
イラは自然放熱等により冷却されるので、ドラム8の圧
力は第1図(b)に示すように圧力P1からさらに低下す
る。したがつて、ボイラ再起動時、ドラム圧力は極めて
低い圧力P2になつており、伝熱管群内の受熱媒体温度
も低く、前述のように、脱硝装置5に流入する排ガスG
の温度も低下することとなる。In the conventional stopping method, when the gas turbine 1 enters the stopping process, the pressure of the drum 8 decreases from the pressure P 0 as shown by the solid line C in FIG. 1 (b) due to the cooling. When the gas turbine 1 is stopped, the pressure drops to P 1 . Then, in this state, the outlet damper 21 of the boiler is fully closed to enter the boiler banking state. During banking, the boiler is cooled by natural heat radiation or the like, so that the pressure of the drum 8 further decreases from the pressure P 1 as shown in FIG. 1 (b). Therefore, when the boiler is restarted, the drum pressure becomes extremely low pressure P 2 , the temperature of the heat receiving medium in the heat transfer tube group is also low, and the exhaust gas G flowing into the denitration device 5 as described above.
Will also decrease the temperature.
しかしながら、本実施例においては、上記従来の停止方
法とは異なり、プラント停止過程において、タービンバ
イパス18を経て復水器10へダンプされる蒸気量を、
タービンバイパス弁20によつて絞り込む方法が採られ
ている。これにより、ドラム8の圧力は第1図(b)の2
点鎖線Dに示すように上昇し、ボイラバンキング状態に
入る時点においては圧力P3まで昇圧される。上述のよ
うに、バンキング中、ボイラは冷却され、ドラム8の圧
力も第1図(b)の2点鎖線Dに示すように低下してゆ
く。しかし、ボイラバンキング開始時に圧力P3まで昇
圧されたドラム圧力は、バンキング中の冷却による圧力
低下があつても、ボイラ再起動時には圧力P4を保持
し、この圧力は従来の停止方法におけるボイラ再起動時
の圧力P2より遥かに高い圧力である。この結果、伝熱
管群内の受熱媒体温度も高い温度に保持され、ボイラ再
起動時に排ガスGから奪う熱量が減少し、排ガスGの温
度は低下せず、第5図の曲線Bに示すように、触媒好適
温度に保持することができ、従来の停止方法に比較し、
排煙中のNOxの量を大幅に減少することができる。However, in the present embodiment, unlike the above-described conventional shutdown method, in the plant shutdown process, the amount of steam dumped to the condenser 10 via the turbine bypass 18 is
A method of narrowing down by the turbine bypass valve 20 is adopted. As a result, the pressure of the drum 8 becomes 2 in FIG. 1 (b).
Increases as shown in dash-dotted D, is boosted to the pressure P 3 in the time entering the boiler banking state. As described above, during banking, the boiler is cooled and the pressure of the drum 8 is also reduced as shown by the chain double-dashed line D in FIG. 1 (b). However, the drum pressure increased to the pressure P 3 at the start of boiler banking maintains the pressure P 4 at the time of restarting the boiler, even if there is a pressure drop due to cooling during banking, and this pressure is maintained by the boiler restarting method in the conventional shutdown method. The pressure is much higher than the starting pressure P 2 . As a result, the heat receiving medium temperature in the heat transfer tube group is also maintained at a high temperature, the amount of heat taken from the exhaust gas G at the time of restarting the boiler is reduced, the temperature of the exhaust gas G does not decrease, and as shown by the curve B in FIG. , The catalyst can be maintained at a suitable temperature, compared to the conventional stopping method,
The amount of NO x in the flue gas can be significantly reduced.
ここで1例を挙げると、ボイラ停止時、ドラム8の圧力
を60atg(P3=60atg)まで昇圧させると、
8時間のバンキングの後のドラム8の残圧は約30at
g(P4≒30atg,飽和温度約235℃)となる。
この結果、過熱器3、蒸発器4内の受熱媒体の温度は約
235℃に保持され、再起動時に導入される排ガスGは
ほとんど温度降下を生ずることなく、第5図に示す温度
T4(約230℃)で脱硝装置5に流入する。To give one example, when the pressure of the drum 8 is increased to 60 atg (P 3 = 60 atg) when the boiler is stopped,
Residual pressure of drum 8 after banking for 8 hours is about 30 at
g (P 4 ≈30 atg, saturation temperature about 235 ° C.).
As a result, the temperature of the heat receiving medium in the superheater 3 and the evaporator 4 is maintained at about 235 ° C., and the temperature of the exhaust gas G introduced at the time of restart hardly decreases, and the temperature T 4 ( It flows into the denitration device 5 at about 230 ° C.
第3図はボイラ再起動後のボイラから排出されるNOx
総量、排ガス量、排ガス温度の特性図である。図で、横
軸には時間がとつてあり、又、実線はボイラ再起動時の
ドラム残圧が30atg、一点鎖線はドラム残圧が10
atgの場合を示す。図から明らかなように、ドラム残
圧が10atgの場合、ボイラから排出されるNOxの
量は、しばらくの間NOx規制値を大きく超えるのに対
し、ドラム残圧が30atgの場合、ボイラ再起動時以
後NOx規制値を超えることはない。したがって、ドラ
ム残圧を高める本実施例の停止方法が、NOx低減に極
めて有効であることが判る。Figure 3 shows NO x emitted from the boiler after restarting the boiler.
It is a characteristic diagram of total amount, exhaust gas amount, and exhaust gas temperature. In the figure, the horizontal axis represents time, the solid line represents the residual drum pressure when the boiler is restarted at 30 atg, and the dashed line represents the residual drum pressure of 10 atg.
The case of atg is shown. As is clear from the figure, when the residual drum pressure is 10 atg, the amount of NO x discharged from the boiler greatly exceeds the NO x regulation value for a while, whereas when the residual drum pressure is 30 atg, the boiler The NO x regulation value will not be exceeded after startup. Therefore, it can be seen that the stopping method of this embodiment for increasing the residual pressure of the drum is extremely effective for reducing NO x .
第4図は、第1図(a)乃至(c)に示す停止方法を適用する
他の排熱回収ボイラの系統図である。図で、第2図に示
す部分と同一部分には同一符号を付して説明を省略す
る。なお、排ガスダクト2内の諸装置の図示は省略され
ている。23はドラム8に取付けられてドラム圧力を検
出する圧力検出器、19′は圧力検出器23の検出信号
により制御される蒸気タービン加減弁、20′は圧力検
出器23の検出信号により制御されるタービンバイパス
弁である。FIG. 4 is a system diagram of another exhaust heat recovery boiler to which the stopping method shown in FIGS. 1 (a) to 1 (c) is applied. In the figure, the same parts as those shown in FIG. It should be noted that illustration of various devices in the exhaust gas duct 2 is omitted. Reference numeral 23 is a pressure detector attached to the drum 8 for detecting the drum pressure, 19 'is a steam turbine control valve controlled by a detection signal of the pressure detector 23, and 20' is controlled by a detection signal of the pressure detector 23. It is a turbine bypass valve.
本実施例においては、第1図(b)の2点鎖線Dに示すよ
うに、プラント停止過程においてドラム圧力を上昇させ
るが、この圧力上昇が急激であるとドラム8の設計圧力
を超えるおそれが生じる。第4図に示すボイラはこのよ
うな事態を防止するもので、ドラム圧力が一定圧力を超
えると圧力検出器23がこれを検出し、信号を蒸気ター
ビン加減弁19′、タービンバイパス弁20′に出力
し、これらの弁を開く方向的に制御してドラム圧力の上
昇を抑え、ドラム圧力を安全に昇圧することができる。In this embodiment, as shown by the chain double-dashed line D in FIG. 1 (b), the drum pressure is increased during the plant shutdown process. However, if this pressure increase is rapid, the design pressure of the drum 8 may be exceeded. Occurs. The boiler shown in FIG. 4 prevents such a situation. When the drum pressure exceeds a certain pressure, the pressure detector 23 detects this and sends a signal to the steam turbine control valve 19 'and turbine bypass valve 20'. It is possible to suppress the rise of the drum pressure by outputting and controlling these valves in the opening direction to safely raise the drum pressure.
このように、本実施例では、プラントの停止過程におい
て、タービンバイパス弁を絞つてドラム圧力を昇圧し、
ボイラ再起動時の残圧を高めるようにしたので、系統中
に特殊な装置を介在させたり、系統に変更を加えたりす
ることなく、短に運転方法のみで、ボイラ再起動時脱硝
装置に流入する排ガス温度の低下を防止してこれを触媒
好適温度範囲内に保持することができ、ボイラから排出
されるNOxを大幅に低減することができる。Thus, in this embodiment, in the process of shutting down the plant, the turbine bypass valve is throttled to increase the drum pressure,
Since the residual pressure at the time of restarting the boiler is increased, it is possible to flow into the denitration device at the time of restarting the boiler by simply operating the method without interposing a special device in the system or changing the system. It is possible to prevent the exhaust gas temperature from decreasing and keep it within the catalyst suitable temperature range, and it is possible to greatly reduce the NO x discharged from the boiler.
なお、上記蒸気実施例の説明では、排ガス源をガスター
ビンとして説明したが、ガスタービンに限ることはな
く、排ガス源が工業炉や産業処理整備等であつても適用
することができる。In the above description of the steam embodiment, the exhaust gas source is described as the gas turbine, but the exhaust gas source is not limited to the gas turbine, and the exhaust gas source may be applied to an industrial furnace, industrial treatment maintenance, or the like.
以上述べたように、本発明では、プラントの停止過程に
おいて、負荷をバイパスするバイパス管の通過蒸気量を
制御し、ドラム圧力を昇圧してボイラ再起動時のドラム
残圧を高めるようにしたので、特殊の装置を用いること
なく、ボイラ再起動時、ボイラから排出されるNOxを
低減することができる。As described above, in the present invention, in the process of stopping the plant, the amount of steam passing through the bypass pipe that bypasses the load is controlled to increase the drum pressure and increase the residual drum pressure when the boiler is restarted. The NO x emitted from the boiler can be reduced when the boiler is restarted without using a special device.
第1図(a),(b),(c)は本発明の実施例に係る排熱回収
ボイラの停止方法を示すタイムチヤート、第2図は第1
図(a),(b),(c)に示される停止方法を適用する排熱回
収ボイラの系統図、第3図はボイラから排出されるNO
x総量を示すグラフ、第4図は第1図(a),(b),(c)に
示される停止方法を適用する他の排熱回収ボイラの系統
図、第5図は脱硝有効温度範囲を示すグラフ、第6図
(a),(b)は変圧運転方式におけるドラム圧力の特性図で
ある。 1……ガスタービン、2……排ガスダクト、3……過熱
器、4,6……蒸発器、5……脱硝装置、8……ドラ
ム、9……蒸気タービン、17……主蒸気管、18……
タービンバイパス管、19,19′……蒸気タービン加
減弁、20,20′……タービンバイパス弁、23……
圧力検出器。FIGS. 1 (a), (b) and (c) are time charts showing a method of stopping an exhaust heat recovery boiler according to an embodiment of the present invention, and FIG.
The system diagram of the exhaust heat recovery boiler that applies the stop method shown in Figures (a), (b), and (c). Figure 3 shows the NO discharged from the boiler.
x Graph showing total amount, FIG. 4 is a system diagram of another exhaust heat recovery boiler to which the stopping method shown in FIGS. 1 (a), (b), and (c) is applied, and FIG. 5 is a denitration effective temperature range Fig. 6 showing the graph
(a) and (b) are characteristic diagrams of the drum pressure in the variable pressure operation method. 1 ... Gas turbine, 2 ... Exhaust gas duct, 3 ... Superheater, 4,6 ... Evaporator, 5 ... Denitration device, 8 ... Drum, 9 ... Steam turbine, 17 ... Main steam pipe, 18 ……
Turbine bypass pipe, 19, 19 '... Steam turbine control valve, 20, 20' ... Turbine bypass valve, 23 ...
Pressure detector.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−179309(JP,A) 特開 昭57−196004(JP,A) 特開 昭59−153003(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-57-179309 (JP, A) JP-A-57-196004 (JP, A) JP-A-59-153003 (JP, A)
Claims (1)
水を排ガスにより加熱する蒸発器と、発生した前記蒸気
を負荷に供給する主蒸気管と、この主蒸気管に接続され
て前記負荷をバイパスするバイパス管と、前記排ガス中
の窒素酸化物を除去する脱硝装置とを備えた排熱回収ボ
イラにおいて、この排熱回収ボイラの停止時、前記主蒸
気管および前記バイパス管を通過する蒸気量をそれぞれ
制御して前記ドラムの圧力を昇圧し、ボイラ再起動時の
前記ドラムの残圧を高めることを特徴とする排熱回収ボ
イラの停止方法。1. A drum for generating steam, an evaporator for heating canned water of the drum with exhaust gas, a main steam pipe for supplying the generated steam to a load, and the load connected to the main steam pipe for loading the load. In a waste heat recovery boiler equipped with a bypass pipe for bypassing the exhaust gas and a denitration device for removing nitrogen oxides in the exhaust gas, when the exhaust heat recovery boiler is stopped, steam passing through the main steam pipe and the bypass pipe A method for stopping an exhaust heat recovery boiler, which comprises increasing the residual pressure of the drum when the boiler is restarted by controlling the respective amounts to increase the pressure of the drum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59195745A JPH0619201B2 (en) | 1984-09-20 | 1984-09-20 | How to stop the exhaust heat recovery boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59195745A JPH0619201B2 (en) | 1984-09-20 | 1984-09-20 | How to stop the exhaust heat recovery boiler |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9237976A Division JP2951294B2 (en) | 1997-09-03 | 1997-09-03 | How to stop the waste heat recovery boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6176802A JPS6176802A (en) | 1986-04-19 |
JPH0619201B2 true JPH0619201B2 (en) | 1994-03-16 |
Family
ID=16346258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59195745A Expired - Fee Related JPH0619201B2 (en) | 1984-09-20 | 1984-09-20 | How to stop the exhaust heat recovery boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0619201B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6071421B2 (en) * | 2012-10-26 | 2017-02-01 | 三菱日立パワーシステムズ株式会社 | Combined cycle plant, method for stopping the same, and control device therefor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57179309A (en) * | 1981-04-28 | 1982-11-04 | Mitsubishi Heavy Ind Ltd | Boiler change-over system for rapid starting and stopping of combined plant |
JPS57196004A (en) * | 1981-05-27 | 1982-12-01 | Babcock Hitachi Kk | Method of operating waste heat recovery boiler with denitrifier |
JPS59153003A (en) * | 1983-02-21 | 1984-08-31 | バブコツク日立株式会社 | Method of stopping waste-heat recovery boiler |
JPH0621524B2 (en) * | 1984-07-20 | 1994-03-23 | 株式会社日立製作所 | Combined plant and its operation method |
-
1984
- 1984-09-20 JP JP59195745A patent/JPH0619201B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6176802A (en) | 1986-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4572110A (en) | Combined heat recovery and emission control system | |
JP4786504B2 (en) | Heat medium supply facility, solar combined power generation facility, and control method thereof | |
JP2001108201A (en) | Multiple pressure waste heat boiler | |
JPH08246814A (en) | Combined cycle generation plant using refuse incinerator | |
JP3140539B2 (en) | Waste heat recovery boiler and method of supplying de-heated water | |
JPH0619201B2 (en) | How to stop the exhaust heat recovery boiler | |
JP2951294B2 (en) | How to stop the waste heat recovery boiler | |
JPS61108814A (en) | Gas-steam turbine composite facility | |
JP3133183B2 (en) | Combined cycle power plant | |
JP2949287B2 (en) | Auxiliary steam extraction method for waste heat recovery boiler | |
JP2657411B2 (en) | Combined cycle power plant and operating method thereof | |
JP2002106804A (en) | Feedwater flow-rate controller of variable once- through boiler | |
JP2815296B2 (en) | Operating method of waste heat utilization combined plant of refuse incinerator | |
JPH05340501A (en) | Metal processing furnace waste gas sensible heat recovery power generator combined with gas turbine | |
JP2695368B2 (en) | Garbage incineration equipment | |
JP2531801B2 (en) | Exhaust heat recovery heat exchanger controller | |
JP2971629B2 (en) | Waste heat recovery boiler | |
JPH10299424A (en) | Steam temperature controlling method for refuse incinerating power plant | |
JP2708406B2 (en) | Startup control method for thermal power plant | |
JPS6214041B2 (en) | ||
JP2769270B2 (en) | Garbage incineration equipment | |
JPH07122485B2 (en) | Steamer steam prevention device for once-through thermal power generation boiler system | |
JPH06221504A (en) | Waste heat recovery heat exchanger | |
JPH09112807A (en) | Deaerator protection device for exhaust gas recombustion system | |
JPS6211283Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |