JPH11325408A - Operation control method of boiler - Google Patents

Operation control method of boiler

Info

Publication number
JPH11325408A
JPH11325408A JP13037198A JP13037198A JPH11325408A JP H11325408 A JPH11325408 A JP H11325408A JP 13037198 A JP13037198 A JP 13037198A JP 13037198 A JP13037198 A JP 13037198A JP H11325408 A JPH11325408 A JP H11325408A
Authority
JP
Japan
Prior art keywords
water
boiler
steam
circulation
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13037198A
Other languages
Japanese (ja)
Inventor
Hiroshi Oshima
拓 大島
Mitsugi Sugasawa
貢 菅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP13037198A priority Critical patent/JPH11325408A/en
Publication of JPH11325408A publication Critical patent/JPH11325408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide stable circulation/percolation switching characteristics, even when delay of operation timing or change in boiler state occur. SOLUTION: The control method has a steam separator and a re-circulation system provided with a drain tank, for switching between circulation/percolation modes. Here, a fluid temperature detector which detects fluid temperature 9 at appropriate parts between a furnace waterwall outlet and an inlet for the steam separator, and a pressure detector which detects pressure 10 of the drain tank, are provided, and at the switching of circulation/percolation modes, an overheating degree of the fluid is obtained, based on an deviation 8 between the fluid temperature 9 from the fluid temperature detector and a saturation temperature 6 from the pressure detector, while the flow rate of water-supply to the furnace waterwall is corrected (3) based on the overheating degree.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はベンソンボイラの運
転制御方式に係わり、特に循環/貫流切替時に安定した
ボイラ特性を得るに好適な運転制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control system for a Benson boiler, and more particularly to an operation control system suitable for obtaining stable boiler characteristics at the time of switching between circulation and once-through.

【0002】[0002]

【従来の技術】ベンソンボイラにおける再循環系統廻り
の一例を図2に示す。給水ポンプ11(BFP)から送
られる給水は、節炭器13、火炉水壁14、天井壁1
5、蒸発器16を通り気水分離器17へ送られ、蒸気と
水に分離される。蒸気は過熱器19(SH)にて過熱さ
れタービンへ送られるが、水は気水分離器17よりドレ
ンタンク18へ戻され、その水位に見合って再循環ポン
プ12(BCP)及び再循環流量調整弁21を通り節炭
器13の入口へ再循環される。
2. Description of the Related Art FIG. 2 shows an example of a recirculation system around a Benson boiler. The water supplied from the water supply pump 11 (BFP) is supplied to the economizer 13, the furnace water wall 14, and the ceiling wall 1.
5. It is sent to the steam separator 17 through the evaporator 16 and separated into steam and water. The steam is superheated by the superheater 19 (SH) and sent to the turbine. The water is returned from the steam separator 17 to the drain tank 18, and the recirculation pump 12 (BCP) and the recirculation flow rate are adjusted according to the water level. It is recirculated through valve 21 to the inlet of economizer 13.

【0003】起動初期においては気水分離器17の入口
流体が蒸気と水の2相流であることから、再循環系統に
よる循環運転となるが、気水分離器17の入口流体が全
て蒸気となる循環/貫流切替負荷(一般的に25%〜3
0%負荷)以降は流体は全て蒸気となって過熱器19へ
送られ、貫流運転となる。
In the initial stage of the start-up, since the inlet fluid of the steam separator 17 is a two-phase flow of steam and water, a circulation operation is performed by a recirculation system, but the inlet fluid of the steam separator 17 is entirely steam and water. Cycle / through flow switching load (typically 25% -3
After 0% load), all the fluid becomes vapor and is sent to the superheater 19, so that the flow-through operation is performed.

【0004】循環運転での制御方式は、気水分離器17
の入口流体が飽和蒸気と飽和水の2相流の状態であるこ
とから、ドラムボイラと同様に主蒸気圧力は燃料量で制
御し、主蒸気温度は減温器20での過熱(SH)スプレ
量によって制御され、給水量は最低給水量一定制御(一
般的に25%〜28%MCR)となる。
[0004] The control system in the circulation operation is a steam-water separator 17.
Since the inlet fluid is a two-phase flow of saturated steam and saturated water, the main steam pressure is controlled by the amount of fuel and the main steam temperature is controlled by the superheat (SH) spray in the desuperheater 20, as in the drum boiler. The water supply amount is controlled by the minimum water supply amount constant control (generally 25% to 28% MCR).

【0005】また、貫流運転での制御方式は、気水分離
器17の入口流体が全て蒸気となることから、貫流ボイ
ラと同様に主蒸気圧力はボイラマスタ(給水量及び燃料
量)で制御し、主蒸気温度は水燃比(燃料量)によって
制御される。尚、循環制御から貫流制御への切替は、気
水分離器17の入口流体が全て蒸気となったことを確認
するため、再循環流量調整弁21が全閉あるいは再循環
ポンプ12の停止の条件にて貫流制御モードへ切り替え
られる。
In the once-through operation, since the inlet fluid of the steam separator 17 is entirely vaporized, the main steam pressure is controlled by a boiler master (water supply amount and fuel amount) as in the once-through boiler. The main steam temperature is controlled by the water-fuel ratio (fuel amount). The switching from the circulation control to the once-through control is performed under the condition that the recirculation flow control valve 21 is fully closed or the recirculation pump 12 is stopped in order to confirm that all of the inlet fluid of the steam separator 17 has been converted to steam. To switch to the flow-through control mode.

【0006】循環/貫流切替時においては、負荷(蒸気
フロー)上昇に伴う主蒸気圧力低下による燃料量増加操
作(水燃比による主蒸気圧力制御)により、火炉収熱量
が増加し気水分離器17の入口流体が過熱蒸気となる。
循環制御から貫流制御への切替は、通常、再循環流量調
整弁21の全閉あるいは再循環ポンプ12の停止を検出
して、そのタイミングによって実施されるが、その貫流
制御への切替が遅れた場合には、燃料量を増加しても主
蒸気圧力は回復しない(給水が全て蒸気となっているた
め比容積の増加が望めない)ため、更に燃料が過投入さ
れ火炉通過流体の過熱度が上昇し、火炉水壁14のメタ
ル温度が許容値を超過することが懸念される。
[0006] At the time of switching between circulation and once-through, the amount of heat collected in the furnace increases due to an operation for increasing the fuel amount (main steam pressure control by water-fuel ratio) due to a decrease in main steam pressure accompanying an increase in load (steam flow), and the steam-water separator 17 Fluid becomes superheated steam.
Switching from the circulation control to the once-through control is normally performed at the timing when the fully closed recirculation flow control valve 21 or the stop of the recirculation pump 12 is detected, and the switching to the once-through control is delayed. In this case, even if the fuel amount is increased, the main steam pressure does not recover (the specific volume cannot be increased because the feedwater is all steam). As a result, there is a concern that the metal temperature of the furnace water wall 14 exceeds an allowable value.

【0007】従来制御では、循環/貫流切替時における
主蒸気圧力低下による燃料増加操作を緩和するため、負
荷によるプログラム制御にて給水量を補正(増加)する
回路(図3参照)が設置されている。これは図4に示す
通り、ボイラ入力指令1からの関数で給水流量を決定す
るものであり、図3の給水流量指令は、ボイラ入力指
令1の関数である給水流量と、図3に図示の高値選択
器3の他方の入力であると、の高値を選択したもので
あり、前記の信号は、起動時の火炉保護のためのミニ
マム給水と、ボイラ入力指令の給水補正量との高値
を選択したものである。
In the conventional control, a circuit (see FIG. 3) for correcting (increasing) the amount of supplied water by a program control by a load is provided in order to alleviate the operation of increasing the fuel due to the decrease in the main steam pressure at the time of the circulation / through flow switching. I have. As shown in FIG. 4, the feed water flow rate is determined by a function from the boiler input command 1. The feed water flow rate command shown in FIG. As the other input of the high value selector 3, the high value is selected, and the signal selects the high value of the minimum water supply for furnace protection at the time of starting and the water supply correction amount of the boiler input command. It was done.

【0008】この際、給水補正量であるは、ボイラ入
力指令1を関数発生器2bで適宜に変換し、この関数変
換された信号を変化率制限器7(変化率制限器への入力
信号が急激に変化した場合、ボイラ制御系の遅延特性を
考慮して、その入力信号の変化に必ずしも追従しないよ
うに制限するもの)を通して出力されるものである。
At this time, as the water supply correction amount, the boiler input command 1 is appropriately converted by the function generator 2b, and this function-converted signal is converted into a change rate limiter 7 (an input signal to the change rate limiter is In the case of a sudden change, the signal is output through a device that takes into account the delay characteristics of the boiler control system and limits the input signal to not necessarily follow the change.

【0009】[0009]

【発明が解決しようとする課題】上記従来制御は、主蒸
気圧力特性に影響を及ぼす操作(ボイラからタービンに
供給された蒸気を抽気して、給水ヒータへ抽気開始する
タイミング等)やボイラ状態(燃料性状、火炉汚れ度
等)が考慮されておらず、負荷のみにより給水量を補正
しているため、操作タイミングのずれやボイラ状態変化
により循環/貫流切替特性が不安定(主蒸気圧力低下に
伴う燃料増操作による火炉水壁メタル温度上昇)となる
問題点があった。
The above-mentioned conventional control includes an operation (such as a timing of extracting steam supplied from a boiler to a turbine and starting extraction to a feed water heater) and a state of a boiler (such as a timing of extracting steam supplied from a boiler to a turbine). Since the water supply is corrected only by the load without considering the fuel properties and the degree of fouling of the furnace, the circulation / through flow switching characteristics are unstable due to a shift in operation timing or a change in the state of the boiler. However, there was a problem that the furnace water wall metal temperature increased due to the fuel increase operation.

【0010】本発明の目的は、従来制御の前述した問題
点を解決し、操作タイミングのずれやボイラ状態が変化
した場合においても安定した循環/貫流切替特性が得ら
れる制御方式を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the conventional control and to provide a control system capable of obtaining a stable circulation / through flow switching characteristic even when the operation timing is shifted or the boiler state changes. is there.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
In order to solve the above problems, the present invention mainly employs the following configuration.

【0012】気水分離器、ドレンタンクを備えた再循環
系統を有し、循環/貫流モードを切り替えるボイラの運
転制御方式において、火炉水壁出口から気水分離器の入
口までの適宜の部位における流体温度を検出する流体温
度検出器と、前記ドレンタンクの圧力を検出する圧力検
出器と、を設け、前記循環/貫流モードを切替時に、前
記流体温度検出器からの流体温度と、前記圧力検出器か
らの飽和温度との偏差により流体の過熱度を求め、前記
過熱度に基づいて、前記火炉水壁への給水流量を補正す
るボイラ運転制御方式。
[0012] In a boiler operation control system which has a recirculation system provided with a steam separator and a drain tank, and switches between circulation and once-through modes, an appropriate portion from the furnace water wall outlet to the steam-water separator inlet is provided. A fluid temperature detector for detecting a fluid temperature, and a pressure detector for detecting a pressure of the drain tank, wherein when the circulation / flow-through mode is switched, the fluid temperature from the fluid temperature detector and the pressure detection A boiler operation control method for obtaining a degree of superheat of a fluid based on a deviation from a saturation temperature from a vessel and correcting a flow rate of water supplied to the furnace water wall based on the degree of superheat.

【0013】[0013]

【発明の実施の形態】図1に本発明の実施形態に係る給
水量補正回路の構成を示す図であり、図2はベンソンボ
イラ再循環系統の一例を示す図である。ここにおいて、
1はボイラ入力指令、2a,2b,2cは関数発生器、
3,4は高値選択器、5は信号発生器、6は信号切替
器、7は変化率制限器、8は減算器、9は火炉水壁出口
から汽水分離器入口までにおける適宜箇所の流体温度、
10は汽水分離器ドレンタンク圧力、11は給水ポン
プ、12は再循環ポンプ、13は節炭器、14は火炉水
壁、15は天井壁、16は蒸発器、17は汽水分離器、
18はドレンタンク、19は過熱器、20は減温器、2
1は再循環流量調整弁、をそれぞれ表す。
FIG. 1 is a diagram showing a configuration of a water supply amount correction circuit according to an embodiment of the present invention, and FIG. 2 is a diagram showing an example of a Benson boiler recirculation system. put it here,
1 is a boiler input command, 2a, 2b and 2c are function generators,
3, 4 are high value selectors, 5 is a signal generator, 6 is a signal switcher, 7 is a rate-of-change limiter, 8 is a subtractor, 9 is a fluid temperature at an appropriate point from the furnace water wall outlet to the brackish water separator inlet. ,
10 is a drain tank pressure of a brackish water separator, 11 is a feed water pump, 12 is a recirculation pump, 13 is a coal saver, 14 is a furnace water wall, 15 is a ceiling wall, 16 is an evaporator, 17 is a brackish water separator,
18 is a drain tank, 19 is a superheater, 20 is a cooler, 2
Reference numeral 1 denotes a recirculation flow control valve.

【0014】給水流量指令は高値選択器3の出力であ
って給水ポンプ11からの給水流量を制御するものであ
り、高値選択器3の一方の入力は、ボイラ入力指令(B
ID)1からのプログラム制御による給水流量であ
り、高値選択器3の他方の入力は図1に示す給水流量
である。そして、給水流量は、起動時の火炉保護のた
めの信号発生器5からの最低給水流量と、火炉水壁出
口から気水分離器入口部のいずれかの箇所での流体過熱
度からの給水補正量と、の高値を選択したものであ
る。
The feed water flow rate command is an output of the high value selector 3 for controlling the flow rate of the water supply from the water feed pump 11. One input of the high value selector 3 is a boiler input command (B
ID) 1 is the feed water flow rate under program control, and the other input of the high value selector 3 is the feed water flow rate shown in FIG. The feedwater flow rate is calculated based on the minimum feedwater flow rate from the signal generator 5 for furnace protection at the time of startup and the feedwater correction based on the degree of fluid superheat at any point from the furnace water wall outlet to the steam-water separator inlet. The quantity and the high value of are selected.

【0015】気水分離器ドレンタンク18の圧力10を
検出して、その検出信号の関数から火炉水壁出口から気
水分離器入口部への適宜の部位の飽和温度を求め、更
に、火炉水壁出口から気水分離器入口への適宜の部位の
流体温度を求め、これらの飽和温度と流体温度と
を減算器8で減算することでその流体の過熱度を求め
て、減算器8の出力から関数により給水補正量を作成
する。過熱度の関数出力を変化率制限器7を通すこと
で、ボイラ制御系統の遅延特性を補償しており、具体的
には、変化率制限器の演算処理の内容として、補正入り
/抜きレートを個別に設定可能としている。
The pressure 10 in the steam / water separator drain tank 18 is detected, and the saturation temperature of an appropriate portion from the furnace water wall outlet to the steam / water separator inlet is obtained from the function of the detection signal. The fluid temperature at an appropriate portion from the wall outlet to the steam-water separator inlet is determined, and the saturation temperature and the fluid temperature are subtracted by the subtractor 8 to determine the degree of superheat of the fluid. The water supply correction amount is created by a function from By passing the function output of the degree of superheat through the change rate limiter 7, the delay characteristic of the boiler control system is compensated for. It can be set individually.

【0016】そして、給水補正量は、信号切替器6に
よって所定の負荷以上(例えば循環/貫流切替後の負荷
>35%)となった場合には、変化率制限器7からの給
水量補正をカットして、信号発生器5からの零入力を信
号切替器6から出力するようになっている。
When the water supply correction amount exceeds a predetermined load by the signal switch 6 (for example, the load after circulation / through flow switching> 35%), the water supply correction from the change rate limiter 7 is corrected. The signal is cut, and the zero input from the signal generator 5 is output from the signal switch 6.

【0017】本発明では、火炉水壁メタル温度上昇の要
因である循環運転時における火炉水壁出口流体の過熱領
域への移行(給水が全て蒸気となる)に対して、タイミ
ングの遅れなく適正な給水量を補正可能となる。従っ
て、給水量補正に伴う主蒸気圧力上昇による燃料投入量
の低減、及び火炉水壁通過給水量の増加による火炉水壁
出口流体エンタルピの低下が可能となることから、ボイ
ラ状態に見合ったフィードバック制御の実現により、循
環/貫流切替時の火炉水壁メタル温度特性の安定化を図
ることが可能となる。
According to the present invention, it is possible to appropriately control the transition of the fluid at the outlet of the furnace water wall to the superheated region during the circulation operation, which is a factor of the temperature rise of the metal wall of the furnace water (the feedwater becomes all steam) without delay. The amount of water supply can be corrected. Therefore, it is possible to reduce the fuel input amount due to the increase in the main steam pressure accompanying the correction of the water supply amount, and to reduce the fluid enthalpy at the outlet of the furnace water wall by increasing the water supply amount passing through the furnace water wall. Realizes stabilization of the furnace water wall metal temperature characteristics at the time of the circulation / through flow switching.

【0018】以上説明したように、本発明の実施形態
は、火炉水壁出口部から気水分離器入口部までのいずれ
かの流体温度を監視し、循環/貫流制御切替前に当該部
位が過熱蒸気となった場合に、その過熱度に応じた給水
流量補正を適正化することで、火炉水壁メタル温度等の
ボイラ特性の安定化を意図するものであり、火炉水壁出
口部から気水分離器入口部までのいずれかの流体が、循
環/貫流制御切替前に過熱蒸気となった場合に給水量を
増加させると、ボイラ蒸発量増加に伴う主蒸気圧力上昇
により燃料投入量が低下(燃料は主蒸気圧力を制御)さ
れるとともに、火炉水壁通過給水流量が増加することか
ら火炉水壁メタル温度が低下傾向となり、ボイラ特性の
安定化を図るものである。
As described above, in the embodiment of the present invention, the temperature of any fluid from the outlet of the furnace water wall to the inlet of the steam separator is monitored, and the portion is overheated before switching of the circulation / through flow control. In the case of steam, it is intended to stabilize the boiler characteristics such as the furnace water wall metal temperature by optimizing the feedwater flow rate correction in accordance with the degree of superheat. If any of the fluids up to the separator inlet becomes superheated steam before the circulation / through-flow control is switched, if the water supply amount is increased, the fuel input amount will decrease due to the increase in the main steam pressure accompanying the increase in the boiler evaporation amount ( The main steam pressure of the fuel is controlled) and the flow rate of the feedwater passing through the furnace water wall increases, so that the metal temperature of the furnace water wall tends to decrease, thereby stabilizing the boiler characteristics.

【0019】[0019]

【発明の効果】本発明によれば、分級機回転数の変更に
よる微粉炭機の出炭応答特性が変化した場合において
も、負荷変化時の火炉への燃料投入量(BIR)の適正
な調整が実現できるため、蒸気温度、圧力等のボイラ特
性の安定化を図ることが可能となる。
According to the present invention, even when the coal output response characteristic of the pulverized coal machine changes due to the change in the number of revolutions of the classifier, the fuel injection amount (BIR) to the furnace at the time of load change can be properly adjusted. Therefore, it is possible to stabilize the boiler characteristics such as the steam temperature and the pressure.

【0020】本発明によれば、主蒸気圧力特性に影響を
及ぼす操作(ボイラ/タービン抽気、給水ヒータインサ
ービスタイミング等)やボイラ状態(燃料性状、火炉汚
れ度等)が変化した場合においても、ボイラ状態(火炉
水壁出口から気水分離器入口部の流体過熱度)に見合っ
た給水量のフィードバック制御が可能となるため、操作
タイミングのずれやボイラ状態が変化した場合において
も給水量補正タイミング遅れが安定した循環/貫流切替
特性が得られる制御方式を提供することにある。
According to the present invention, even when the operation (boiler / turbine bleeding, water supply heater in-service timing, etc.) affecting the main steam pressure characteristic or the boiler state (fuel property, furnace contamination degree, etc.) is changed, Feedback control of the water supply amount corresponding to the boiler state (the degree of fluid superheat from the furnace water wall outlet to the steam-water separator inlet section) is possible, so even if the operation timing shifts or the boiler state changes, the water supply amount correction timing An object of the present invention is to provide a control method capable of obtaining a circulation / through flow switching characteristic with a stable delay.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る給水量補正回路の構成
を示す図である。
FIG. 1 is a diagram showing a configuration of a water supply amount correction circuit according to an embodiment of the present invention.

【図2】ベンソンボイラ再循環系統の一例を示す図であ
る。
FIG. 2 is a diagram showing an example of a Benson boiler recirculation system.

【図3】従来技術における給水量補正回路の構成を示す
図である。
FIG. 3 is a diagram illustrating a configuration of a water supply amount correction circuit according to the related art.

【図4】従来技術における給水流量指令を示す図であ
る。
FIG. 4 is a diagram showing a water supply flow rate command according to the prior art.

【符号の説明】[Explanation of symbols]

1 ボイラ入力指令 2 関数発生器 3 高値選択器 4 加算器 5 信号発生器 6 信号切替器 7 変化率制限器 8 減算器 9 加炉水壁出口から汽水分離器入口までにおける流体
温度 10 汽水分離器ドレンタンク圧力 11 給水ポンプ 12 再循環ポンプ 13 節炭器 14 火炉水壁 15 天井壁 16 蒸発器 17 汽水分離器 18 ドレンタンク 19 過熱器 20 減温器 21 再循環流量調整弁
REFERENCE SIGNS LIST 1 Boiler input command 2 Function generator 3 High value selector 4 Adder 5 Signal generator 6 Signal switch 7 Rate of change limiter 8 Subtractor 9 Fluid temperature from furnace water wall outlet to brackish water separator inlet 10 Steam separator Drain tank pressure 11 Feed water pump 12 Recirculation pump 13 Energy saving device 14 Furnace water wall 15 Ceiling wall 16 Evaporator 17 Steam separator 18 Drain tank 19 Superheater 20 Desuperheater 21 Recirculation flow control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気水分離器、ドレンタンクを備えた再循
環系統を有し、循環/貫流モードを切り替えるボイラの
運転制御方式において、 火炉水壁出口から気水分離器の入口までの適宜の部位に
おける流体温度を検出する流体温度検出器と、 前記ドレンタンクの圧力を検出する圧力検出器と、を設
け、 前記循環/貫流モードを切替時に、前記流体温度検出器
からの流体温度と、前記圧力検出器からの飽和温度との
偏差により流体の過熱度を求め、前記過熱度に基づい
て、前記火炉水壁への給水流量を補正することを特徴と
するボイラの運転制御方式。
An operation control system for a boiler which has a recirculation system provided with a steam / water separator and a drain tank, and switches between a circulation / flow-through mode, wherein a proper flow from a furnace water wall outlet to a steam / water separator inlet is provided. A fluid temperature detector for detecting a fluid temperature in a portion; and a pressure detector for detecting a pressure of the drain tank. When the circulation / flow-through mode is switched, a fluid temperature from the fluid temperature detector, An operation control method for a boiler, wherein a superheat degree of a fluid is obtained from a deviation from a saturation temperature from a pressure detector, and a flow rate of water supplied to the furnace water wall is corrected based on the superheat degree.
JP13037198A 1998-05-13 1998-05-13 Operation control method of boiler Pending JPH11325408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13037198A JPH11325408A (en) 1998-05-13 1998-05-13 Operation control method of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13037198A JPH11325408A (en) 1998-05-13 1998-05-13 Operation control method of boiler

Publications (1)

Publication Number Publication Date
JPH11325408A true JPH11325408A (en) 1999-11-26

Family

ID=15032778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13037198A Pending JPH11325408A (en) 1998-05-13 1998-05-13 Operation control method of boiler

Country Status (1)

Country Link
JP (1) JPH11325408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005295A1 (en) * 2010-07-08 2012-01-12 三浦工業株式会社 Steam system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005295A1 (en) * 2010-07-08 2012-01-12 三浦工業株式会社 Steam system
JP2012032136A (en) * 2010-07-08 2012-02-16 Miura Co Ltd Steam system

Similar Documents

Publication Publication Date Title
US9222373B2 (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
JP5450642B2 (en) Operation method of exhaust heat recovery boiler
CN104949095B (en) A kind of supercritical once-through boiler saving-energy operation control method
US4555906A (en) Deaerator pressure control system for a combined cycle steam generator power plant
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JP4507098B2 (en) Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler
US7827793B2 (en) Power generation system
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP5818963B2 (en) Method for operating once-through boiler and boiler configured to carry out this method
JPH11325408A (en) Operation control method of boiler
JP5560515B2 (en) Steam production system and startup control method for steam production system
JP2686259B2 (en) Operating method of once-through boiler
US6152085A (en) Method for operating a boiler with forced circulation and boiler for its implementation
JP2880558B2 (en) Control method of once-through boiler and control device of once-through boiler
JP2686262B2 (en) Operating method of once-through boiler
JP2686260B2 (en) Operating method of once-through boiler
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH109502A (en) Water tube boiler
JPH1182913A (en) Method and device for controlling feed water temperature of exhaust heat recovery boiler
JP5178074B2 (en) Boiler operation switching device
JPH0758121B2 (en) Recycling controller for economizer
JPS61211610A (en) Variable pressure once-through boiler
JPH10176804A (en) Vertical waste heat recovery boiler and operating method thereof
JPH01212802A (en) Steam temperature control device for boiler
JPS62134401A (en) Method of operating once-through boiler