JP2880558B2 - Control method of once-through boiler and control device of once-through boiler - Google Patents
Control method of once-through boiler and control device of once-through boilerInfo
- Publication number
- JP2880558B2 JP2880558B2 JP13318490A JP13318490A JP2880558B2 JP 2880558 B2 JP2880558 B2 JP 2880558B2 JP 13318490 A JP13318490 A JP 13318490A JP 13318490 A JP13318490 A JP 13318490A JP 2880558 B2 JP2880558 B2 JP 2880558B2
- Authority
- JP
- Japan
- Prior art keywords
- boiler
- water
- furnace
- water wall
- once
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、再循環系統を有する貫流ボイラの制御方法
および制御装置に係り、特にボイラ再循環系統使用が不
可となる異常時においてもボイラの起動・停止を行なえ
る再循環系統を有する貫流ボイラの制御方法および制御
装置に関する。The present invention relates to a control method and a control device for a once-through boiler having a recirculation system, and particularly to a control method for a boiler even in an abnormal situation where the use of a boiler recirculation system becomes impossible. The present invention relates to a once-through boiler control method and control apparatus having a recirculation system capable of starting and stopping.
第5図に蒸発装置と過熱装置とボイラ再循環系統を有
する貫流ボイラの例として変圧ベンソンボイラの起動バ
イパス系統を示す。FIG. 5 shows a startup bypass system of a variable-pressure Benson boiler as an example of a once-through boiler having an evaporator, a superheater, and a boiler recirculation system.
ボイラ給水ポンプから供給された給水は、節炭器2に
よって予熱され火炉水壁3にて多量の熱を得て気水分離
器4へ流入する。気水分離器4では流入した流体のかわ
き度(蒸気含有率)に応じて飽和蒸気と飽和水とに分離
され、飽和蒸気は一次過熱器9、二次過熱器11、三次過
熱器13へと順次導かれ、加熱され、過熱蒸気となった後
蒸気タービン14に流入しここで仕事をしたのち、復水器
16に導かれ復水となったのち、給水加熱器等で加熱され
たのちボイラ給水ポンプに送られる。一方、気水分離器
4で分離された飽和水は、貯水タンク5に貯えられ、ボ
イラ再循環ポンプ6およびボイラ再循環流量調節弁7と
で流量を制御され節炭器2の入口に再び合流させ熱回収
を図る。缶水ブロー弁8は、貯水タンク5の水位制御に
供し、規定水位以上となったドレンをブローする。この
ブロー水は復水器16に入りタービンからきたものと合流
する。The feed water supplied from the boiler feed pump is preheated by the economizer 2 to obtain a large amount of heat at the furnace water wall 3 and flows into the steam separator 4. In the steam-water separator 4, the steam is separated into saturated steam and saturated water according to the dryness (steam content) of the inflowing fluid, and the saturated steam is sent to the primary superheater 9, the secondary superheater 11, and the tertiary superheater 13. After being sequentially guided, heated, and turned into superheated steam, the steam flows into the steam turbine 14 where work is performed, and then the steam is condensed.
After being led to 16 and condensed, it is heated by a feed water heater and then sent to a boiler feed pump. On the other hand, the saturated water separated by the steam separator 4 is stored in the water storage tank 5, and the flow thereof is controlled by the boiler recirculation pump 6 and the boiler recirculation flow rate control valve 7, and rejoins the inlet of the economizer 2. To recover heat. The can water blow valve 8 is used for controlling the water level of the water storage tank 5 and blows the drain having a specified water level or higher. This blow water enters the condenser 16 and merges with the one coming from the turbine.
運転制御については、第4図(イ)、(ロ)、(ハ)
の特性図に示すように、起動時負荷運転となった後ター
ビン14に流入する蒸気流量(第5図のA点の流量)は負
荷に比例して増加する特性となる(第4図の(イ)のA
線)が、火炉水壁3を通過する流体流量(第5図のC点
の流量)はある負荷a%以下では、火炉水壁流動特性を
考慮し、ほぼ一定の規定流量α1となるように再循環回
路を使って貯水タンク5からの水を循環させる循環運転
によって制御される。但し、一般にこの規定流量α
1は、火炉水壁3の通過流量と加熱器スプレー系統15の
注水流量との合計値によって抑えられるので、結果とし
て火炉水壁3の通過流量は第4図(ロ)の特性カーブC
に示す特性となる。ここで負荷a%における気水分離器
4への流入流体はバランス上全て飽和蒸気となり気水分
離器4から貯水タンク5へ落ちるドレン量が0となりこ
れより高い負荷では貯水タンク5、ボイラ再循環ポンプ
6を含む再循環路に再循環する飽和水(第5図のD点の
流量)はなく、火炉水壁を出た飽和蒸気はすべて気水分
離器4を経て一次過熱器9へ流入することとなり、貫流
運転となる(第4図の(ハ)のD線)。Regarding the operation control, Fig. 4 (a), (b), (c)
As shown in the characteristic diagram of FIG. 5, the steam flow rate (flow rate at point A in FIG. 5) flowing into the turbine 14 after the load operation at the start-up becomes a characteristic that increases in proportion to the load (( A) A
Line) is the flow rate of the point C of the fluid flow rate (FIG. 5 that passes through the furnace water wall 3) The following load a% that considers the furnace waterwall flow properties, so that substantially constant prescribed rate alpha 1 Is controlled by a circulation operation of circulating water from the water storage tank 5 using a recirculation circuit. However, in general, the specified flow rate α
1 is controlled by the total value of the flow rate of the furnace water wall 3 and the flow rate of the water injected into the heater spray system 15, and as a result, the flow rate of the furnace water wall 3 is reduced by the characteristic curve C shown in FIG.
The characteristics shown in FIG. Here, the fluid flowing into the steam-water separator 4 at the load a% becomes all saturated steam on balance, and the drain amount falling from the steam-water separator 4 to the water storage tank 5 becomes 0. At a load higher than this, the water storage tank 5 and the boiler recirculate. There is no saturated water (flow rate at point D in FIG. 5) recirculating in the recirculation path including the pump 6, and all the saturated steam that has exited the furnace water wall flows into the primary superheater 9 via the steam separator 4. That is, the flow-through operation is performed (the D line in (c) of FIG. 4).
このような運転を行うために従来より第3図に示すよ
うな制御回路が用いられてきた。Conventionally, a control circuit as shown in FIG. 3 has been used to perform such an operation.
すなわち、基本的には、火炉水壁3を通過する流量が
ボイラ入力要求に従った流量となるように、ボイラ入力
指令信号110と火炉通過給水流量信号112との差を減算器
114にてとり、PI制御器115を通して給水マスタ指令信号
116とし、給水ポンプ吐出流量を加減する。That is, basically, the difference between the boiler input command signal 110 and the furnace feed water flow rate signal 112 is subtracted so that the flow rate passing through the furnace water wall 3 becomes a flow rate according to the boiler input request.
At 114, feed water master command signal through PI controller 115
It is 116, and the feed water pump discharge flow rate is adjusted.
しかし、前述のように低負荷時に火炉水壁3通過流量
が規定値を割り込まないようにするため、信号発生器10
2、106および加算器109によってα1%=x1%+y%相
当の信号を発生させ、これとボイラ入力指令信号110と
の高い方を高選択器111で選択する構成となっている。However, as described above, in order to prevent the flow rate through the furnace water wall 3 from falling below a specified value at a low load, the signal generator 10 is used.
A signal corresponding to α 1 % = x 1 % + y% is generated by the adders 109, 106 and the adder 109, and the higher one of the signal and the boiler input command signal 110 is selected by the high selector 111.
なお、火炉通過給水流量信号112に過熱器スプレー流
量信号101を加算器113にて加算する構成によって前述の
火炉通過給水流量と過熱器スプレー流量との合計値をα
1%に制御する特性が得られるが、過熱器スプレー流量
が過渡的に過大となって火炉通過給水流量が思いがけず
低下するのを防止するため、過熱器スプレー流量信号10
1とy%相当の一定値信号(信号発生器102の出力)との
高い方を高選択器105で選択し、この信号とx1%相当で
ある信号発生器106からの信号とを加算器109により加算
する構成とする。The total value of the above-mentioned furnace passing water supply flow rate and the superheater spray flow rate is set to α by adding the superheater spray flow rate signal 101 to the furnace passing water supply flow rate signal 112 by the adder 113.
Although characteristic of controlling the 1% is obtained, since the superheater spray flow rate to prevent the furnace passing feed water flow becomes transitionally excessive drops unexpectedly, superheater spray flow rate signal 10
1 and y% equivalent to higher a fixed value signal (output of the signal generator 102) to select a high selector 105, an adder and a signal from the signal and x 1% is equivalent signal generator 106 It is configured to add by 109.
このような構成とし、α1%=x1%+y%の条件のも
とにx1、yを適切に決めることにより、過熱器スプレー
流量が思いがけず過大となり、y%を越える場合、高選
択器105では過熱器スプレー流量信号101側が選ばれるの
で、結局その場合は過熱器スプレー流量信号は火炉通過
給水流量の測定信号側と設定値側いずれにも加算された
ことになり、結果として火炉通過給水流量はx1%を下ま
わらないように制御される。With such a configuration, by appropriately determining x 1 and y under the condition of α 1 % = x 1 % + y%, the superheater spray flow becomes unexpectedly large, and if y% is exceeded, a high selection is made. In the heater 105, the superheater spray flow signal 101 side is selected.In that case, the superheater spray flow signal is eventually added to both the measurement signal side and the set value side of the furnace passing water supply flow rate. feedwater flow is controlled so as not turn down 1% x.
通常の起動ではこのように考慮されているが、ボイラ
再循環系統が使用できない場合の起動では、話が異なっ
てくる。This is taken into account in normal startup, but the story is different in startup when the boiler recirculation system cannot be used.
バーナからボイラ火炉に燃料を供給して燃焼させる場
合、最も強く過熱される火炉水壁部の伝熱管が過度に過
熱されるのを防止するため、その内部を流れるボイラ水
はボイラ全負荷時の25〜35%以上とする必要があり、ボ
イラ負荷と関係なく、このボイラ水の流通を確保するた
め、貫流ボイラに、前記した再循環回路が設けられ、起
動、停止を含めてボイラの低負荷運転時には再循環回路
が使用されてきた。このように大事な再循環回路の主力
機器である再循環ポンプは予備機を含めて2台設置され
ていたが、予備機の設置をやめ、その代わり再循環ポン
プが故障したり再循環流量調整弁が故障した場合も、再
循環回路を使用することなくボイラの起動、停止を行う
必要がでてきた。When fuel is supplied to the boiler furnace from the burner and burned, the boiler water flowing inside the furnace water wall at the time of full boiler load is used to prevent the heat transfer tubes on the furnace water wall that is most strongly heated from being excessively overheated. In order to secure the flow of boiler water regardless of the boiler load, the once-through boiler is provided with the above-mentioned recirculation circuit. During operation, recirculation circuits have been used. In this way, two recirculation pumps, which are the main equipment of the important recirculation circuit, were installed, including the spare unit. However, the installation of the spare unit was stopped. Instead, the recirculation pump failed or the recirculation flow rate was adjusted. When a valve fails, it is necessary to start and stop the boiler without using a recirculation circuit.
つまり、ボイラ再循環系統が使用できない場合ボイラ
再循環系統を使った熱回収ができず、その結果節炭器2
への給水温度は、低負荷で50〜70℃と低く、熱回収を行
う場合(運転状態によるが約250℃前後)と比べて著し
く低い。In other words, when the boiler recirculation system cannot be used, heat recovery using the boiler recirculation system cannot be performed.
The water supply temperature to the water is as low as 50 to 70 ° C with a low load, which is significantly lower than when heat recovery is performed (about 250 ° C depending on the operating conditions).
このような状況での問題点として、 (1)気水分離器4への流体のかわき度(蒸気含有率)
が上がりにくく、その結果蒸気が発生しにくい。Problems in such a situation are as follows: (1) Degree of dryness of fluid to steam separator 4 (steam content)
Is hard to rise, and as a result, steam is hardly generated.
(2)(1)の解決策として燃料流量を増加することが
考えられるが、燃焼ガス温度、流量が増加する結果、そ
の場合副作用としてボイラ火炉後流域に設けた過熱器や
再熱器の蒸気温度が過上昇する、 などがあげられる。(2) As a solution to (1), it is conceivable to increase the fuel flow rate. However, as a result of an increase in the combustion gas temperature and flow rate, as a side effect in this case, the steam of the superheater or reheater provided in the downstream region of the boiler furnace has Temperature rises excessively, etc.
これの対策として少しでも蒸気が発生しやすくするた
めに、火炉水壁3を通過する給水流量をできるだけ少な
めにして運転する方法が有効である。As a countermeasure against this, it is effective to operate the system with the flow rate of the supplied water passing through the furnace water wall 3 as small as possible in order to easily generate steam as much as possible.
ところが第3図に示すように従来方式の制御回路で
は、火炉水壁3を通過する給水流量の設定値は、通常起
動方式に適する値に予め決められており、ボイラ再循環
系統不使用時に適するよう上記の給水流量をできるだけ
少なめにする運転にそのままでは対応できない。However, as shown in FIG. 3, in the conventional control circuit, the set value of the feedwater flow rate passing through the furnace water wall 3 is predetermined to a value suitable for the normal start-up method, and is suitable when the boiler recirculation system is not used. As described above, it is impossible to cope with the above operation in which the flow rate of the supplied water is made as small as possible.
上記従来技術は、前述のごとく、ボイラ再循環系統不
使用時に適する火炉水壁通過流量低域運転を行うための
配慮が制御回路上行われていない点で問題があった。As described above, the prior art described above has a problem in that no consideration is given to the control circuit for performing low-range operation of the flow rate through the furnace water wall, which is suitable when the boiler recirculation system is not used.
本発明の目的は、上記の問題点を正し、ボイラ再循環
系統不使用時に、その条件を感知して自動的に火炉水壁
通過流量低減運転に移行する貫流ボイラの制御方法およ
び制御装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to correct the above problem, and to provide a control method and a control device for a once-through boiler which, when the boiler recirculation system is not used, senses the condition and automatically shifts to a furnace water wall passage flow reduction operation. To provide.
上記目的は、ボイラの起動運転または停止運転時に、
ボイラ給水を節炭器および火炉水壁部で加熱し、加熱さ
れた火炉水壁部出口流体を気水分離器で蒸気と水に分離
し、蒸気は過熱器に供給して加熱し、水は貯水タンクに
貯水したのちボイラ再循環ポンプ、ボイラ再循環流量調
整弁を含む再循環系統を経て火炉水壁部に再循環させる
ようになした貫流ボイラの制御方法において、ボイラ再
循環系統が使用できない異常時には、火炉水壁部伝熱管
温度が正常であることを条件として、火炉水壁部通過給
水量を通常運転時より減少させるとともに、前記気水分
離器を経て火炉水壁部に再循環する循環水を前記ボイラ
再循環ポンプの上流側から復水系統を経て前記火炉水壁
部に再循環するようにしたことを特徴とする貫流ボイラ
の制御方法、 およびボイラの起動運転または停止運転時に火炉水壁
部出口流体中の水分をボイラ再循環ポンプとボイラ再循
環流量調節弁を含むボイラ再循環系統を経て火炉水壁部
へ再循環するようになした貫流ボイラの制御装置におい
て、ボイラが起動、停止中で、かつボイラ再循環系統が
使用不可の状態で、さらに火炉水壁部メタル温度に異常
がないことを条件として火炉水壁部通過給水量低減条件
成立の信号を出すロジック回路と、該ロジック回路の出
力信号により火炉水壁部通過給水量設定値を通常時より
低い値に設定する手段とを備えたことを特徴とする貫流
ボイラの制御装置により達成される。The above purpose is for starting or stopping the boiler,
The boiler feed water is heated by the economizer and the furnace water wall, the heated furnace water wall outlet fluid is separated into steam and water by a steam separator, the steam is supplied to a superheater and heated, and the water is The boiler recirculation system cannot be used in a once-through boiler control method in which water is stored in the water storage tank and then recirculated to the furnace water wall through a recirculation system including a boiler recirculation pump and a boiler recirculation flow rate control valve. In the event of an abnormality, the furnace water wall portion heat transfer tube temperature is normal, and the furnace water wall portion passing water supply amount is reduced from that during normal operation, and recirculated to the furnace water wall portion through the steam separator. A method of controlling a once-through boiler, wherein circulating water is recirculated from the upstream side of the boiler recirculation pump to the furnace water wall through a condensing system, and a furnace for starting or stopping the boiler Water wall exit In a once-through boiler control device that recirculates water in the fluid to the furnace water wall through a boiler recirculation system including a boiler recirculation pump and a boiler recirculation flow control valve, the boiler is being started and stopped. A logic circuit that outputs a signal indicating that the furnace water wall passage water supply amount reduction condition is satisfied on condition that the boiler recirculation system is unusable and that there is no abnormality in the furnace water wall metal temperature; and Means for setting the set value of the amount of water supplied to the furnace water wall portion to a value lower than the normal value by an output signal.
ボイラ再循環系統異常かつ火炉水壁温度異常でない条
件のロジック演算を行い、条件成立の場合は、火炉通過
給水流量制御系における火炉通過給水流量設定値選択ス
イッチを自動的に通常側から低減側へ切換えて火炉通過
流量低域運転を行う。これにより、蒸発量を確認しにく
いボイラ再循環系統不使用時でも、ボイラバランスとし
て蒸発量が相対的に出やすい状態とすることができ、ボ
イラ缶水循環系統が使えない場合でも、プラントを起動
/停止可能とすることができる。あるいは安定的に起動
/停止することができる。Performs a logic operation on the condition that the boiler recirculation system is not abnormal and the furnace water wall temperature is not abnormal, and if the condition is satisfied, automatically switches the furnace passage feedwater flow rate set value selection switch in the furnace passage feedwater flow control system from the normal side to the reduction side. Switch to furnace low flow rate operation. As a result, even when the boiler recirculation system, in which it is difficult to check the evaporation amount, is not used, it is possible to make the evaporation amount relatively easy to obtain as a boiler balance. It can be made stoppable. Alternatively, it can be started / stopped stably.
また、循環/貫流切換負荷変更機構も上記ロジック演
算の条件成立の場合に、切換スイッチによる設定変更を
行う。これにより、ボイラの循環運転中と貫流運転中と
で制御方法が大きく異なる制御モードの移行を適確に検
知することができ、安定な起動停止が実現できる。Further, the circulation / through flow switching load changing mechanism also changes the setting by the changeover switch when the condition of the logic operation is satisfied. Thereby, it is possible to accurately detect the transition of the control mode in which the control method is largely different between the circulation operation and the once-through operation of the boiler, and to realize a stable start-stop.
本発明の実施例において、ボイラ本体のハード構成
は、従来技術の第5図に示したものとほぼ同じである
が、一つ違う点は、起動時のボイラ水の循環は火炉水壁
3を出たのち気水分離器に入り、分離された水は貯水タ
ンクに入り、缶水ブロー弁8を経て復水器16に行き、こ
こから給水ポンプを経てボイラの節炭器2に循環させ
る。In the embodiment of the present invention, the hardware configuration of the boiler main body is almost the same as that shown in FIG. 5 of the prior art, except for one point. After leaving, it enters the steam separator, the separated water enters the water storage tank, passes through the still water blow valve 8 to the condenser 16, from where it is circulated to the boiler's economizer 2 via the feedwater pump.
運転方法を第4図の(ニ)、(ホ)、(ヘ)に示す。 The operation method is shown in (d), (e), and (f) of FIG.
第4図(へ)に示すようにボイラ再循環ポンプ6の出
口点であるD点の流量はボイラ再循環系統を使用しない
ため0となっている。なお、第4図(ニ)に示すように
第5図のタービン入口のA点および一次過熱器入口のB
点における流量を表示するA、Bで表示した流量は通常
運転の場合と変わらない。As shown in FIG. 4 (F), the flow rate at point D, which is the outlet point of the boiler recirculation pump 6, is 0 because the boiler recirculation system is not used. As shown in FIG. 4 (d), the point A at the turbine inlet and the point B at the inlet of the primary superheater in FIG.
The flow rates indicated by A and B indicating the flow rates at the points are the same as those in the normal operation.
注目すべきは、火炉水壁3の通過給水流量であり、第
4図(ホ)の特性線Cで示すように通常運転時(一点鎖
線で示した)に比べ低減した設定値とし、しかも過熱器
スプレー流量の増減にかかわらず一定(α2)とする特
性(破線で示した)である。ここで同図の斜線部57が通
常の循環運転時と本発明での低域設定時との差であり、
γは火炉通過給水流量を低減することによって循環運転
と貫流運転の切換負荷が通常時に比べて低負荷側へずれ
たことを示すものである。It should be noted that the flow rate of the feed water passing through the furnace water wall 3 is set at a value lower than that during normal operation (indicated by a dashed line) as shown by the characteristic line C in FIG. This is a characteristic (shown by a broken line) that is constant (α 2 ) regardless of the increase or decrease of the spray flow rate. Here, the hatched portion 57 in the figure is the difference between the normal circulation operation and the low frequency setting in the present invention,
γ indicates that the switching load between the circulation operation and the once-through operation is shifted to a lower load side as compared with the normal operation by reducing the flow rate of the feedwater passing through the furnace.
このような運転を行うために本発明では第1図および
第2図に示す制御回路とする。In order to perform such an operation, the control circuit shown in FIGS. 1 and 2 is used in the present invention.
従来技術と制御回路上異なる点は第1図では、符号10
3、107および120で示す信号発生器を追加したこと、符
号104、108および124で示す切換スイッチを追加したこ
とと、121の減算器を追加したことおよび第2図に示す
ロジック演算回路を追加したことである。The difference between the prior art and the control circuit is that in FIG.
The addition of signal generators indicated by 3, 107 and 120, the addition of changeover switches indicated by reference numerals 104, 108 and 124, the addition of a subtractor 121, and the addition of a logic operation circuit shown in FIG. It was done.
第1図において、給水ポンプ流量指令116を得るため
の、過熱器スプレー流量信号101および火炉通過給水流
量信号112を用いた一連の演算方法は、従来技術による
制御回路の説明で述べたのと同様である。In FIG. 1, a series of calculation methods using a superheater spray flow rate signal 101 and a furnace passing feed water flow rate signal 112 to obtain a feed water pump flow rate command 116 are similar to those described in the description of the control circuit according to the prior art. It is.
第2図は火炉通過給水流量低減条件成立のためのロジ
ック制御回路の実施例を示す。FIG. 2 shows an embodiment of a logic control circuit for satisfying the condition for reducing the flow rate of feed water through the furnace.
(イ)ボイラ再循環系統異常(130)により同系統が使
用不可の状態で、かつ(ロ)ボイラを起動、停止中(13
1)(ボイラを起動しつつあるとき、停止しつつあると
き、あるいはこれから起動もしくは停止しようとすると
きの意)でかつ(ハ)水壁管メタル温度関係に異常がな
い条件のAND条件で成立させる。そのため(イ)と
(ロ)のAND条件をAND回路134でとり、その信号をさら
にAND回路137でとる。(B) Boiler recirculation system error (130) The system is unusable due to an abnormality (130), and (b) the boiler is starting and stopping (13)
1) (meaning that the boiler is starting, stopping, or about to start or stop in the future), and (c) the AND condition is satisfied when there is no abnormality in the water wall pipe metal temperature relationship. Let it. Therefore, the AND condition of (a) and (b) is taken by the AND circuit 134, and the signal is further taken by the AND circuit 137.
なお、(ハ)の条件については、水壁部メタル温度の
異常の有無に注意をはらい、異常のある状態では、流量
低減運転は行われないようにする。Regarding the condition (c), attention is paid to the presence or absence of an abnormality in the water wall metal temperature, and the flow rate reduction operation is not performed in an abnormal state.
よって(ハ)の条件のための具体的回路では、(ホ)
水壁メタル温度が規定値以上(132)、または(ヘ)水
壁メタル温度分布に異常なアンバランス(133)が発生
のいずれの条件も成立していないとする条件のOR回路13
5でとり、その否定をNOT回路136でとることにより信号
を得る。Therefore, in the specific circuit for the condition (c), (e)
OR circuit 13 under the condition that none of the conditions of the water wall metal temperature is higher than the specified value (132) or (f) abnormal unbalance (133) occurs in the water wall metal temperature distribution
The signal is obtained by taking the result in step 5 and taking the negation in the NOT circuit 136.
第2図のロジック演算回路により演算された火炉通過
給水流量低減条件成立により第1図における切換スイッ
チ104が火炉通過給水流量低減指令により切換えられ、
0%信号を出す信号発生器103側が選ばれるため、高選
択器105は無意味となり、過熱器スプレー流量信号101
は、高選択器111でボイラ入力指令信号側110が選ばれる
程の高負荷にならない限り、すなわち、ボイラ循環運転
中では本フィードバック制御系の設定値側信号にそのま
ま加算されることになる。The changeover switch 104 in FIG. 1 is switched by the furnace passage water supply flow rate reduction command when the furnace passage water supply flow rate reduction condition calculated by the logic operation circuit of FIG. 2 is satisfied.
Since the signal generator 103 which outputs the 0% signal is selected, the high selector 105 becomes meaningless and the superheater spray flow signal 101 is selected.
Is added to the set value side signal of the present feedback control system as long as the load is not high enough to select the boiler input command signal side 110 by the high selector 111, that is, during the boiler circulation operation.
一方、過熱器スプレー流量信号101は、本フィードバ
ック制御系のプロセス信号112側にも加算器113によって
加算されており、これら設定値信号とプロセス信号は、
減算器114にて減算されているため、結果として過熱器
スプレー流量信号101の成分は差し引き0となり制御回
路上何の意味ももたせない。On the other hand, the superheater spray flow rate signal 101 is also added to the process signal 112 side of the present feedback control system by the adder 113, and these set value signal and process signal are
Since the subtraction is performed by the subtractor 114, the component of the superheater spray flow rate signal 101 is deducted 0 as a result, and has no meaning on the control circuit.
よって火炉通過給水流量低減条件が成立するとボイラ
循環運転中は、過熱器スプレー流量信号101の増減にか
かわらず火炉通過給水流量を単に一定値X2%の値に制御
することを意味する回路となり、これにより静特性上は
火炉通過給水流量が一定となる(ボイラ入力指令信号は
この場合小さくて高選択器111で選択されない)。Therefore, when the furnace feed water flow rate reduction condition is satisfied, the circuit means that the furnace feed water flow is simply controlled to a constant value X 2 % regardless of the increase or decrease of the superheater spray flow rate signal 101 during the boiler circulation operation. As a result, the flow rate of the feed water passing through the furnace becomes constant on the static characteristics (the boiler input command signal is small in this case and is not selected by the high selector 111).
また、火炉通過給水流量低減条件成立により切換スイ
ッチ108が切換えられ、x2%(<x1%)なる火炉通過最
低水流量設定信号が選ばれ、x2%<x1%なので、起動時
のボイラ循環運転中(気水分離器4で分離されたボイラ
水が貯水タンク5、缶水ブロー弁8を経て、復水器16に
入り、ここからボイラへ循環される運転のことであり、
再循環ポンプ6、ボイラ再循環流量調節弁7を循環する
ボイラ再循環運転とは異なる)は、通常の起動停止時の
給水流量設定値(x1%)より低い設定値(x2%)にて運
転される。Further, the changeover switch 108 is switched by the furnace passing through the feed water flow rate reduction condition is satisfied, x 2% (<x 1 %) consisting furnace passing minimum water flow rate setting signal is selected, x 2% <x 1% because, at the time of startup During the boiler circulation operation (operation in which boiler water separated by the steam separator 4 enters the condenser 16 via the water storage tank 5 and the still water blow valve 8 and is circulated from the condenser 16 to the boiler.
Recirculation pump 6, differs from the boiler recirculation operation to circulate the boiler recirculation flow rate control valve 7), the normal start-stop time of the feed water flow rate set value (x 1%) lower than the setting value (x 2%) Be driven.
従って結果的に火炉通過流量は、第4図の(ホ)のC
の特性線になり、従来技術による流量特性線に比べ斜線
部に相当する流量が低減され、本発明の目的である蒸発
量の増加に寄与することとなる。Therefore, as a result, the flow rate through the furnace becomes C in FIG.
The flow rate corresponding to the hatched portion is reduced as compared with the flow rate characteristic line according to the related art, which contributes to the increase in the amount of evaporation which is the object of the present invention.
さらに、火炉通過給水流量が低減されたことで、火炉
水壁出口で、伝熱管内ボイラ水が全部飽和蒸気になり、
気水分離器で分離された水を缶水ブロー弁8を経てター
ビン用復水器へ循環させる、循環運転から貫流運転(火
炉水壁3を通過した水がすべて飽和蒸気となり気水分離
器4を経て全部一次過熱器9に流れる運転をいう)への
運転モード切換負荷(ウェット/ドライモード切換負
荷)が通常より低下するが、この切換負荷点のずれに対
応するため、火炉通過給水流量低減条件成立により第1
図の切換スイッチ124が切換えられ、γ%>0なる信号
が加算器121により、発電機出力信号118に加算され、こ
の信号がハイ/ローモニタ122および123にてモニタされ
ることにより、ウェット/ドライモード切換負荷が通常
に比べて低い負荷にて検知されることとなる。ハイ/ロ
ーモニタとは、ある設定値に対して大か小かによりスイ
ッチが切換わりモニタするものである。発電機出力にγ
%上乗せした値と基準設定値との比較を行うことになる
ので、実発電機出力が通常のボイラ再循環運転のときに
比較してγ%低い負荷のところで切換ることになる。Furthermore, since the flow rate of the feed water through the furnace has been reduced, the boiler water in the heat transfer tubes has become saturated steam at the outlet of the furnace water wall,
The water separated by the steam separator is circulated through the still water blow valve 8 to the condenser for the turbine. From the circulation operation to the once-through operation (all the water passing through the furnace water wall 3 becomes saturated steam and the steam-water separator 4 The operation mode switching load (wet / dry mode switching load) to the entire superheater 9 after the operation is lower than usual, but in order to cope with the shift of the switching load point, the flow rate of the feed water through the furnace is reduced. First due to satisfaction of condition
The changeover switch 124 in the figure is switched, and the signal of γ%> 0 is added to the generator output signal 118 by the adder 121, and this signal is monitored by the high / low monitors 122 and 123, so that the wet / dry state is obtained. The mode switching load is detected with a load lower than usual. In the high / low monitor, a switch is switched and monitored depending on whether a certain set value is large or small. Γ for generator output
Since the value added by% and the reference set value are compared, the switching is performed at a load where the actual generator output is γ% lower than that in the normal boiler recirculation operation.
このような火炉水壁部通過給水量低減運転中に、火炉
水壁部伝熱管温度が所定値よりも上昇した際には、前記
火炉水壁部通過給水量を通常運転時の値に回復させるこ
とが好ましい。During the furnace water wall passing water supply reduction operation, when the furnace water wall heat transfer tube temperature rises above a predetermined value, the furnace water wall passing water supply amount is restored to the value at the time of normal operation. Is preferred.
本発明によれば貫流ボイラのボイラ再循環系統が使用
できないという状況下であっても、それを検知し、自動
的にボイラへの給水流量の設定等が適切な値に設定さ
れ、安定な起動、停止などの運転を行うことができる。
したがって、再循環ポンプも従来のように予備機を設置
しなくてよいようになった。According to the present invention, even in a situation where the boiler recirculation system of the once-through boiler cannot be used, this is detected, and the setting of the water supply flow rate to the boiler is automatically set to an appropriate value, and the stable start-up is performed. And operation such as stopping.
Therefore, the recirculation pump does not need to be provided with a spare machine as in the conventional case.
第1図は本発明になる貫流ボイラ制御装置の実施例図、
第2図は本発明になる貫流ボイラ制御装置のロジック制
御回路実施例図、第3図は従来技術による貫流ボイラの
制御装置系統図、第4図は本発明と従来技術におけるボ
イラ各部流量特性の比較図、第5図はボイラ再循環系統
を有する貫流ボイラの系統図である。 1……起動バイパス系統、2……節炭器、3……火炉水
壁、4……気水分離器、5……貯水タンク、6……ボイ
ラ再循環ポンプ、7……ボイラ再循環流量調節弁、8…
…缶水ブロー弁、9……一次過熱器、10……第1段過熱
器スプレー、11……二次過熱器、12……第2段過熱器ス
プレー、13……三次過熱器、14……蒸気タービン、16…
…復水器。FIG. 1 is a diagram showing an embodiment of a once-through boiler control device according to the present invention,
FIG. 2 is a diagram of an embodiment of a logic control circuit of a once-through boiler control device according to the present invention, FIG. 3 is a system diagram of a control device of a once-through boiler according to the prior art, and FIG. FIG. 5 is a system diagram of a once-through boiler having a boiler recirculation system. 1 Start-up bypass system 2 ... Economizer 3 ... Furnace water wall 4 ... Steam separator 5 ... Water storage tank 6 ... Boiler recirculation pump 7 ... Boiler recirculation flow Control valve, 8 ...
... Canned water blow valve, 9 ... Primary superheater, 10 ... First stage superheater spray, 11 ... Secondary superheater, 12 ... Second stage superheater spray, 13 ... Tertiary superheater, 14 ... … Steam turbine, 16…
... condenser.
Claims (4)
イラ給水を節炭器および火炉水壁部で加熱し、加熱され
た火炉水壁部出口流体を気水分離器で蒸気と水に分離
し、蒸気は過熱器に供給して加熱し、水は貯水タンクに
貯水したのちボイラ再循環ポンプ、ボイラ再循環流量調
整弁を含む再循環系統を経て火炉水壁部に再循環させる
ようにした貫流ボイラの制御方法において、ボイラ再循
環系統が使用できない異常時には、火炉水壁部伝熱管温
度が正常であることを条件として、火炉水壁部通過給水
量を通常運転時より減少させるとともに、前記気水分離
器を経て火炉水壁部に再循環する循環水を前記ボイラ再
循環ポンプの上流側から復水系統を経て前記火炉水壁部
に再循環するようにしたことを特徴とする貫流ボイラの
制御方法。When a boiler is started or stopped, boiler feed water is heated by a economizer and a furnace water wall, and the heated furnace water wall outlet fluid is separated into steam and water by a steam-water separator. The steam is supplied to the superheater to be heated, and the water is stored in the water storage tank and then recirculated to the furnace water wall through a recirculation system including a boiler recirculation pump and a boiler recirculation flow control valve. In the boiler control method, when the boiler recirculation system cannot be used, the amount of water passing through the furnace water wall is reduced from that during normal operation on condition that the temperature of the heat transfer tube of the furnace water wall is normal. A once-through boiler, characterized in that circulating water that is recirculated to the furnace water wall via a water separator is recirculated from the upstream side of the boiler recirculation pump to the furnace water wall via a condensing system. Control method.
たときに、火炉水壁部通過給水量を通常運転時の値に回
復させることを特徴とする請求項(1)記載の貫流ボイ
ラの制御方法。2. The once-through flow according to claim 1, wherein when the temperature of the heat transfer pipe of the furnace water wall rises above a predetermined value, the amount of water supplied through the furnace water wall is restored to a value during normal operation. Boiler control method.
水壁部出口流体中の水分をボイラ再循環ポンプとボイラ
再循環流量調節弁を含むボイラ再循環系統を経て火炉水
壁部へ再循環するようにした貫流ボイラの制御装置にお
いて、ボイラが起動、停止中で、かつボイラ再循環系統
が使用不可の状態で、さらに火炉水壁部メタル温度に異
常がないことを条件として火炉水壁部通過給水量低減条
件成立の信号を出すロジック回路と、該ロジック回路の
出力信号により火炉水壁部通過給水量設定値を通常時よ
り低い値に設定する手段とを備えたことを特徴とする貫
流ボイラの制御装置。3. The water in the furnace water wall outlet fluid is recirculated to the furnace water wall through a boiler recirculation system including a boiler recirculation pump and a boiler recirculation flow rate control valve when the boiler is started or stopped. In the once-through boiler control device, the boiler is being started and stopped, the boiler recirculation system is unusable, and the furnace water wall metal temperature does not have any abnormality. A once-through boiler, comprising: a logic circuit that outputs a signal indicating that a water supply amount reduction condition is satisfied; and a unit that sets a set value of the water supply amount passing through a furnace water wall to a value lower than a normal time based on an output signal of the logic circuit. Control device.
条件が成立したことを条件に、循環運転から貫流運転へ
の運転モード切換負荷の設定を変更する手段を有するこ
とを特徴とする請求項3に記載の貫流ボイラの制御装
置。4. The apparatus according to claim 3, further comprising means for changing a setting of an operation mode switching load from circulating operation to once-through operation on condition that a condition of a logic operation in said logic circuit is satisfied. Control device for once-through boiler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13318490A JP2880558B2 (en) | 1990-05-23 | 1990-05-23 | Control method of once-through boiler and control device of once-through boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13318490A JP2880558B2 (en) | 1990-05-23 | 1990-05-23 | Control method of once-through boiler and control device of once-through boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0428902A JPH0428902A (en) | 1992-01-31 |
JP2880558B2 true JP2880558B2 (en) | 1999-04-12 |
Family
ID=15098658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13318490A Expired - Fee Related JP2880558B2 (en) | 1990-05-23 | 1990-05-23 | Control method of once-through boiler and control device of once-through boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2880558B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013007533A (en) * | 2011-06-24 | 2013-01-10 | Mitsubishi Heavy Ind Ltd | Control method of once-through boiler and device therefor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113446591B (en) * | 2021-07-19 | 2023-09-19 | 西安热工研究院有限公司 | Logic control and method of high-energy water recovery system adapting to deep peak shaving |
CN113532798B (en) * | 2021-08-10 | 2024-08-06 | 西安热工研究院有限公司 | Calculation method for low-load minimum water supply flow of supercritical power station boiler |
CN114777099B (en) * | 2022-04-12 | 2024-02-23 | 江西江投能源技术研究有限公司 | Multi-parameter coupling type steam control method for blowpipe of once-through boiler |
-
1990
- 1990-05-23 JP JP13318490A patent/JP2880558B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013007533A (en) * | 2011-06-24 | 2013-01-10 | Mitsubishi Heavy Ind Ltd | Control method of once-through boiler and device therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH0428902A (en) | 1992-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7111525B2 (en) | Once-through heat recovery boiler and control system for once-through heat recovery boiler | |
US5048466A (en) | Supercritical pressure boiler with separator and recirculating pump for cycling service | |
JP2880558B2 (en) | Control method of once-through boiler and control device of once-through boiler | |
JP2001108201A (en) | Multiple pressure waste heat boiler | |
JP5818963B2 (en) | Method for operating once-through boiler and boiler configured to carry out this method | |
JP2011153799A (en) | Once-through exhaust heat recovery boiler | |
JP2686259B2 (en) | Operating method of once-through boiler | |
JP2686260B2 (en) | Operating method of once-through boiler | |
JPH09236207A (en) | Boiler | |
JP2531801B2 (en) | Exhaust heat recovery heat exchanger controller | |
JPH07217802A (en) | Waste heat recovery boiler | |
JP2005121332A (en) | Double effect absorption type water cooling and heating machine with exhaust heat recovery device | |
US3240187A (en) | Method of starting once-through type boilers | |
JP2004190989A (en) | Start control device and method for variable pressure once-through boiler | |
JP2971597B2 (en) | Waste heat recovery boiler | |
JP3649511B2 (en) | Swelling occurrence prediction detection device and boiler water supply control device | |
JPH11325408A (en) | Operation control method of boiler | |
JPH02161109A (en) | Combined cycle system and its operating method, and condenser and its operating method | |
JP2519282B2 (en) | Deaerator water level control system | |
JPH07122485B2 (en) | Steamer steam prevention device for once-through thermal power generation boiler system | |
JPH06300209A (en) | Method of switching an operating condition of a variable pressure once-through boiler | |
CA1202218A (en) | Start-up system for once-through boilers | |
JPH10176804A (en) | Vertical waste heat recovery boiler and operating method thereof | |
JPH0331962B2 (en) | ||
JP2019132572A (en) | Pressure drain recovery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090129 |
|
LAPS | Cancellation because of no payment of annual fees |