JP2013007533A - Control method of once-through boiler and device therefor - Google Patents

Control method of once-through boiler and device therefor Download PDF

Info

Publication number
JP2013007533A
JP2013007533A JP2011140888A JP2011140888A JP2013007533A JP 2013007533 A JP2013007533 A JP 2013007533A JP 2011140888 A JP2011140888 A JP 2011140888A JP 2011140888 A JP2011140888 A JP 2011140888A JP 2013007533 A JP2013007533 A JP 2013007533A
Authority
JP
Japan
Prior art keywords
water
amount
boiler
steam
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011140888A
Other languages
Japanese (ja)
Other versions
JP5766527B2 (en
Inventor
Hiroyuki Nakahara
博之 中拂
Ryutaro Mori
龍太郎 森
Kazuhiro Domoto
和宏 堂本
Yoshitoshi Yamazaki
義倫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011140888A priority Critical patent/JP5766527B2/en
Publication of JP2013007533A publication Critical patent/JP2013007533A/en
Application granted granted Critical
Publication of JP5766527B2 publication Critical patent/JP5766527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable improvement of thermal efficiency and reduction of equipment cost and power cost by decreasing an amount of circulating water while capable of maintaining integrity of a furnace wall in a control method of the once-through boiler and a device therefor.SOLUTION: The once-through boiler producing superheated steam which is generated by a heat exchange with an inner heat source by supplying water to a heat transfer tube 53 in boiler 10 includes: a water supply pump 52 for supplying water to the heat transfer tube 53; and a control device 67 for adjusting water supply to the heat transfer tube 53 by the water supply pump 52 based on quality of the steam.

Description

本発明は、管により構成されて水を一端部から強制的に循環給水し、順次加熱と蒸発を繰り返し、他端部から過熱蒸気を取り出す貫流ボイラにおいて、その給水量を調整可能とする貫流ボイラの制御方法及び装置に関するものである。   The present invention relates to a once-through boiler that is configured by a pipe and forcibly circulates and supplies water from one end, sequentially repeats heating and evaporation, and takes out superheated steam from the other end. The present invention relates to a control method and apparatus.

貫流ボイラは、火炉の壁部に多数の伝熱管を配置し、この伝熱管に給水を行うと共に、バーナにより火炉内部に火炎を生成し、伝熱管内の水を火炎により加熱することで蒸気を生成し、この過熱蒸気を取り出すものであり、この過熱蒸気を、例えば、蒸気タービンに供給して発電を行っている。   In the once-through boiler, a large number of heat transfer tubes are arranged on the wall of the furnace, water is supplied to the heat transfer tubes, a flame is generated inside the furnace by a burner, and steam is heated by heating the water in the heat transfer tubes by the flame. The superheated steam is generated and the superheated steam is taken out, and the superheated steam is supplied to, for example, a steam turbine to generate power.

このような貫流ボイラでは、通常、給水ポンプにより所定量の水をボイラの伝熱管に供給すると、この水はボイラにて加熱されることで全量が蒸気となり、過熱蒸気として取り出される。しかし、ボイラの起動直後など、ボイラにおける加熱量が低いときには、ボイラにより全量の水を蒸気とすることができず、気水分離器で分離された水は、給水ラインに戻される。この場合、気水分離器で分離された水を給水ラインに戻すと、ボイラで加熱した水の持つ熱量を捨てることとなり、熱効率が良くない。また、気水分離器で分離された水を給水ラインに戻すには、別途ポンプが必要となり、設備コスト及び動力コストが上昇してしまう。そのため、ボイラの加熱量に対応した給水量とすることが望ましい。   In such a once-through boiler, usually, when a predetermined amount of water is supplied to the heat transfer pipe of the boiler by a feed water pump, the water is heated by the boiler, so that the whole amount becomes steam and is taken out as superheated steam. However, when the amount of heating in the boiler is low, such as immediately after the startup of the boiler, the entire amount of water cannot be converted into steam by the boiler, and the water separated by the steam separator is returned to the water supply line. In this case, when the water separated by the steam separator is returned to the water supply line, the heat amount of the water heated by the boiler is discarded, and the thermal efficiency is not good. Moreover, in order to return the water separated by the steam separator to the water supply line, a separate pump is required, resulting in an increase in equipment cost and power cost. Therefore, it is desirable to set the amount of water supply corresponding to the heating amount of the boiler.

このような従来の貫流ボイラの制御方法としては、下記特許文献1に記載されたものがある。この特許文献1に記載された貫流ボイラの制御方法及び制御装置は、ボイラの起動運転または停止運転時に、ボイラ給水を節炭器及び火炉水壁部で加熱し、加熱された火炉水壁部出口流体を気水分離器で蒸気と水に分離し、蒸気を過熱器に供給して加熱し、水を貯水タンクに貯水したのちに再循環系統により火炉水壁部に再循環させるように構成し、ボイラ再循環系統が使用できない異常時に、火炉水壁部伝熱管温度が正常であることを条件として、火炉水壁部通過給水量を通常運転時より減少させると共に、循環水をボイラ再循環ポンプの上流側から復水系統を経て火炉水壁部に再循環するものである。   As such a conventional once-through boiler control method, there is one described in Patent Document 1 below. The control method and control device for a once-through boiler described in Patent Document 1 are configured to heat a boiler feed water at a economizer and a furnace water wall at the start-up operation or stop operation of the boiler, and the heated furnace water wall outlet The fluid is separated into steam and water with a steam separator, and the steam is supplied to the superheater and heated.After the water is stored in the water storage tank, it is recirculated to the furnace water wall by the recirculation system. When the boiler recirculation system cannot be used and the furnace water wall heat transfer tube temperature is normal, the water supply through the furnace water wall is reduced from that during normal operation and the circulating water is supplied to the boiler recirculation pump. It is recirculated from the upstream side to the furnace water wall through the condensate system.

特許第2880558号公報Japanese Patent No. 2880558

上述した従来の貫流ボイラの制御方法及び制御装置には、ボイラ再循環系統が使用できない異常時に、火炉水壁部伝熱管温度が正常であることを条件として、火炉水壁部通過給水量を通常運転時より減少させることが記載されている。ところが、ボイラ(火炉)の伝熱管(水壁部)への給水量を減少させることで、ボイラの加熱量に対応した給水量とすることが望ましいが、ボイラ(伝熱管)へある程度の給水量を確保しないと、炉壁の健全性を維持することが困難となる。即ち、ボイラ(伝熱管)への給水量を少なくすると、伝熱管内の水の沸騰状態が核沸騰から膜沸騰に遷移し、それにより伝熱管のメタル温度が上昇してしまう。水が核沸騰から核沸騰限界(DNB:Departure from nucleate boiling)点を越えて膜沸騰に遷移させないような流量条件は、伝熱管内の圧力や熱流束により異なり、最適条件を設定することは困難なものとなっている。   In the conventional once-through boiler control method and control device described above, the furnace water wall passage water supply amount is normally set on condition that the furnace water wall heat transfer tube temperature is normal when the boiler recirculation system cannot be used. It is described that it is reduced from the time of operation. However, it is desirable to reduce the amount of water supplied to the heat transfer tube (water wall) of the boiler (furnace), so that the amount of water supplied corresponds to the amount of heating of the boiler. However, a certain amount of water is supplied to the boiler (heat transfer tube). Without ensuring, it becomes difficult to maintain the soundness of the furnace wall. That is, if the amount of water supplied to the boiler (heat transfer tube) is reduced, the boiling state of the water in the heat transfer tube transitions from nucleate boiling to film boiling, thereby increasing the metal temperature of the heat transfer tube. It is difficult to set the optimum conditions for the flow rate that prevents water from transitioning from nucleate boiling to nucleate boiling limit (DNB) to film boiling beyond the boiling point, depending on the pressure and heat flux in the heat transfer tube. It has become a thing.

本発明は、上述した課題を解決するものであり、循環水量を減少することで熱効率の向上、設備コスト及び動力コストの低減を可能とすると共に炉壁の健全性を維持可能とする貫流ボイラの制御方法及び装置を提供することを目的とする。   The present invention solves the above-described problems, and it is possible to improve the thermal efficiency, reduce the equipment cost and the power cost by reducing the amount of circulating water and to maintain the soundness of the furnace wall. It is an object to provide a control method and apparatus.

上記の目的を達成するための本発明の貫流ボイラの制御方法は、ボイラの伝熱管へ給水を行って内部の熱源との熱交換により生成された過熱蒸気を取り出す貫流ボイラにおいて、前記伝熱管への給水量を蒸気のクオリティに基づいて調整する、ことを特徴とするものである。   In order to achieve the above object, a method for controlling a once-through boiler according to the present invention provides a method for controlling a once-through boiler in a once-through boiler that supplies water to a heat transfer tube of a boiler and takes out superheated steam generated by heat exchange with an internal heat source. The amount of water supplied is adjusted based on the quality of the steam.

従って、ボイラの伝熱管への給水量を蒸気のクオリティに基づいて調整するため、給水量の減少による核沸騰から膜沸騰への遷移を防止することができると共に、給水量の増加による再循環量の増加を防止することができ、給水量の最適条件を設定することで、循環水量を減少して熱効率の向上、設備コスト及び動力コストの低減を可能とすると共に、炉壁の健全性を維持可能とすることができる。   Therefore, the amount of water supplied to the heat transfer tubes of the boiler is adjusted based on the quality of the steam, so that the transition from nucleate boiling to film boiling due to a decrease in the amount of water supplied can be prevented, and the amount of recirculation caused by an increase in the amount of water supplied By setting the optimal conditions for the water supply volume, the circulating water volume can be reduced to improve thermal efficiency, reduce equipment costs and power costs, and maintain the integrity of the furnace wall Can be possible.

本発明の貫流ボイラの制御方法では、予め前記伝熱管内の水の核沸騰状態を維持可能なクオリティの上限値を設定し、このクオリティの上限値に対応する前記伝熱管への給水量の下限値を設定し、ボイラ起動時に、前記伝熱管への給水量をこの給水量の下限値に調整することを特徴としている。   In the once-through boiler control method of the present invention, an upper limit value of quality capable of maintaining the nucleate boiling state of water in the heat transfer tube is set in advance, and a lower limit of the amount of water supplied to the heat transfer tube corresponding to the upper limit value of the quality A value is set, and when the boiler is started, the amount of water supplied to the heat transfer tube is adjusted to a lower limit value of the amount of water supplied.

従って、ボイラ起動時に、伝熱管への給水量を、クオリティの上限値から求めた伝熱管への給水量の下限値に調整することで、給水量の減少による核沸騰から膜沸騰への遷移を防止することができると共に、給水量の増加による再循環量の増加を防止することができる。   Therefore, at the time of boiler startup, the transition from nucleate boiling to film boiling due to a decrease in the water supply amount is achieved by adjusting the water supply amount to the heat transfer tube to the lower limit value of the water supply amount obtained from the upper limit value of the quality. In addition to being able to prevent, an increase in the amount of recirculation due to an increase in the amount of water supply can be prevented.

本発明の貫流ボイラの制御方法では、前記伝熱管への給水量と生成された蒸気量と蒸気から分離されて給水側に戻される再循環水量の少なくとも2つに基づいて現在の蒸気のクオリティを算出することを特徴としている。   In the once-through boiler control method of the present invention, the current steam quality is determined based on at least two of the amount of water supplied to the heat transfer pipe, the amount of steam generated, and the amount of recirculated water separated from the steam and returned to the water supply side. It is characterized by calculating.

従って、伝熱管への給水量、蒸気量、再循環水量に基づいて容易に蒸気のクオリティを算出することができる。   Therefore, the quality of the steam can be easily calculated based on the amount of water supplied to the heat transfer tube, the amount of steam, and the amount of recirculated water.

また、本発明の貫流ボイラの制御装置は、ボイラの伝熱管へ給水を行って内部の熱源との熱交換により生成された過熱蒸気を取り出す貫流ボイラにおいて、前記伝熱管へ給水を行う給水ポンプと、蒸気のクオリティに基づいて前記給水ポンプによる前記伝熱管への給水量を調整するポンプ制御部と、を備えることを特徴とするものである。   Further, the control device for the once-through boiler of the present invention includes a feed water pump for supplying water to the heat transfer tube in the once-through boiler for supplying water to the heat transfer tube of the boiler and taking out superheated steam generated by heat exchange with an internal heat source. And a pump control unit that adjusts the amount of water supplied to the heat transfer pipe by the water supply pump based on the quality of the steam.

従って、ポンプ制御部は、蒸気のクオリティに基づいて給水ポンプによる伝熱管への給水量を調整するため、給水量の減少による核沸騰から膜沸騰への遷移を防止することができると共に、給水量の増加による再循環量の増加を防止することができ、給水量の最適条件を設定することで、循環水量を減少して熱効率の向上及び設備コストの低減を可能とすると共に、炉壁の健全性を維持可能とすることができる。   Therefore, since the pump control unit adjusts the amount of water supplied to the heat transfer pipe by the water supply pump based on the quality of the steam, it can prevent the transition from nucleate boiling to film boiling due to the decrease in the amount of water supplied, and the amount of water supplied Increase in the amount of recirculation due to an increase in the amount of water can be prevented, and by setting the optimum conditions for the amount of water supply, the amount of circulating water can be reduced to improve thermal efficiency and reduce equipment costs. Sex can be maintained.

本発明の貫流ボイラの制御装置では、前記ポンプ制御部は、予め前記伝熱管内の水の核沸騰状態を維持可能なクオリティの上限値を設定し、このクオリティの上限値に対応する前記伝熱管への給水量の下限値を設定し、ボイラ起動時に、前記伝熱管への給水量をこの給水量の下限値に調整することを特徴としている。   In the once-through boiler control apparatus according to the present invention, the pump control unit sets an upper limit value of quality that can maintain the nucleate boiling state of water in the heat transfer tube in advance, and the heat transfer tube corresponding to the upper limit value of the quality The lower limit value of the water supply amount is set, and when the boiler is started, the water supply amount to the heat transfer pipe is adjusted to the lower limit value of the water supply amount.

従って、ボイラ起動時に、伝熱管への給水量を、クオリティの上限値から求めた伝熱管への給水量の下限値に調整することで、給水量の減少による核沸騰から膜沸騰への遷移を防止することができると共に、給水量の増加による再循環量の増加を防止することができる。   Therefore, at the time of boiler startup, the transition from nucleate boiling to film boiling due to a decrease in the water supply amount is achieved by adjusting the water supply amount to the heat transfer tube to the lower limit value of the water supply amount obtained from the upper limit value of the quality. In addition to being able to prevent, an increase in the amount of recirculation due to an increase in the amount of water supply can be prevented.

本発明の貫流ボイラの制御装置では、前記伝熱管への給水量を計測する給水量センサと、蒸気から分離されて給水側に戻される再循環水量を計測する再循環水量センサとを設け、前記ポンプ制御部は、給水量と再循環水量に基づいて現在の蒸気のクオリティを算出することを特徴としている。   In the once-through boiler control device of the present invention, a feed water amount sensor for measuring the feed water amount to the heat transfer pipe, and a recirculation water amount sensor for measuring the recirculation water amount separated from the steam and returned to the feed water side are provided, The pump control unit is characterized in that the current steam quality is calculated based on the water supply amount and the recirculated water amount.

従って、給水量センサが計測した給水量と、再循環水量センサが計測した再循環水量に基づいて現在の蒸気のクオリティを算出することとなり、高精度で容易に蒸気のクオリティを算出することができる。   Therefore, the current steam quality is calculated based on the water supply amount measured by the water supply amount sensor and the recirculation water amount measured by the recirculation water amount sensor, and the steam quality can be easily calculated with high accuracy. .

本発明の貫流ボイラの制御装置では、前記ボイラにより加熱された蒸気を水分と蒸気とに分離する気水分離器と、該気水分離器により分離された水分を前記給水ポンプの下流側に戻す循環経路を設けることを特徴としている。   In the once-through boiler control apparatus according to the present invention, the steam-water separator that separates the steam heated by the boiler into moisture and steam, and the moisture separated by the steam-water separator is returned to the downstream side of the water supply pump. It is characterized by providing a circulation path.

従って、気水分離器により分離された水分を循環経路により給水ポンプの下流側に戻すことで、熱効率の低下を抑制することができる。   Therefore, the reduction | decrease in thermal efficiency can be suppressed by returning the water | moisture content isolate | separated by the steam separator to the downstream of a feed water pump by the circulation path.

本発明の貫流ボイラの制御方法及び装置によれば、伝熱管への給水量を蒸気のクオリティに基づいて調整するので、循環水量を減少することで熱効率の向上、設備コスト及び動力コストの低減を可能とすると共に、炉壁の健全性を維持可能とすることができる。   According to the control method and apparatus for the once-through boiler of the present invention, the amount of water supplied to the heat transfer pipe is adjusted based on the quality of the steam, so that the heat efficiency is improved by reducing the amount of circulating water, and the equipment cost and the power cost are reduced. It is possible to maintain the soundness of the furnace wall.

図1は、本発明の実施例1に係る貫流ボイラの制御装置を表す概略図である。FIG. 1 is a schematic diagram illustrating a once-through boiler control apparatus according to Embodiment 1 of the present invention. 図2は、蒸気クオリティに対する蒸気の質量速度を表すグラフである。FIG. 2 is a graph showing the vapor mass velocity versus vapor quality. 図3は、ボイラ負荷に対するボイラ給水量を表すグラフである。FIG. 3 is a graph showing the boiler water supply amount with respect to the boiler load. 図4は、実施例1の貫流ボイラを表す概略構成図である。FIG. 4 is a schematic configuration diagram illustrating the once-through boiler of the first embodiment. 図5は、本発明の実施例2に係る貫流ボイラの制御装置を表す概略図である。FIG. 5 is a schematic diagram illustrating a once-through boiler control apparatus according to Embodiment 2 of the present invention.

以下に添付図面を参照して、本発明の貫流ボイラの制御方法及び装置の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。   Exemplary embodiments of a method and apparatus for controlling a once-through boiler according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.

図1は、本発明の実施例1に係る貫流ボイラの制御装置を表す概略構成図、図2は、蒸気クオリティに対する蒸気の質量速度を表すグラフ、図3は、ボイラ負荷に対するボイラ給水量を表すグラフ、図4は、実施例1の貫流ボイラを表す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a once-through boiler control apparatus according to Embodiment 1 of the present invention, FIG. 2 is a graph showing steam mass velocity with respect to steam quality, and FIG. 3 shows boiler feed water amount with respect to boiler load. FIG. 4 is a schematic configuration diagram illustrating the once-through boiler of the first embodiment.

実施例1において、図1に示すように、貫流ボイラ10は、例えば、石炭を粉砕した微粉炭を微粉燃料として用い、この微粉炭を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収することが可能な微粉炭焚きボイラである。   In Example 1, as shown in FIG. 1, the once-through boiler 10 uses, for example, pulverized coal obtained by pulverizing coal as pulverized fuel, burns the pulverized coal with a combustion burner, and recovers heat generated by the combustion. It is a pulverized coal fired boiler that can.

この貫流ボイラ10は、コンベンショナルボイラであって、火炉11と燃焼装置12とを有している。火炉11は、四角筒の中空形状をなして鉛直方向に沿って設置され、この火炉11を構成する火炉壁の下部に燃焼装置12が設けられている。火炉11は、図示しない多数の伝熱管により形成された火炉壁により密閉状態となっている。   The once-through boiler 10 is a conventional boiler, and includes a furnace 11 and a combustion device 12. The furnace 11 has a rectangular hollow shape and is installed along the vertical direction. A combustion device 12 is provided at the lower part of the furnace wall constituting the furnace 11. The furnace 11 is sealed with a furnace wall formed by a number of heat transfer tubes (not shown).

燃焼装置12は、火炉壁に装着された複数の燃焼バーナ21,22,23,24,25を有している。本実施例にて、この燃焼バーナ21,22,23,24,25は、周方向に沿って4個均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット、つまり、5段配置されている。   The combustion device 12 has a plurality of combustion burners 21, 22, 23, 24, 25 mounted on the furnace wall. In this embodiment, the combustion burners 21, 22, 23, 24, and 25 are arranged as four sets at equal intervals along the circumferential direction, and 5 sets along the vertical direction. Five stages are arranged.

そして、各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して微粉炭機(ミル)31,32,33,34,35に連結されている。この微粉炭機31,32,33,34,35は、図示しないが、ハウジング内に鉛直方向に沿った回転軸心をもって粉砕テーブルが駆動回転可能に支持され、この粉砕テーブルの上方に対向して複数の粉砕ローラが粉砕テーブルの回転に連動して回転可能に支持されて構成されている。従って、石炭が複数の粉砕ローラと粉砕テーブルとの間に投入されると、ここで所定の大きさまで粉砕され、搬送空気(1次空気)により分級された微粉炭を微粉炭供給管26,27,28,29,30から燃焼バーナ21,22,23,24,25に供給することができる。   Each combustion burner 21, 22, 23, 24, 25 is connected to a pulverized coal machine (mill) 31, 32, 33, 34, 35 via a pulverized coal supply pipe 26, 27, 28, 29, 30. ing. Although not shown, the pulverized coal machines 31, 32, 33, 34, and 35 are supported in a housing so that the pulverization table can be driven to rotate with a rotation axis along the vertical direction, and face the upper side of the pulverization table. A plurality of crushing rollers are configured to be rotatably supported in conjunction with the rotation of the crushing table. Therefore, when coal is introduced between a plurality of crushing rollers and a crushing table, the pulverized coal supplied to the pulverized coal supply pipes 26 and 27 is pulverized to a predetermined size and classified by carrier air (primary air). , 28, 29, 30 can be supplied to the combustion burners 21, 22, 23, 24, 25.

また、火炉11は、各燃焼バーナ21,22,23,24,25の装着位置に風箱36が設けられており、この風箱36に空気ダクト37の一端部が連結されており、この空気ダクト37は、他端部に送風機38が装着されている。従って、送風機38により送られた燃焼用空気(2次空気)を、空気ダクト37から風箱36に供給し、この風箱36から各燃焼バーナ21,22,23,24,25に供給することができる。   Further, the furnace 11 is provided with a wind box 36 at the mounting position of each combustion burner 21, 22, 23, 24, 25, and one end portion of an air duct 37 is connected to the wind box 36, and this air The duct 37 has a blower 38 attached to the other end. Therefore, the combustion air (secondary air) sent by the blower 38 is supplied from the air duct 37 to the wind box 36 and supplied from the wind box 36 to the combustion burners 21, 22, 23, 24, 25. Can do.

そのため、燃焼装置12にて、各燃焼バーナ21,22,23,24,25は、微粉炭と1次空気とを混合した微粉燃料混合気を火炉11内に吹き込み可能であると共に、2次空気を火炉11内に吹き込み可能となっており、図示しない点火トーチにより微粉燃料混合気に点火することで、火炎を形成することができる。   Therefore, in the combustion apparatus 12, each combustion burner 21, 22, 23, 24, 25 can inject a pulverized fuel mixture obtained by mixing pulverized coal and primary air into the furnace 11 and secondary air. Can be blown into the furnace 11, and a flame can be formed by igniting the pulverized fuel mixture with an ignition torch (not shown).

なお、一般的に、ボイラの起動時には、各燃焼バーナ21,22,23,24,25は、油燃料を火炉11内に噴射して火炎を形成している。   In general, when the boiler is started, each combustion burner 21, 22, 23, 24, 25 injects oil fuel into the furnace 11 to form a flame.

火炉11は、上部に煙道40が連結されており、この煙道40に、対流伝熱部として排ガスの熱を回収するための過熱器(スーパーヒータ)41,42、再熱器43,44、節炭器(エコノマイザ)45,46,47が設けられており、火炉11での燃焼で発生した排ガスと水との間で熱交換が行われる。   The furnace 11 has a flue 40 connected to the upper portion thereof, and a superheater (superheater) 41 and 42 for recovering heat of exhaust gas as a convection heat transfer section, and a reheater 43 and 44 in the flue 40. The economizers 45, 46 and 47 are provided, and heat exchange is performed between the exhaust gas generated by the combustion in the furnace 11 and water.

煙道(排ガス通路)40は、その下流側に熱交換を行った排ガスが排出される排ガス管48が連結されている。この排ガス管48は、空気ダクト37との間にエアヒータ49が設けられ、空気ダクト37を流れる空気と、排ガス管48を流れる排ガスとの間で熱交換を行い、燃焼バーナ21,22,23,24,25に供給する燃焼用空気を昇温することができる。   The flue (exhaust gas passage) 40 is connected to an exhaust gas pipe 48 through which the exhaust gas subjected to heat exchange is discharged downstream. This exhaust gas pipe 48 is provided with an air heater 49 between the air duct 37 and performs heat exchange between the air flowing through the air duct 37 and the exhaust gas flowing through the exhaust gas pipe 48, and the combustion burners 21, 22, 23, The temperature of the combustion air supplied to 24 and 25 can be raised.

なお、排ガス管48は、図示しないが、脱硝装置、電気集塵機、誘引送風機、脱硫装置が設けられ、下流端部に煙突が設けられている。   Although not shown, the exhaust gas pipe 48 is provided with a denitration device, an electrostatic precipitator, an induction blower, and a desulfurization device, and a chimney is provided at the downstream end.

従って、微粉炭機31,32,33,34,35が駆動すると、生成された微粉炭が搬送用空気と共に微粉炭供給管26,27,28,29,30を通して燃焼バーナ21,22,23,24,25に供給される。また、加熱された燃焼用空気が空気ダクト37から風箱36を介して各燃焼バーナ21,22,23,24,25に供給される。すると、燃焼バーナ21,22,23,24,25は、微粉炭と搬送用空気とが混合した微粉燃料混合気を火炉11に吹き込むと共に燃焼用空気を火炉11に吹き込み、このときに着火することで火炎を形成することができる。この火炉11では、微粉燃料混合気と燃焼用空気とが燃焼して火炎が生じ、この火炉11内の下部で火炎が生じると、燃焼ガス(排ガス)がこの火炉11内を上昇し、煙道40に排出される。   Accordingly, when the pulverized coal machines 31, 32, 33, 34, and 35 are driven, the generated pulverized coal together with the conveying air passes through the pulverized coal supply pipes 26, 27, 28, 29, and 30 and the combustion burners 21, 22, 23, 24, 25. Also, heated combustion air is supplied from the air duct 37 to the combustion burners 21, 22, 23, 24, 25 via the wind box 36. Then, the combustion burners 21, 22, 23, 24, and 25 blow the pulverized fuel mixture mixed with the pulverized coal and the carrier air into the furnace 11 and blow the combustion air into the furnace 11 and ignite at this time. Can form a flame. In the furnace 11, the pulverized fuel mixture and the combustion air are burned to generate a flame. When a flame is generated in the lower part of the furnace 11, the combustion gas (exhaust gas) rises in the furnace 11, and the flue 40 is discharged.

このとき、給水ポンプ(図示略)から供給された水は、節炭器45,46,47によって予熱された後、火炉壁を構成する各伝熱管(図示せず)に供給され、ここで加熱されて蒸気となる。更に、蒸気は過熱器41,42に導入され、燃焼ガスによって過熱される。過熱器41,42で生成された過熱蒸気は、図示しない発電プラント(例えば、蒸気タービンなど)に供給される。また、この蒸気タービンでの膨張過程の中途で取り出した蒸気は、再熱器43,44に導入され、再度過熱されてタービンに戻される。   At this time, water supplied from a water supply pump (not shown) is preheated by the economizers 45, 46 and 47, and then supplied to each heat transfer tube (not shown) constituting the furnace wall, where it is heated. It becomes steam. Further, the steam is introduced into the superheaters 41 and 42 and is heated by the combustion gas. The superheated steam generated by the superheaters 41 and 42 is supplied to a power plant (not shown) (for example, a steam turbine). Further, the steam taken out in the middle of the expansion process in the steam turbine is introduced into the reheaters 43 and 44, overheated again, and returned to the turbine.

その後、煙道40の節炭器45,46,47を通過した排ガスは、排ガス管48にて、図示しない脱硝装置にて、触媒によりNOxなどの有害物質が除去され、電気集塵機で粒子状物質が除去され、脱硫装置により硫黄分が除去された後、煙突から大気中に排出される。   Thereafter, the exhaust gas that has passed through the economizers 45, 46, and 47 of the flue 40 is subjected to removal of harmful substances such as NOx by a catalyst in a denitration device (not shown) in the exhaust gas pipe 48, and the particulate matter is collected by an electric dust collector Is removed, and after the sulfur content is removed by the desulfurizer, it is discharged from the chimney into the atmosphere.

ここで、上述した貫流ボイラ10における水及び蒸気の流れについて説明する。図1に示すように、給水ライン51は、給水ポンプ52が装着され、下流部が節炭器45(46,47)に連結されており、この節炭器45が火炉11の火炉壁を構成する伝熱管53に連結されている。この伝熱管53は、下流部が気水分離器54に連結され、気水分離器54は、蒸気ライン55を介して蒸気タービン56及びタービンバイパス弁57に連結されている。そして、この蒸気タービン56は、排出ライン58により復水器59に連結され、この復水器59は、給水ライン51の上流部に連結されている。また、気水分離器54は、再循環ライン(再循環経路)60により給水ライン51における給水ポンプ52より下流側に連結されている。そして、再循環ライン60にドレンタンク61と再循環水ポンプ62が装着されている。   Here, the flow of water and steam in the once-through boiler 10 described above will be described. As shown in FIG. 1, the water supply line 51 is equipped with a water supply pump 52, and a downstream portion is connected to a economizer 45 (46, 47), and the economizer 45 constitutes a furnace wall of the furnace 11. It is connected to the heat transfer tube 53. The heat transfer pipe 53 is connected to a steam / water separator 54 at a downstream portion, and the steam / water separator 54 is connected to a steam turbine 56 and a turbine bypass valve 57 via a steam line 55. The steam turbine 56 is connected to a condenser 59 by a discharge line 58, and the condenser 59 is connected to an upstream portion of the water supply line 51. The steam separator 54 is connected to the downstream side of the water supply pump 52 in the water supply line 51 by a recirculation line (recirculation path) 60. A drain tank 61 and a recirculation water pump 62 are attached to the recirculation line 60.

従って、給水ポンプ52が駆動すると、所定量の水が給水ライン51から節炭器45で加熱されてから伝熱管53に供給され、ボイラで熱交換を行うことで加熱され、蒸気が生成される。この蒸気は、気水分離器54で蒸気と水分に分離され、過熱蒸気は、蒸気ライン55を介して蒸気タービン56に供給され、蒸気タービン56を駆動して発電する。そして、蒸気タービン56で仕事をした蒸気は、排出ライン58により復水器59に送られ、ここで冷却されて復水となり、給水ライン51に戻される。一方、気水分離器54で過熱蒸気から分離された水分は、再循環ライン60からドレンタンク61に一時的に溜められ、このドレンタンク61から再循環水ポンプ62により給水ライン51に戻される。   Therefore, when the feed water pump 52 is driven, a predetermined amount of water is heated from the feed water line 51 by the economizer 45 and then supplied to the heat transfer pipe 53, and is heated by exchanging heat in the boiler to generate steam. . This steam is separated into steam and moisture by the steam separator 54, and the superheated steam is supplied to the steam turbine 56 via the steam line 55, and the steam turbine 56 is driven to generate electricity. Then, the steam that has worked in the steam turbine 56 is sent to the condenser 59 through the discharge line 58, where it is cooled to become condensed water and returned to the water supply line 51. On the other hand, the water separated from the superheated steam by the steam separator 54 is temporarily stored in the drain tank 61 from the recirculation line 60, and returned from the drain tank 61 to the water supply line 51 by the recirculation water pump 62.

このように構成された貫流ボイラ10では、蒸気のクオリティ(乾き度)に基づいて給水ポンプ52による伝熱管53への給水量を調整している。即ち、伝熱管53への給水量を計測する給水量センサ65と、蒸気(湿り蒸気)から分離されて給水ライン51に戻される再循環水量を計測する再循環水量センサ66と、給水量と再循環水量に基づいて現在の蒸気のクオリティを算出してこの蒸気のクオリティに基づいて給水ポンプ52による伝熱管53への給水量を調整する制御装置(ポンプ制御部)67とを設けている。   In the once-through boiler 10 configured as described above, the amount of water supplied to the heat transfer pipe 53 by the water supply pump 52 is adjusted based on the quality (dryness) of the steam. That is, a water supply sensor 65 that measures the amount of water supplied to the heat transfer pipe 53, a recirculation water amount sensor 66 that measures the amount of recirculated water separated from the steam (wet steam) and returned to the water supply line 51, and A control device (pump control unit) 67 is provided that calculates the current steam quality based on the circulating water amount and adjusts the water supply amount to the heat transfer pipe 53 by the feed water pump 52 based on the steam quality.

そして、この制御装置67は、予め伝熱管53内の水の核沸騰状態を維持可能なクオリティの上限値を設定し、このクオリティの上限値に対応する伝熱管53への給水量の下限値を設定し、ボイラ起動時に、伝熱管53への給水量をこの給水量の下限値に調整するようにしている。   And this control apparatus 67 sets the upper limit of the quality which can maintain the nucleate boiling state of the water in the heat exchanger tube 53 previously, and sets the lower limit of the amount of water supply to the heat exchanger tube 53 corresponding to this upper limit of this quality. The water supply amount to the heat transfer pipe 53 is adjusted to the lower limit value of the water supply amount when the boiler is activated.

具体的に説明すると、貫流ボイラ10が起動しているとき、上述したように、給水ポンプ52が作動して火炉11に給水している。このとき、ボイラ10の負荷が100%で運転している場合、節炭器45への入口給水量を100とすると、ボイラ10の負荷が25%であれば、節炭器45への入口給水量は25必要となり、この入口給水量25は、給水量と再循環量の合計量である。また、ボイラ10の起動時、この節炭器45への入口給水量は25よりも少ないものとなる。   More specifically, when the once-through boiler 10 is activated, the water supply pump 52 operates to supply water to the furnace 11 as described above. At this time, when the load of the boiler 10 is operating at 100% and the inlet water supply amount to the economizer 45 is 100, if the load of the boiler 10 is 25%, the inlet water supply to the economizer 45 An amount of 25 is required, and this inlet water supply amount 25 is a total amount of the water supply amount and the recirculation amount. In addition, when the boiler 10 is started, the amount of water supplied to the economizer 45 is less than 25.

従来、このボイラ10の起動直後、つまり、負荷が25%に到達する前、火炉11内の伝熱管53は水の蒸発量が小さく、この場合であっても、給水ポンプ52による節炭器45への入口給水量が25となるように制御している。そのため、ボイラ10では、給水量25をすべて蒸気とすることができず、気水分離器54で水分を分離した蒸気は、過熱器41を介して蒸気タービン56に送られる一方、蒸発できずに気水分離器54で蒸気から分離された水分(飽和水)は、再循環水ポンプ62により給水ライン51に戻されて再び火炉11に給水されることとなる。即ち、ボイラ10の起動時は、火炉11に供給された給水量25のうち、5のみが蒸発して蒸気タービン56に送られ、20は再循環している。そして、ボイラ10の負荷が25%に到達したら、再循環水ポンプ62を停止し、負荷の上昇に伴って給水ポンプ52による節炭器45への入口給水量を100まで上昇させている。   Conventionally, immediately after this boiler 10 is started, that is, before the load reaches 25%, the heat transfer pipe 53 in the furnace 11 has a small amount of water evaporation. Even in this case, the economizer 45 by the feed water pump 52 is used. The amount of water supply to the inlet is controlled to be 25. Therefore, in the boiler 10, the water supply amount 25 cannot be all converted to steam, and the steam separated from the water by the steam separator 54 is sent to the steam turbine 56 via the superheater 41, but cannot be evaporated. The water (saturated water) separated from the steam by the steam separator 54 is returned to the water supply line 51 by the recirculation water pump 62 and supplied to the furnace 11 again. That is, when the boiler 10 is started, only 5 of the water supply amount 25 supplied to the furnace 11 is evaporated and sent to the steam turbine 56, and 20 is recirculated. When the load on the boiler 10 reaches 25%, the recirculation water pump 62 is stopped, and the inlet water supply amount to the economizer 45 by the water supply pump 52 is increased to 100 as the load increases.

この場合、火炉11での蒸発量が5であることから、節炭器45への入口給水量を5に設定することができれば、再循環量20は発生せずに再循環水ポンプ62を廃止することができるが、火炉11に対してある程度の給水量を確保しなければ、火炉壁の伝熱管53が核沸騰から膜沸騰に遷移し、それによりメタル温度が上昇して火炉壁の健全性が維持できない。   In this case, since the evaporation amount in the furnace 11 is 5, if the inlet water supply amount to the economizer 45 can be set to 5, the recirculation water pump 62 is eliminated without generating the recirculation amount 20. However, if a certain amount of water supply is not ensured for the furnace 11, the heat transfer tube 53 of the furnace wall transitions from nucleate boiling to film boiling, thereby raising the metal temperature and improving the soundness of the furnace wall. Cannot be maintained.

そこで、実施例1の貫流ボイラ10では、上述したように、蒸気のクオリティに基づいて給水ポンプ52による伝熱管53への給水量を調整している。即ち、火炉11における伝熱管53における流水量が低下すれば、クオリティ(蒸気乾き度)が増加する。このクオリティがある値(上限値)を超えると、伝熱管53を流れる水の沸騰状態が核沸騰から核沸騰限界(DNB)点を越えて膜沸騰に遷移することで、伝熱管53内の熱伝達率が低下し、この伝熱管53のメタル温度が急激に上昇して火炉壁の健全性が維持できなくなる。   Therefore, in the once-through boiler 10 of the first embodiment, as described above, the amount of water supplied to the heat transfer pipe 53 by the water supply pump 52 is adjusted based on the quality of the steam. That is, if the amount of flowing water in the heat transfer tube 53 in the furnace 11 decreases, the quality (vapor dryness) increases. When this quality exceeds a certain value (upper limit), the boiling state of the water flowing through the heat transfer tube 53 transitions from nucleate boiling to the film boiling beyond the nucleate boiling limit (DNB) point, so that the heat in the heat transfer tube 53 is increased. The transfer rate is lowered, the metal temperature of the heat transfer tube 53 is rapidly increased, and the soundness of the furnace wall cannot be maintained.

そのため、伝熱管53を流れる水の核沸騰を維持できるクオリティの上限値(伝熱管53内の流水量の下限値)を実験により把握し、核沸騰から膜沸騰への遷移条件を予測した。即ち、ボイラ10において、図2に示すように、クオリティ(蒸気クオリティ)と質量速度との関係から、クオリティの上限値、つまり、伝熱管53内の流水量の下限値、言い換えると、ボイラ10の起動時に、火炉11が必要とする最低流量を予測することができ、この時の給水量を大幅に引き下げることが可能となる。   Therefore, the upper limit value of the quality that can maintain the nucleate boiling of the water flowing through the heat transfer tube 53 (the lower limit value of the amount of flowing water in the heat transfer tube 53) was grasped by experiments, and the transition condition from nucleate boiling to film boiling was predicted. That is, in the boiler 10, as shown in FIG. 2, from the relationship between the quality (steam quality) and the mass velocity, the upper limit value of the quality, that is, the lower limit value of the amount of flowing water in the heat transfer tube 53, in other words, At startup, the minimum flow rate required by the furnace 11 can be predicted, and the amount of water supplied at this time can be greatly reduced.

従来は、核沸騰を維持することができるクオリティの上限値(流水量の下限値)を予測することができず、また、予測できたとしてもその精度が低かった。そのため、ボイラ10の起動時から負荷が25%に到達するまで、火炉11の伝熱管53へ、つまり、節炭器45への入口給水量を過剰に確保していた。しかし、上述したように、本実施例では、伝熱管53内の水におけるクオリティの上限値を高精度に予測することができることから、給水ポンプ52を制御することで、節炭器45への入口給水量を大幅に低下させることが可能となった。   Conventionally, the upper limit value (the lower limit value of the flowing water amount) that can maintain nucleate boiling cannot be predicted, and even if it can be predicted, the accuracy is low. For this reason, the amount of water supplied to the heat transfer pipe 53 of the furnace 11, that is, the inlet water supply to the economizer 45 has been secured excessively until the load reaches 25% after the boiler 10 is started. However, as described above, in this embodiment, since the upper limit value of the quality of the water in the heat transfer tube 53 can be predicted with high accuracy, the inlet to the economizer 45 can be controlled by controlling the feed water pump 52. It became possible to greatly reduce the amount of water supply.

即ち、図3に示すように、ボイラ10の起動時から負荷が25%に到達するまでのボイラ給水量(節炭器45への入口給水量)は、従来、25であったが、この実施例1では、25よりも低くすることが可能となる。そのため、気水分離器54から再循環ライン60に流れる水量を低下させることが可能となり、再循環ポンプ62の容量を小さくして小型が可能となる。また、蒸発しなかった再循環水が僅かであることから、この再循環水を排水することで、再循環ポンプ62を廃止することも可能となる。   That is, as shown in FIG. 3, the boiler water supply amount (inlet water supply amount to the economizer 45) from when the boiler 10 is started until the load reaches 25% is conventionally 25. In Example 1, it can be made lower than 25. As a result, the amount of water flowing from the steam separator 54 to the recirculation line 60 can be reduced, and the capacity of the recirculation pump 62 can be reduced and the size can be reduced. Further, since the recirculated water that has not evaporated is very small, the recirculation pump 62 can be eliminated by draining the recirculated water.

ここで、具体的に説明すると、制御装置67は、ボイラ10起動時に、給水ポンプ52を駆動制御することで、節炭器45を介して火炉11の伝熱管53へ供給する水量を、伝熱管53を流れる水の核沸騰を維持できるクオリティの上限値、つまり、伝熱管53内の流水量の下限値となるようにする。この流水量の下限値は、ボイラ10の形態により予め実験により求めておく。   More specifically, the control device 67 drives and controls the feed water pump 52 when the boiler 10 is started, so that the amount of water supplied to the heat transfer tube 53 of the furnace 11 via the economizer 45 is increased. The upper limit value of the quality that can maintain the nucleate boiling of the water flowing through 53, that is, the lower limit value of the flowing water amount in the heat transfer tube 53 is set. The lower limit value of the flowing water amount is obtained in advance by an experiment according to the form of the boiler 10.

そして、ボイラ10の負荷の上昇に伴って伝熱管53への給水量を増加させるが、このとき、気水分離器54で分離された再循環水の流量が適切な量となるように伝熱管53への給水量を制御する。即ち、制御装置67は、給水量センサ65が伝熱管53への給水量を計測し、循環水量センサ66が蒸気(湿り蒸気)から分離されて給水ライン51に戻される再循環水量を計測し、給水量と再循環水量に基づいて現在の蒸気のクオリティを算出する。そして、制御装置67は、この蒸気のクオリティがクオリティの上限値を超えないように給水ポンプ52による伝熱管53への給水量を調整する。   Then, the amount of water supplied to the heat transfer tube 53 is increased as the load of the boiler 10 increases. At this time, the heat transfer tube is adjusted so that the flow rate of the recirculated water separated by the steam separator 54 becomes an appropriate amount. The amount of water supply to 53 is controlled. That is, the control device 67 measures the amount of water supplied to the heat transfer pipe 53 by the water supply amount sensor 65, and measures the amount of recirculated water that is separated from the steam (wet steam) and returned to the water supply line 51 by the circulating water amount sensor 66. The current steam quality is calculated based on the amount of water supplied and the amount of recirculated water. And the control apparatus 67 adjusts the amount of water supply to the heat exchanger tube 53 by the water supply pump 52 so that the quality of this steam may not exceed the upper limit of quality.

そのため、従来におけるボイラ10の起動時の給水量を25としたとき、そのうちの5が蒸発し、残りの20程度を再循環させていたが、本実施例では、ボイラ10の起動時の給水量を減量することが可能になり、同じ蒸発量であっても再循環水量が少なくてよい。例えば、給水量を10まで引き下げることができれば、同じ蒸発量5であっても、再循環水量が5でよくなる。その結果、再循環水ポンプ62の容量を小さくすることができ、または、蒸発しなかった再循環水が僅かであるために再循環水ポンプ62を廃止することも可能となる。   Therefore, when the water supply amount at the time of starting the boiler 10 in the related art is 25, 5 of them are evaporated and the remaining 20 are recirculated. However, in this embodiment, the water supply amount at the start of the boiler 10 is The amount of recirculated water may be small even if the amount of evaporation is the same. For example, if the amount of water supply can be reduced to 10, the amount of recirculated water can be 5 even if the evaporation amount is the same. As a result, the capacity of the recirculation water pump 62 can be reduced, or the recirculation water pump 62 can be eliminated because the recirculation water that has not evaporated is small.

このように実施例1の貫流ボイラの制御装置にあっては、ボイラ10の伝熱管53へ給水を行って内部の熱源との熱交換により生成された過熱蒸気を取り出す貫流ボイラにおいて、伝熱管53へ給水を行う給水ポンプ52と、蒸気のクオリティに基づいて給水ポンプ52による伝熱管53への給水量を調整する制御装置67とを設けている。   As described above, in the once-through boiler control apparatus according to the first embodiment, in the once-through boiler that supplies water to the heat transfer tube 53 of the boiler 10 and extracts the superheated steam generated by heat exchange with the internal heat source, the heat transfer tube 53 is provided. A water supply pump 52 that supplies water to the heat transfer pipe 52 and a control device 67 that adjusts the amount of water supplied to the heat transfer pipe 53 by the water supply pump 52 based on the quality of the steam are provided.

従って、制御装置67は、蒸気のクオリティに基づいて給水ポンプ52による伝熱管53への給水量を調整するため、給水量の減少による核沸騰から膜沸騰への遷移を防止することができると共に、給水量の増加による再循環量の増加を防止することができ、給水量の最適条件を設定することで、循環水量を減少して熱効率の向上及び設備コストの低減を可能とすると共に、炉壁の健全性を維持可能とすることができる。   Therefore, since the control device 67 adjusts the amount of water supplied to the heat transfer pipe 53 by the water supply pump 52 based on the quality of the steam, it can prevent the transition from nucleate boiling to film boiling due to the decrease in the amount of water supplied, An increase in the amount of recirculation due to an increase in the amount of water supply can be prevented, and by setting the optimum conditions for the amount of water supply, the amount of circulating water can be reduced to improve thermal efficiency and reduce equipment costs. It is possible to maintain the soundness.

また、実施例1の貫流ボイラの制御装置では、制御装置67、予め伝熱管53内の水の核沸騰状態を維持可能なクオリティの上限値を設定し、このクオリティの上限値に対応する伝熱管53への給水量の下限値を設定し、ボイラ10の起動時に、伝熱管53への給水量をこの給水量の下限値に調整している。従って、ボイラ10の起動時に、伝熱管53への給水量を、クオリティの上限値から求めた伝熱管53への給水量の下限値に調整することで、給水量の減少による核沸騰から膜沸騰への遷移を防止することができると共に、給水量の増加による再循環量の増加を防止することができる。   Further, in the once-through boiler control device of the first embodiment, the control device 67 sets an upper limit value of the quality that can maintain the nucleate boiling state of the water in the heat transfer tube 53 in advance, and the heat transfer tube corresponding to the upper limit value of this quality The lower limit value of the water supply amount to 53 is set, and the water supply amount to the heat transfer pipe 53 is adjusted to the lower limit value of this water supply amount when the boiler 10 is started. Therefore, when the boiler 10 is started, the amount of water supplied to the heat transfer tube 53 is adjusted to the lower limit value of the water supply amount to the heat transfer tube 53 obtained from the upper limit value of the quality, so that the film boiling from the nucleate boiling due to the decrease of the water supply amount Can be prevented, and an increase in the amount of recirculation due to an increase in the amount of water supply can be prevented.

また、実施例1の貫流ボイラの制御装置では、伝熱管53への給水量を計測する給水量センサ66と、蒸気から分離されて給水側に戻される循環水量を計測する循環水量センサ66とを設け、制御装置67は、給水量と循環水量に基づいて現在の蒸気のクオリティを算出している。従って、給水量センサ65が計測した給水量と、循環水量センサ66が計測した循環水量に基づいて現在の蒸気のクオリティを算出することとなり、高精度で容易に蒸気のクオリティを算出することができる。   In the once-through boiler control apparatus according to the first embodiment, the water supply sensor 66 that measures the amount of water supplied to the heat transfer pipe 53 and the circulating water sensor 66 that measures the amount of circulating water separated from the steam and returned to the water supply side are provided. The control device 67 calculates the current steam quality based on the water supply amount and the circulating water amount. Accordingly, the current steam quality is calculated based on the water supply amount measured by the water supply amount sensor 65 and the circulating water amount measured by the circulating water amount sensor 66, and the steam quality can be easily calculated with high accuracy. .

また、実施例1の貫流ボイラの制御装置では、ボイラ10により加熱された蒸気(湿り蒸気)を水分と蒸気とに分離する気水分離器54と、気水分離器54により分離された水分を給水ポンプ52の下流側に戻す再循環ライン60を設けている。従って、気水分離器54により分離された水分を再循環ライン60により給水ライン51における給水ポンプ52の下流側に戻すことで、熱効率の低下を抑制することができる。   In the once-through boiler control apparatus according to the first embodiment, the steam-water separator 54 that separates the steam (wet steam) heated by the boiler 10 into moisture and steam, and the moisture separated by the steam-water separator 54 is used. A recirculation line 60 that returns to the downstream side of the feed water pump 52 is provided. Therefore, by returning the water separated by the steam separator 54 to the downstream side of the water supply pump 52 in the water supply line 51 by the recirculation line 60, it is possible to suppress a decrease in thermal efficiency.

また、実施例1の貫流ボイラの制御方法にあっては、伝熱管53への給水量を蒸気のクオリティに基づいて調整している。従って、再循環水量を減少して熱効率の向上及び設備コストの低減を可能とすると共に、炉壁の健全性を維持可能とすることができる。   In the once-through boiler control method according to the first embodiment, the amount of water supplied to the heat transfer pipe 53 is adjusted based on the quality of the steam. Therefore, it is possible to reduce the amount of recirculated water, improve the thermal efficiency and reduce the equipment cost, and maintain the soundness of the furnace wall.

また、実施例1の貫流ボイラの制御方法では、伝熱管53への給水量と生成された蒸気量と蒸気(湿り蒸気)から分離されて給水側に戻される循環水量の少なくとも2つに基づいて現在の蒸気のクオリティを算出している。従って、伝熱管53への給水量、過熱蒸気量、循環水量に基づいて容易に蒸気のクオリティを算出することができる。   Moreover, in the control method of the once-through boiler of Example 1, based on at least two of the amount of water supplied to the heat transfer pipe 53, the amount of generated steam, and the amount of circulating water separated from the steam (wet steam) and returned to the water supply side. The current steam quality is calculated. Therefore, the quality of the steam can be easily calculated based on the amount of water supplied to the heat transfer pipe 53, the amount of superheated steam, and the amount of circulating water.

図5は、本発明の実施例2に係る貫流ボイラの制御装置を表す概略構成図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。   FIG. 5 is a schematic configuration diagram illustrating a once-through boiler control apparatus according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the function similar to the Example mentioned above, and detailed description is abbreviate | omitted.

実施例2の貫流ボイラの制御装置において、図5に示すように、給水ライン51は、給水ポンプ52が装着され、下流部が節炭器45を介して火炉11の伝熱管53に連結されている。この伝熱管53は、下流部が気水分離器54に連結され、気水分離器54は、蒸気ライン55を介して蒸気タービン56に連結されている。そして、この蒸気タービン56は、排出ライン58により復水器59に連結され、この復水器59は、給水ライン51の上流部に連結されている。また、気水分離器54は、再循環ライン(再循環経路)70により給水ライン51における給水ポンプ52より下流側に連結されている。そして、再循環ライン70にドレンタンク61が装着されている。   In the once-through boiler control apparatus according to the second embodiment, as shown in FIG. 5, the feed water line 51 is equipped with a feed water pump 52, and the downstream portion is connected to the heat transfer pipe 53 of the furnace 11 through the economizer 45. Yes. The heat transfer pipe 53 has a downstream portion connected to a steam / water separator 54, and the steam / water separator 54 is connected to a steam turbine 56 via a steam line 55. The steam turbine 56 is connected to a condenser 59 by a discharge line 58, and the condenser 59 is connected to an upstream portion of the water supply line 51. The steam separator 54 is connected to the downstream side of the water supply pump 52 in the water supply line 51 by a recirculation line (recirculation path) 70. A drain tank 61 is attached to the recirculation line 70.

従って、給水ポンプ52が駆動すると、所定量の水が給水ライン51から節炭器45で加熱されてから伝熱管53に供給され、ボイラで熱交換を行うことで加熱され、蒸気となる。この蒸気は、気水分離器54で水分が分離され、蒸気ライン55を介して蒸気タービン56に供給されて発電する。そして、蒸気タービン56で仕事をした蒸気は、排出ライン58により復水器59に送られ、ここで冷却されて復水となり、給水ライン51に戻される。一方、気水分離器54で過熱蒸気から分離された水分は、再循環ライン70からドレンタンク61に一時的に溜められ、給水ライン51に戻される。   Therefore, when the feed water pump 52 is driven, a predetermined amount of water is heated from the feed water line 51 by the economizer 45 and then supplied to the heat transfer pipe 53, and is heated by steam exchange to become steam. The steam is separated from moisture by the steam separator 54 and supplied to the steam turbine 56 via the steam line 55 to generate electricity. Then, the steam that has worked in the steam turbine 56 is sent to the condenser 59 through the discharge line 58, where it is cooled to become condensed water and returned to the water supply line 51. On the other hand, the water separated from the superheated steam by the steam separator 54 is temporarily stored in the drain tank 61 from the recirculation line 70 and returned to the water supply line 51.

このように構成された貫流ボイラ10では、実施例1と同様に、蒸気のクオリティに基づいて給水ポンプ52による伝熱管53への給水量を調整している。制御装置67は、給水量と循環水量に基づいて現在の蒸気のクオリティを算出してこの蒸気のクオリティに基づいて給水ポンプ52による伝熱管53への給水量を調整している。この場合、制御装置67は、予め伝熱管53内の水の核沸騰状態を維持可能なクオリティの上限値を設定し、このクオリティの上限値に対応する伝熱管53への給水量の下限値を設定し、ボイラ起動時に、伝熱管53への給水量をこの給水量の下限値に調整する。   In the once-through boiler 10 configured as described above, the amount of water supplied to the heat transfer pipe 53 by the water supply pump 52 is adjusted based on the quality of the steam as in the first embodiment. The control device 67 calculates the current steam quality based on the water supply amount and the circulating water amount, and adjusts the water supply amount to the heat transfer pipe 53 by the water supply pump 52 based on the steam quality. In this case, the control device 67 sets an upper limit value of the quality that can maintain the nucleate boiling state of the water in the heat transfer tube 53 in advance, and sets the lower limit value of the amount of water supplied to the heat transfer tube 53 corresponding to the upper limit value of the quality. It sets and adjusts the amount of water supplied to the heat transfer pipe 53 to the lower limit of the amount of water supplied when the boiler is started.

なお、実施例2は、再循環ライン70が給水ライン51における給水ポンプ52より下流側に連結されていること、再循環水ポンプがないこと以外は、実施例1の構成と同様であり、作用も同様であることから、詳細な説明は省略する。   In addition, Example 2 is the same as the structure of Example 1 except that the recirculation line 70 is connected to the downstream side of the water supply pump 52 in the water supply line 51 and there is no recirculation water pump. Since this is the same, detailed description is omitted.

このように実施例2の貫流ボイラの制御装置にあっては、気水分離器54により蒸気が取り出された水を給水ライン51における給水ポンプ52より下流側に戻す再循環ライン70を設けている。従って、再循環水を給水ポンプ52により給水ライン51に戻すこととなり、再循環水ポンプ62をなくすことが可能となる。   Thus, in the control apparatus for the once-through boiler according to the second embodiment, the recirculation line 70 is provided to return the water, from which the steam is extracted by the steam separator 54, to the downstream side of the water supply pump 52 in the water supply line 51. . Therefore, the recirculated water is returned to the water supply line 51 by the water supply pump 52, and the recirculated water pump 62 can be eliminated.

なお、上述した各実施例にて、伝熱管53への給水量を計測する給水量センサ65と、蒸気(湿り蒸気)から分離されて給水ライン51に戻される再循環水量を計測する再循環水量センサ66とを設け、制御装置67は、計測した給水量と再循環水量に基づいて現在の蒸気のクオリティを算出し、この蒸気のクオリティに基づいて給水ポンプ52による伝熱管53への給水量を調整したが、この構成に限定されるものではない。本発明の貫流ボイラの制御装置は、伝熱管53への給水量と、生成された蒸気量と、蒸気(湿り蒸気)から分離されて給水側に戻される再循環水量の少なくとも2つに基づいて現在の蒸気のクオリティを算出するものである。   In each of the above-described embodiments, a water supply amount sensor 65 that measures the amount of water supplied to the heat transfer tube 53 and a recirculation amount of water that measures the amount of recirculation water separated from the steam (wet steam) and returned to the water supply line 51. A sensor 66 is provided, and the control device 67 calculates the current steam quality based on the measured water supply amount and the recirculated water amount, and determines the water supply amount to the heat transfer pipe 53 by the water supply pump 52 based on the steam quality. Although it adjusted, it is not limited to this structure. The control apparatus for the once-through boiler of the present invention is based on at least two of the amount of water supplied to the heat transfer pipe 53, the amount of steam generated, and the amount of recirculated water separated from the steam (wet steam) and returned to the water supply side. The current steam quality is calculated.

また、上述した各実施例では、気水分離器54から給水ライン51に戻す再循環ライン60,70、ドレンタンク61、再循環水ポンプ62を設けたが、再循環水量を減少して排水としたり、再循環水量をなくしたりすることができれば、これらを設けなくてもよい。   Further, in each of the above-described embodiments, the recirculation lines 60 and 70, the drain tank 61, and the recirculation water pump 62 that return from the steam / water separator 54 to the feed water line 51 are provided. If the amount of recirculated water can be eliminated, these may not be provided.

11 火炉
41,42 過熱器
43,44 再熱器
45,46,47 節炭器
51 給水ライン
52 給水ポンプ
53 伝熱管
54 気水分離器
55 蒸気ライン
56 蒸気タービン
57 タービンバイパス弁
58 排出ライン
59 復水器
60,70 再循環ライン
61 ドレンタンク
62 再循環水ポンプ
11 furnace 41, 42 superheater 43, 44 reheater 45, 46, 47 economizer 51 feed water line 52 feed water pump 53 heat transfer pipe 54 steam separator 55 steam line 56 steam turbine 57 turbine bypass valve 58 discharge line 59 recovery Water 60,70 Recirculation line 61 Drain tank 62 Recirculation water pump

Claims (7)

ボイラの伝熱管へ給水を行って内部の熱源との熱交換により生成された過熱蒸気を取り出す貫流ボイラにおいて、
前記伝熱管への給水量を蒸気のクオリティに基づいて調整する、
ことを特徴とする貫流ボイラの制御方法。
In a once-through boiler that feeds water to the heat transfer pipe of the boiler and takes out superheated steam generated by heat exchange with the internal heat source,
Adjusting the amount of water supplied to the heat transfer tube based on the quality of the steam;
A control method for a once-through boiler, characterized in that.
予め前記伝熱管内の水の核沸騰状態を維持可能なクオリティの上限値を設定し、このクオリティの上限値に対応する前記伝熱管への給水量の下限値を設定し、ボイラ起動時に、前記伝熱管への給水量をこの給水量の下限値に調整することを特徴とする請求項1に記載の貫流ボイラの制御方法。   The upper limit value of the quality that can maintain the nucleate boiling state of the water in the heat transfer tube is set in advance, the lower limit value of the amount of water supplied to the heat transfer tube corresponding to the upper limit value of the quality is set, and when the boiler is started, The method for controlling a once-through boiler according to claim 1, wherein the amount of water supplied to the heat transfer pipe is adjusted to a lower limit value of the amount of water supplied. 前記伝熱管への給水量と生成された蒸気量と蒸気から分離されて給水側に戻される循環水量の少なくとも2つに基づいて現在の蒸気のクオリティを算出することを特徴とする請求項1または2に記載の貫流ボイラの制御方法。   The current steam quality is calculated based on at least two of the amount of water supplied to the heat transfer pipe, the amount of generated steam, and the amount of circulating water separated from the steam and returned to the water supply side. The method for controlling the once-through boiler according to 2. ボイラの伝熱管へ給水を行って内部の熱源との熱交換により生成された過熱蒸気を取り出す貫流ボイラにおいて、
前記伝熱管へ給水を行う給水ポンプと、
蒸気のクオリティに基づいて前記給水ポンプによる前記伝熱管への給水量を調整するポンプ制御部と、
を備えることを特徴とする貫流ボイラの制御装置。
In a once-through boiler that feeds water to the heat transfer pipe of the boiler and takes out superheated steam generated by heat exchange with the internal heat source,
A water supply pump for supplying water to the heat transfer pipe;
A pump controller that adjusts the amount of water supplied to the heat transfer pipe by the feed water pump based on the quality of the steam;
A once-through boiler control device.
前記ポンプ制御部は、予め前記伝熱管内の水の核沸騰状態を維持可能なクオリティの上限値を設定し、このクオリティの上限値に対応する前記伝熱管への給水量の下限値を設定し、ボイラ起動時に、前記伝熱管への給水量をこの給水量の下限値に調整することを特徴とする請求項4に記載の貫流ボイラの制御装置。   The pump control unit previously sets an upper limit value of quality that can maintain the nucleate boiling state of water in the heat transfer tube, and sets a lower limit value of the amount of water supplied to the heat transfer tube corresponding to the upper limit value of the quality. 5. The once-through boiler control device according to claim 4, wherein when the boiler is started, the amount of water supplied to the heat transfer pipe is adjusted to a lower limit value of the amount of water supplied. 前記伝熱管への給水量を計測する給水量センサと、蒸気から分離されて給水側に戻される再循環水量を計測する再循環水量センサとを設け、前記ポンプ制御部は、給水量と再循環水量に基づいて現在の蒸気のクオリティを算出することを特徴とする請求項4または5に記載の貫流ボイラの制御装置。   A water supply sensor for measuring the amount of water supplied to the heat transfer pipe and a recirculation water amount sensor for measuring the amount of recirculated water separated from the steam and returned to the water supply side are provided. 6. The once-through boiler control device according to claim 4, wherein the current steam quality is calculated based on the amount of water. 前記ボイラにより加熱された蒸気を水分と蒸気とに分離する気水分離器と、該気水分離器により分離された水分を前記給水ポンプの下流側に戻す再循環経路を設けることを特徴とする請求項4から6のいずれか一つに記載の貫流ボイラの制御装置。   A steam / water separator that separates steam heated by the boiler into moisture and steam, and a recirculation path that returns the moisture separated by the steam / water separator to the downstream side of the feed water pump are provided. The once-through boiler control device according to any one of claims 4 to 6.
JP2011140888A 2011-06-24 2011-06-24 Method and apparatus for controlling once-through boiler Expired - Fee Related JP5766527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140888A JP5766527B2 (en) 2011-06-24 2011-06-24 Method and apparatus for controlling once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140888A JP5766527B2 (en) 2011-06-24 2011-06-24 Method and apparatus for controlling once-through boiler

Publications (2)

Publication Number Publication Date
JP2013007533A true JP2013007533A (en) 2013-01-10
JP5766527B2 JP5766527B2 (en) 2015-08-19

Family

ID=47675024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140888A Expired - Fee Related JP5766527B2 (en) 2011-06-24 2011-06-24 Method and apparatus for controlling once-through boiler

Country Status (1)

Country Link
JP (1) JP5766527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637443A (en) * 2020-06-19 2020-09-08 辽宁东科电力有限公司 One-key whole-course automatic control method for water supply of supercritical once-through boiler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7520587B2 (en) 2020-06-15 2024-07-23 三菱重工業株式会社 Once-through boiler operation control device, operation control method, and once-through boiler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180103A (en) * 1992-12-10 1994-06-28 Ishikawajima Harima Heavy Ind Co Ltd Feedwater controller for shell and tube type once-through boiler
JPH08312903A (en) * 1995-05-23 1996-11-26 Babcock Hitachi Kk Once-through boiler device
JP2880558B2 (en) * 1990-05-23 1999-04-12 バブコツク日立株式会社 Control method of once-through boiler and control device of once-through boiler
JPH11304108A (en) * 1998-04-27 1999-11-05 Mitsubishi Chemical Corp Method for controlling once-through boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2880558B2 (en) * 1990-05-23 1999-04-12 バブコツク日立株式会社 Control method of once-through boiler and control device of once-through boiler
JPH06180103A (en) * 1992-12-10 1994-06-28 Ishikawajima Harima Heavy Ind Co Ltd Feedwater controller for shell and tube type once-through boiler
JPH08312903A (en) * 1995-05-23 1996-11-26 Babcock Hitachi Kk Once-through boiler device
JPH11304108A (en) * 1998-04-27 1999-11-05 Mitsubishi Chemical Corp Method for controlling once-through boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637443A (en) * 2020-06-19 2020-09-08 辽宁东科电力有限公司 One-key whole-course automatic control method for water supply of supercritical once-through boiler
CN111637443B (en) * 2020-06-19 2021-09-10 辽宁东科电力有限公司 One-key whole-course automatic control method for water supply of supercritical once-through boiler

Also Published As

Publication number Publication date
JP5766527B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
US9175851B2 (en) Method of and an arrangement for recovering heat from bottom ash
CN102016411B (en) High efficiency feedwater heater
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP7455781B2 (en) Ammonia supply unit for power generation plants, ammonia vaporization treatment method for power generation plants, and power generation plants
US20160238245A1 (en) Flue gas heat recovery system
JP2011127786A (en) Combined cycle power generation facility and feed-water heating method thereof
JP5665621B2 (en) Waste heat recovery boiler and power plant
US9784137B2 (en) Subcritical pressure high-temperature steam power plant and subcritical pressure high-temperature variable pressure operation once-through boiler
JP2007187352A (en) Starting method of boiler
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP4489307B2 (en) Fossil fuel once-through boiler
JP2018189276A (en) Power generation plant and method for operating the same
JP5137598B2 (en) Ventilation system in steam power generation facilities
JP2021021554A (en) Boiler control device, boiler system, power generation plant, and boiler control method
JP2020106012A (en) Bypass control system of power generation plant, its control method and control program, and power generation plant
WO2021256245A1 (en) Operation control device of once-through boiler, operation control method, and once-through boiler
JP2021046989A (en) Feedwater heating system, power generation plant equipped with the same, and operation method of feedwater heating system
KR102222427B1 (en) Combustion device and power generation system able to internal flue gas recirculation
WO2023002814A1 (en) Ammonia fuel supply unit, power generation plant, and method for operating boiler
JP2022144706A (en) Boiler control system, power generation plant, and boiler control method
JP2002106804A (en) Feedwater flow-rate controller of variable once- through boiler
JP2022112859A (en) Operational state improvement system, power generation plant, operational state improvement method and operational state improvement program
JP2024145455A (en) Boiler system and method for operating the boiler system
JP2022097122A (en) Boiler and control method thereof
JP6707058B2 (en) Waste heat boiler, waste heat recovery system, and waste heat recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150617

R150 Certificate of patent or registration of utility model

Ref document number: 5766527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees