JPH0749005A - Exhaust heat recovery power generation control device - Google Patents

Exhaust heat recovery power generation control device

Info

Publication number
JPH0749005A
JPH0749005A JP21349093A JP21349093A JPH0749005A JP H0749005 A JPH0749005 A JP H0749005A JP 21349093 A JP21349093 A JP 21349093A JP 21349093 A JP21349093 A JP 21349093A JP H0749005 A JPH0749005 A JP H0749005A
Authority
JP
Japan
Prior art keywords
signal
pressure
temperature
medium
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21349093A
Other languages
Japanese (ja)
Inventor
Jiyunko Funashiro
純子 舟城
Akio Wakao
明男 若尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21349093A priority Critical patent/JPH0749005A/en
Publication of JPH0749005A publication Critical patent/JPH0749005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To facilitate stable and high-efficiency control in relation to transient load fluctuation by adding the inlet and outlet medium temperature change rates of the high and low pressure evaporators of an exhaust heat system and the change rates on the cooling water temperature of a condenser and the inlet medium temperature of the high and low pressure evaporators respectively as bias signals to control the opening of an exhaust heat flow regulating valve. CONSTITUTION:The inlet and outlet medium temperature change rates of a high pressure evaporator 5 and a low pressure evaporator 7 in an exhaust heat system 1, and the change rates on the cooling water temperature of a condenser 13 and the inlet medium temperature of the high pressure evaporator 5 and low pressure evaporator 7 are respectively added as bias signals to control the opening of an exhaust heat flow regulating valve 33. Control is thereby performed following the set power of the generator 12 of a medium turbine 11, and the respective heat exchange rates of the exhaust heat system 1, a medium system 2 and the condenser 13 of a cooling water system 3 are improved in such a way as to reduce the inlet pressure fluctuation of the medium turbine 11. Accordingly, even with the generation of fluctuation to the temperature and exhaust heat flow of the exhaust heat system 1 in relation to the setting of power load of a turbine generator, high efficiency operation can be performed with stable control on transient load fluctuation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工業用プラント等の熱
水あるいは地下から得られる排熱を利用した排熱利用発
電制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat utilization power generation control device utilizing exhaust heat obtained from hot water of an industrial plant or underground.

【0002】[0002]

【従来の技術】発電の方法には、火力発電、水力発電、
原子力発電等の方式の他に、種々の特殊発電方式があ
る。この特殊発電方式の一つとして、工業プラントある
いは地下から得られる排熱を利用した発電方式がある。
2. Description of the Related Art Thermal power generation, hydroelectric power generation,
In addition to the nuclear power generation method, there are various special power generation methods. As one of the special power generation methods, there is a power generation method that uses exhaust heat obtained from an industrial plant or underground.

【0003】この種の発電方式では、火力発電と同様
に、蒸気によりタービンを回転させようとするものであ
るが、火力発電に比べてタービンを回転させるのに要す
る燃料費を大幅に節約できるため、近年は資源活用の面
から注目されはじめている。
In this type of power generation system, the turbine is rotated by steam similarly to the thermal power generation, but the fuel cost required for rotating the turbine can be greatly saved as compared with the thermal power generation. In recent years, it has begun to receive attention from the viewpoint of resource utilization.

【0004】一般に、排熱利用発電プラントでは、高温
熱水および排熱が排熱ポンプにより蒸発器、予熱器に供
給され媒体と熱交換される。そして、蒸発器で熱交換さ
れて温度上昇した蒸発ガスが媒体タービンに供給され、
媒体タービン発電機を駆動させ発電する。その媒体ター
ビンの排ガスは、凝縮器に流れ冷却水で冷却されホット
ウェルタンクに回収され循環される。凝縮器では、媒体
タービンの排ガスを冷却水で冷却させている。
Generally, in an exhaust heat utilization power plant, high temperature hot water and exhaust heat are supplied to an evaporator and a preheater by an exhaust heat pump and exchange heat with a medium. Then, the evaporative gas whose temperature has risen due to heat exchange in the evaporator is supplied to the medium turbine,
It drives a medium turbine generator to generate electricity. The exhaust gas of the medium turbine flows into a condenser, is cooled by cooling water, and is collected in a hot well tank and circulated. In the condenser, the exhaust gas of the medium turbine is cooled with cooling water.

【0005】ところで、従来の排熱利用発電制御装置で
は、熱水の流量について格別の制御を行っておらず、工
業用プラント等から得られる排熱の全てをタービン駆動
に用いるようにし、基本的には電力最大運転を行うよう
にしている。
By the way, in the conventional exhaust heat utilization power generation control device, no particular control is performed on the flow rate of hot water, and all the exhaust heat obtained from the industrial plant is used to drive the turbine. It is designed to operate at maximum power.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た電力最大運転による発電制御では、工業用プラント等
からの排熱流量あるいは排熱温度が変化すると、直ちに
発電機出力も変動してしまい、成り行きまかせの制御と
なる欠点がある。
However, in the above-described power generation control by the maximum electric power operation, when the exhaust heat flow rate or the exhaust heat temperature from the industrial plant or the like changes, the generator output also immediately fluctuates, and it is left up. There is a drawback that is the control of.

【0007】まず、第1に、電流負荷制御時に一次系の
排熱流量および排熱温度が変動する場合、タービン発電
機の出力は、予熱器の熱交換性能および蒸発器の性能に
大きく左右される。つまり、過渡的な排熱流量および温
度変動に対して蒸発器の媒体蒸発量のレベルが変動し、
これに伴って媒体の蒸発ガス圧力も大幅に変動する。そ
のため、媒体タービンの入口流量および圧力変動が生
じ、媒体タービン発電機の出力も大幅に変動するという
問題がある。
First, when the exhaust heat flow rate and exhaust heat temperature of the primary system fluctuate during current load control, the output of the turbine generator is greatly influenced by the heat exchange performance of the preheater and the performance of the evaporator. It In other words, the level of the evaporation amount of the medium in the evaporator fluctuates due to the transient exhaust heat flow rate and temperature fluctuations,
Along with this, the evaporative gas pressure of the medium also fluctuates significantly. Therefore, the inlet flow rate and pressure of the medium turbine fluctuate, and the output of the medium turbine generator fluctuates significantly.

【0008】第2に、媒体タービン発電機の負荷変動に
伴って、媒体タービンの駆動に費やした排ガスが過渡的
な流量および温度変動となり、凝縮器の2次遅れ原因に
よって媒体の冷却温度も変動する。このように、過渡的
な排熱温度および排ガス流量の変動に伴い、熱交換器へ
の媒体流量の流量変動が生じ、予熱器、蒸発器で熱交換
するとき2次遅れ原因となって発電機の出力が変動し、
制御系が安定しないという問題がある。
Secondly, as the load of the medium turbine generator fluctuates, the exhaust gas spent for driving the medium turbine changes in transient flow rate and temperature, and the cooling temperature of the medium also fluctuates due to the secondary delay of the condenser. To do. In this way, with the transient fluctuations in exhaust heat temperature and exhaust gas flow rate, the flow rate of the medium flow rate to the heat exchanger fluctuates, which causes a secondary delay when heat is exchanged in the preheater and the evaporator. Output fluctuates,
There is a problem that the control system is not stable.

【0009】そこで、本発明は、上記事情を考慮してな
されたもので、タービン発電機の電力負荷設定に対し
て、排熱系統の排熱温度変動および排熱流量変動が生じ
てもタービン発電機の出力変動を防止する排熱利用発電
制御装置を提供することを目的とする。
Therefore, the present invention has been made in consideration of the above circumstances, and the turbine power generation is performed even if the exhaust heat temperature variation and the exhaust heat flow rate variation of the exhaust heat system occur with respect to the power load setting of the turbine generator. It is an object of the present invention to provide an exhaust heat utilization power generation control device that prevents fluctuations in the output of a machine.

【0010】[0010]

【課題を解決するための手段】高温熱水および排熱が排
熱ポンプによって取り込まれ、高圧蒸発器と高圧予熱器
と低圧蒸発器と低圧予熱器に順次供給され、それぞれと
熱交換させる排熱系統と、ホットウェルタンクから媒体
ポンプによって前記低圧予熱器と前記低圧蒸発器と前記
高圧予熱器と前記高圧蒸発器とへ順次媒体を流して前記
高温熱水と排熱と熱交換され温度上昇された媒体を低圧
蒸発器および高圧蒸発器で媒体を蒸発させ規定圧にし、
その媒体の蒸発ガスを媒体タービンの高圧側および低圧
側に供給し、媒体タービンの発電機を駆動させ、媒体タ
ービンの排ガスが凝縮器に流れ冷却水で冷却され前記ホ
ットウェルタンクに回収し、循環させる媒体系統と、前
記凝縮器で媒体タービンの排ガスを冷却水で冷却させる
冷却水系統からなる排熱利用発電プラントを制御する排
熱利用発電制御装置において、前記排熱系統には、流量
検出器と第1温度検出器と第2温度検出器と第3温度検
出器と第4温度検出器と流量調節弁をそれぞれ配置し、
前記媒体系統の低圧側には、低圧蒸発器に第1圧力検出
器と第1レベル検出器とを配置し、低圧蒸発器の入口側
にレベル調節弁を配置し、前記媒体系統の高圧側には、
高圧蒸発器に第2圧力検出器と第2レベル検出器とを配
置し、低圧予熱器の出口側にレベル調節弁を配置し、前
記媒体系統の高圧側の媒体タービンの入口側に第3圧力
検出器を配置し、前記媒体系統低圧側の媒体タービンの
入口側に第4圧力検出器とを配置し、さらに、バイパス
系統には、圧力調節弁が配置され、バイパス系統には圧
力調節弁を配置され、前記媒体系統の凝縮器の出口側に
は、第5温度検出器を配置され、ホットウェルタンクに
は第6温度検出器が配置され、冷却水系統には、温度調
節弁と冷却水ポンプとを配置し、前記媒体タービンの電
力設定信号を出力し、この電力設定信号と、前記流量検
出器の排熱流量信号との排熱流量偏差信号を演算して出
力する電力設定手段と、前記第1圧力検出器の圧力信号
と、前記第4圧力検出器の圧力信号との偏差信号に基づ
いて第1バイアス信号を出力する第1バイアス信号設定
手段と前記排熱流量量偏差信号と前記第1バイアス信号
とを加減算して加減算信号を出力する加減算手段と、前
記加減算信号を入力して前記流量調節弁を開閉させ排熱
流量を制御する制御信号を出力する制御演算手段とから
なる第1制御手段と、前記低圧蒸気発生器のレベル設定
信号を出力し、このレベル設定信号と前記第1レベル検
出器のレベル検出信号とのレベル偏差信号を演算出力す
るレベル設定手段と、前記第1制御手段の加減算信号に
基づいて第2バイアス信号を出力する第2バイアス設定
手段と、前記レベル偏差信号と前記第2バイアス信号と
前記第3バイアス信号とを加減算して加減算信号を出力
する加減算手段と、前記加減算信号を入力して前記第1
レベル調節弁を開閉させ前記低圧蒸発器のレベルを制御
する制御信号を出力する制御演算手段とからなる第2制
御手段と、前記高圧蒸発器のレベル設定信号を出力し、
このレベル設定信号と第2レベル検出器のレベル検出信
号とのレベル偏差信号を演算出力するレベル設定手段
と、前記第1温度検出器の温度検出信号と前記第2温度
検出器の温度検出信号との偏差信号に基づく第4バイア
ス信号を出力する第4バイアス設定手段と、前記第2温
度検出器の温度検出信号と前記第3温度検出器の温度検
出信号との偏差信号に基づく第5バイアス信号を出力す
る第5バイアス設定手段と、前記第4バイアス信号と前
記第5バイアス信号の内でいずれか高値の信号を第6バ
イアス信号として出力する高値優先手段と、前記レベル
偏差信号と前記第2バイアス信号と前記第6バイアス信
号とを加減算して加減算信号を出力する加減算手段と、
前記加減算信号を入力して前記第2レベル調節弁を開閉
させ前記高圧蒸発器のレベルを制御する制御信号を出力
する制御演算手段とからなる第3制御手段と、前記媒体
タービンの低圧側の入口圧力信号を出力し、この入口圧
力設定信号と前記第4圧力検出器の圧力検出信号との圧
力偏差信号を演算出力する圧力設定手段と、前記圧力偏
差信号と前記第1バイアス信号と前記第2バイアス信号
と前記第3バイアス信号とを加減算して加減算信号を出
力する加減算出力手段と前記加減算信号を入力して前記
第2圧力調節弁を開閉させ前記媒体タービンの低圧側の
入口圧力を制御する制御信号を出力する制御演算手段と
からなる第4制御手段と、前記媒体タービンの高圧側の
入口圧力信号を出力し、この入口圧力設定信号と前記第
3圧力検出器の圧力検出信号との圧力偏差信号を演算出
力する圧力設定手段と、前記第2圧力検出器の圧力検出
信号と前記第3圧力検出器の圧力検出信号との偏差信号
に基づく第7バイアス信号を出力する第7バイアス設定
手段と、前記圧力偏差信号と前記第2バイアス信号と前
記第6バイアス信号と前記第7バイアス信号とを加減算
して加減算信号を出力する加減算手段と、前記加減算信
号を入力して前記第1圧力調節弁を開閉させ前記媒体タ
ービンの高圧側の入口圧力を制御する制御信号を出力す
る制御演算手段とからなる第5制御手段と、前記凝縮器
の媒体温度設定信号を出力し、この媒体温度設定信号と
第5温度検出器の温度検出信号を出力する温度設定信号
と、前記第5温度検出器の温度検出信号と前記第6温度
検出器の温度検出信号との偏差信号に基づく第8バイア
ス信号を出力する第8バイアス設定手段と、前記温度偏
差信号と前記第2バイアス信号と前記第8バイアス信号
とを加減算して加減算信号を出力する加減算手段と、前
記加減算信号を入力して前記温度調節弁を開閉させ前記
凝縮器の媒体温度を制御する制御信号を出力する制御演
算手段からなる第6制御手段を設けるようにしたもので
ある。
High-temperature hot water and exhaust heat are taken in by an exhaust heat pump and sequentially supplied to a high-pressure evaporator, a high-pressure preheater, a low-pressure evaporator and a low-pressure preheater, and heat exchange with each of them is performed. The system, the medium from the hot well tank to the low-pressure preheater, the low-pressure evaporator, the high-pressure preheater, and the high-pressure evaporator is sequentially flowed by the medium, heat is exchanged with the high-temperature hot water and exhaust heat to raise the temperature. The low pressure evaporator and the high pressure evaporator to vaporize the medium to a specified pressure,
The evaporative gas of the medium is supplied to the high pressure side and the low pressure side of the medium turbine to drive the generator of the medium turbine, the exhaust gas of the medium turbine flows to the condenser, is cooled by cooling water, and is collected in the hot well tank and circulated. In the exhaust heat utilization power generation control device for controlling the exhaust heat utilization power generation plant, which comprises a cooling water system for cooling the exhaust gas of the medium turbine with cooling water in the condenser, a flow rate detector is provided in the exhaust heat system. And a first temperature detector, a second temperature detector, a third temperature detector, a fourth temperature detector, and a flow rate control valve, respectively,
On the low pressure side of the medium system, a first pressure detector and a first level detector are arranged on the low pressure evaporator, a level control valve is arranged on the inlet side of the low pressure evaporator, and on the high pressure side of the medium system. Is
A second pressure detector and a second level detector are arranged in the high pressure evaporator, a level control valve is arranged on the outlet side of the low pressure preheater, and a third pressure is arranged on the inlet side of the medium turbine on the high pressure side of the medium system. A detector is disposed, a fourth pressure detector is disposed on the inlet side of the medium turbine on the low pressure side of the medium system, and a pressure control valve is disposed on the bypass system, and a pressure control valve is disposed on the bypass system. A fifth temperature detector is disposed on the outlet side of the condenser of the medium system, a sixth temperature detector is disposed on the hot well tank, and a temperature control valve and cooling water are disposed on the cooling water system. A pump and an electric power setting means for outputting an electric power setting signal of the medium turbine, for calculating and outputting an exhaust heat flow rate deviation signal between the electric power setting signal and the exhaust heat flow rate signal of the flow rate detector, The pressure signal of the first pressure detector and the fourth pressure First bias signal setting means for outputting a first bias signal based on the deviation signal from the pressure signal of the output device, addition / subtraction for adding / subtracting the exhaust heat flow rate deviation signal and the first bias signal, and outputting an addition / subtraction signal Means and a first control means for inputting the addition / subtraction signal and outputting a control signal for opening / closing the flow rate control valve to control the exhaust heat flow rate; and a level setting signal for the low pressure steam generator. The second bias signal is output based on the level setting means that outputs and calculates and outputs the level deviation signal between the level setting signal and the level detection signal of the first level detector, and the addition / subtraction signal of the first control means. Second bias setting means, addition / subtraction means for adding / subtracting the level deviation signal, the second bias signal, and the third bias signal to output an addition / subtraction signal, and the addition / subtraction signal The Enter the first
Outputting a level setting signal of the high-pressure evaporator, and second control means comprising control arithmetic means for opening and closing the level control valve to output a control signal for controlling the level of the low-pressure evaporator,
Level setting means for calculating and outputting a level deviation signal between the level setting signal and the level detection signal of the second level detector, a temperature detection signal of the first temperature detector and a temperature detection signal of the second temperature detector. Fifth bias signal based on the deviation signal between the temperature detection signal of the second temperature detector and the temperature detection signal of the third temperature detector. A fifth bias setting means for outputting, a high value priority means for outputting a signal having a higher value among the fourth bias signal and the fifth bias signal as a sixth bias signal, the level deviation signal and the second bias signal. Adder / subtractor means for adding / subtracting a bias signal and the sixth bias signal to output an add / subtract signal;
Third control means, which is a control calculation means for inputting the addition / subtraction signal and opening / closing the second level control valve to output a control signal for controlling the level of the high-pressure evaporator, and an inlet on the low-pressure side of the medium turbine. Pressure setting means for outputting a pressure signal and calculating and outputting a pressure deviation signal between the inlet pressure setting signal and the pressure detection signal of the fourth pressure detector, the pressure deviation signal, the first bias signal and the second Addition / subtraction output means for adding / subtracting a bias signal and the third bias signal to output an addition / subtraction signal and the addition / subtraction signal are input to open / close the second pressure control valve to control the inlet pressure on the low pressure side of the medium turbine. Fourth control means including control calculation means for outputting a control signal, and an inlet pressure signal on the high pressure side of the medium turbine are output, and the inlet pressure setting signal and the pressure of the third pressure detector are output. Pressure setting means for calculating and outputting a pressure deviation signal from the detection signal, and a seventh bias signal based on a deviation signal between the pressure detection signal of the second pressure detector and the pressure detection signal of the third pressure detector are output. A seventh bias setting means, an addition / subtraction means for adding / subtracting the pressure deviation signal, the second bias signal, the sixth bias signal and the seventh bias signal and outputting an addition / subtraction signal, and inputting the addition / subtraction signal Outputting a medium temperature setting signal for the condenser, and a fifth control means comprising a control calculation means for opening and closing the first pressure control valve to output a control signal for controlling the inlet pressure on the high pressure side of the medium turbine, A deviation signal between the medium temperature setting signal and the temperature setting signal for outputting the temperature detection signal of the fifth temperature detector, and the temperature detection signal of the fifth temperature detector and the temperature detection signal of the sixth temperature detector. An eighth bias setting means for outputting an eighth bias signal based on the above, an addition / subtraction means for adding / subtracting the temperature deviation signal, the second bias signal, and the eighth bias signal to output an addition / subtraction signal, and inputting the addition / subtraction signal Then, the sixth control means including a control calculation means for opening and closing the temperature control valve and outputting a control signal for controlling the medium temperature of the condenser is provided.

【0011】[0011]

【作用】第1制御手段では、媒体系統の低圧蒸発器の第
1圧力検出器と媒体タービンの低圧側入口の第4圧力検
出器との偏差信号が先行的に第1バイアス信号として排
熱偏差信号に付加されるため低圧蒸発器で熱交換すると
きの2次遅れ分が補償される。従って、媒体タービン発
電機の設定電力に追従して、低圧予熱器の出口の流量調
節弁の開度を設定値になるように制御される。
In the first control means, the deviation signal between the first pressure detector of the low pressure evaporator of the medium system and the fourth pressure detector of the low pressure side inlet of the medium turbine is used as the first bias signal in advance as the exhaust heat deviation. Since it is added to the signal, the secondary delay in heat exchange in the low pressure evaporator is compensated. Therefore, the opening of the flow rate control valve at the outlet of the low pressure preheater is controlled to reach the set value by following the set power of the medium turbine generator.

【0012】第2制御手段では、第1制御手段の排熱流
量偏差信号に基づく第2バイアス信号と排熱系統の低圧
蒸発器の入口の第3温度検出器と低圧蒸発器の出口の第
4温度検出器との偏差信号に基づく第3バイアス信号と
が媒体レベル偏差信号に付加されるため、低圧蒸発器で
熱交換するときの2次遅れ分が補償され、低圧蒸発器の
レベル設定値に追従して、第1レベル調節弁の開度が設
定値になるように制御される。
In the second control means, the second bias signal based on the exhaust heat flow rate deviation signal of the first control means, the third temperature detector at the inlet of the low pressure evaporator of the exhaust heat system and the fourth at the outlet of the low pressure evaporator. Since the third bias signal based on the deviation signal from the temperature detector is added to the medium level deviation signal, the secondary delay when heat is exchanged in the low pressure evaporator is compensated, and the level set value of the low pressure evaporator is adjusted. Following this, the opening of the first level control valve is controlled so as to reach the set value.

【0013】第3制御手段では、前記第2バイアス信号
と高圧蒸発器の入口の第1温度検出器と出口の第2温度
検出器との偏差信号に基づく第4バイアス信号と、高圧
予熱器入口と出口の第2および第3の温度検出器との偏
差信号に基づく第5バイアス信号とを比較した高値が先
行的に第6バイアス信号としてレベル偏差信号に各々付
加されるため、高圧蒸発器で熱交換するときの2次遅れ
分が補償され、高圧蒸発器のレベル設定値に追従して、
高圧蒸発器の入口側の第2レベル調節弁の開度が設定値
になるように制御される。
In the third control means, a fourth bias signal based on the second bias signal and a deviation signal between the first temperature detector at the inlet of the high pressure evaporator and the second temperature detector at the outlet, and the high pressure preheater inlet. Since the high value obtained by comparing the fifth bias signal based on the deviation signal between the second and third temperature detectors at the outlet and the fifth bias signal based on the deviation signal is added in advance to the level deviation signal as the sixth bias signal, Compensating for the secondary delay when exchanging heat, following the level setting value of the high pressure evaporator,
The opening of the second level control valve on the inlet side of the high-pressure evaporator is controlled so as to reach the set value.

【0014】第4制御手段では、媒体タービンの入口圧
力偏差信号に第1バイアス信号と第2バイアス信号と第
3バイアス信号とを付加しているため、媒体タービンの
低圧側の入口圧力が補償され、第2圧力調節弁の開度で
媒体タービンの低圧側の入口圧力が設定値になるように
制御される。
Since the fourth control means adds the first bias signal, the second bias signal and the third bias signal to the inlet pressure deviation signal of the medium turbine, the inlet pressure on the low pressure side of the medium turbine is compensated. The inlet pressure on the low pressure side of the medium turbine is controlled by the opening degree of the second pressure control valve so as to reach the set value.

【0015】第5制御手段では、前記第2バイアス信号
と前記第6バイアス信号と第2圧力検出器の圧力検出信
号と第3圧力検出信号との偏差に基づく第7バイアス信
号とが媒体タービンの入口圧力偏差信号に付加して媒体
タービンの低圧側の入口圧力を補償し、媒体タービンバ
イパスの第1圧力調節弁の開度で媒体タービンの低圧側
の入口圧力が設定値になるように制御される。
In the fifth control means, the second bias signal, the sixth bias signal, the seventh bias signal based on the deviation between the pressure detection signal of the second pressure detector and the third pressure detection signal of the medium turbine are output. It is added to the inlet pressure deviation signal to compensate the low pressure side inlet pressure of the medium turbine, and is controlled so that the low pressure side inlet pressure of the medium turbine becomes a set value by the opening of the first pressure control valve of the medium turbine bypass. It

【0016】第6制御手段では、第5温度検出器の温度
検出信号と第6温度検出器の温度検出信号との偏差信号
に基づく第8バイアス信号と第2バイアス信号とが温度
偏差信号に付加され補償することにより、ホットウェル
タンク内の温度が設定値になるように凝縮器入口の温度
調節弁の開度が制御される。従って、媒体タービンの電
力負荷設定に追従して高圧蒸発器および低圧蒸発器、高
圧予熱器および低圧予熱器、凝縮器の熱交換時の2次遅
れ分を先行的に補償し、かつ、過渡的な排熱流量および
温度変動、低沸点媒体流量および温度変動、冷却水温度
および流量の変動に対し安定に制御が図れる。
In the sixth control means, the eighth bias signal and the second bias signal based on the deviation signal between the temperature detection signal of the fifth temperature detector and the temperature detection signal of the sixth temperature detector are added to the temperature deviation signal. By performing the compensation, the opening of the temperature control valve at the inlet of the condenser is controlled so that the temperature in the hot well tank becomes the set value. Therefore, by following the power load setting of the medium turbine, the secondary delay at the time of heat exchange of the high pressure evaporator and the low pressure evaporator, the high pressure preheater and the low pressure preheater, and the condenser is compensated in advance, and the transient It is possible to stably control the exhaust heat flow rate and temperature fluctuation, the low boiling point medium flow rate and temperature fluctuation, the cooling water temperature and flow rate fluctuation.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明の一実施例を示す排熱利用
発電制御装置の全体系統図である。本システムは、排熱
系統1と媒体系統2と冷却水系統3とから構成されてい
る。
FIG. 1 is an overall system diagram of an exhaust heat utilization power generation control device showing an embodiment of the present invention. This system comprises an exhaust heat system 1, a medium system 2, and a cooling water system 3.

【0019】図において、排熱系統1は、生産井から高
温熱水および排熱が、排熱ポンプ4で汲み上げられ高圧
蒸発器5で媒体と熱交換し、高圧予熱器6に供給され媒
体と熱交換し、低圧蒸発器7に供給され媒体と熱交換
し、低圧予熱器8に供給され媒体と熱交換し還元井へ還
元する。
In the figure, in an exhaust heat system 1, high-temperature hot water and exhaust heat from a production well are pumped up by an exhaust heat pump 4 and exchange heat with the medium in a high-pressure evaporator 5, and are supplied to a high-pressure preheater 6 as a medium. The heat is exchanged, the heat is exchanged with the medium supplied to the low-pressure evaporator 7, and the heat is exchanged with the medium supplied to the low-pressure preheater 8 to be reduced to the reduction well.

【0020】媒体系統2は、媒体が媒体ポンプ9によ
り、低圧予熱器8へ供給され、ここで、媒体が熱交換さ
れ、低圧予熱器8の出口側から分岐して第1媒体系統2
aと第2媒体系統2bとなっている。
In the medium system 2, the medium is supplied to the low-pressure preheater 8 by the medium pump 9, where the medium is heat-exchanged and branched from the outlet side of the low-pressure preheater 8 to the first medium system 2
a and the second medium system 2b.

【0021】第1媒体系統2aは、媒体が媒体ポンプ1
0により、高圧予熱器6へ供給され、ここで、高圧高温
の排熱および熱水と熱交換され、さらに、媒体が高圧蒸
発器5へ供給され、高温の排熱および熱水と熱交換さ
れ、媒体ガスが所定の圧力条件で媒体タービン11へ供
給されて発電機12を駆動させ、その後、媒体ガスは、
第2媒体系統2bと媒体系統2として合流して、凝縮器
13へ流入し、冷却水と熱交換されて媒体となり、ホッ
トウェルタンク14へ回収されている。
In the first medium system 2a, the medium is the medium pump 1
0, it is supplied to the high-pressure preheater 6, where it is exchanged with high-pressure and high-temperature exhaust heat and hot water, and further, the medium is supplied to the high-pressure evaporator 5 and is exchanged with high-temperature exhaust heat and hot water. , The medium gas is supplied to the medium turbine 11 under a predetermined pressure condition to drive the generator 12, and then the medium gas is
The second medium system 2b and the medium system 2 join together, flow into the condenser 13, exchange heat with the cooling water, become a medium, and are collected in the hot well tank 14.

【0022】また、第2媒体系統2bは、低圧予熱器8
の出口側から媒体が低圧蒸発器7に供給され、ここで、
熱交換されて媒体ガスが所定の圧力条件で媒体タービン
11へ供給されて発電機12を駆動させ、第1媒体系統
2aと合流して媒体系統2となっている。
The second medium system 2b has a low pressure preheater 8
The medium is supplied to the low-pressure evaporator 7 from the outlet side of
The medium gas is heat-exchanged and supplied to the medium turbine 11 under a predetermined pressure condition to drive the generator 12, and joins with the first medium system 2a to form the medium system 2.

【0023】また、第1媒体系統2aは所定の圧力条件
で媒体ガスが媒体タービン11をバイアスするバイパス
系統2cが設けられると共に、第2媒体系統2bは所定
の圧力条件で媒体ガスが媒体タービン11をバイアスす
るバイパス系統2dとの合流したバイパス系統2eが媒
体タービン11の出口側に接続されている。
Further, the first medium system 2a is provided with a bypass system 2c for biasing the medium turbine 11 with the medium gas under a predetermined pressure condition, and the second medium system 2b is treated with the medium gas under the predetermined pressure condition for the medium turbine 11. The bypass system 2e that joins with the bypass system 2d that biases the is connected to the outlet side of the medium turbine 11.

【0024】冷却水系統3は、凝縮器13に冷却水を流
す。なお、媒体は、例えば、フロンなどの低沸点の物体
を用いている。
The cooling water system 3 supplies cooling water to the condenser 13. As the medium, for example, a substance having a low boiling point such as CFC is used.

【0025】上記排熱系統1には、流量検出器15、第
1の温度検出器16、第2の温度検出器17、第3の温
度検出器18、第4の温度検出器19、流量調節弁20
がそれぞれ配置され、また、第2媒体系統2bには、低
圧蒸発器7に第1の圧力検出器21と第1のレベル検出
器22とが配置され、低圧蒸発器7の入口側にレベル調
節弁23が配置されている。
The exhaust heat system 1 includes a flow rate detector 15, a first temperature detector 16, a second temperature detector 17, a third temperature detector 18, a fourth temperature detector 19, and a flow rate adjustment. Valve 20
And a first pressure detector 21 and a first level detector 22 in the low-pressure evaporator 7, and a level adjustment on the inlet side of the low-pressure evaporator 7 in the second medium system 2b. A valve 23 is arranged.

【0026】また、第1媒体系統2aには、高圧蒸発器
5に第2の圧力検出器24と第2のレベル検出器25と
が配置され、低圧予熱器8の出口側にレベル調節弁26
が配置され、第1媒体系統2aの媒体タービン11の入
口側に第3の圧力検出器27が配置され、第2媒体系統
2bの媒体タービン11の入口側に第4の圧力検出器2
8とが配置されている。
Further, in the first medium system 2a, a second pressure detector 24 and a second level detector 25 are arranged in the high pressure evaporator 5, and a level control valve 26 is provided at the outlet side of the low pressure preheater 8.
Is arranged, the third pressure detector 27 is arranged on the inlet side of the medium turbine 11 of the first medium system 2a, and the fourth pressure detector 2 is arranged on the inlet side of the medium turbine 11 of the second medium system 2b.
And 8 are arranged.

【0027】さらに、バイパス系統2cには、圧力調節
弁29が配置され、バイパス系統2dには圧力調節弁3
0が配置されている。媒体系統2の凝縮器13の出口側
には、第5の温度検出器31が配置され、ホットウェル
タンク14には第6の温度検出器32が配置されてい
る。また、冷却水系統3には、温度調節弁33と冷却水
ポンプ34とが配置されている。
Further, a pressure regulating valve 29 is arranged in the bypass system 2c, and a pressure regulating valve 3 is arranged in the bypass system 2d.
0 is placed. A fifth temperature detector 31 is arranged on the outlet side of the condenser 13 of the medium system 2, and a sixth temperature detector 32 is arranged on the hot well tank 14. Further, the cooling water system 3 is provided with a temperature control valve 33 and a cooling water pump 34.

【0028】以上説明した各検出器の検出信号は、図2
および図3に示す制御装置40に入力され制御演算され
各調節弁を制御するようになっている。
The detection signal of each detector described above is shown in FIG.
Further, it is input to the control device 40 shown in FIG. 3 for control calculation to control each control valve.

【0029】本実施例は、第1制御手段として、発電機
12の電力負荷設定に対して、排熱流量信号との偏差信
号に先行的に低圧蒸発器7の第1の圧力検出器21と媒
体タービン11の入口側の第4の圧力検出器28との圧
力信号に基づく第1バイアス信号aを加減算して得られ
た偏差信号を流量調節弁20を開閉制御する排熱流量偏
差信号としてPID調節計41に入力するようにしてい
る。
In this embodiment, as the first control means, the first pressure detector 21 of the low-pressure evaporator 7 is preceded by the deviation signal from the exhaust heat flow rate signal with respect to the power load setting of the generator 12. The deviation signal obtained by adding and subtracting the first bias signal a based on the pressure signal with the fourth pressure detector 28 on the inlet side of the medium turbine 11 is used as the PID as the exhaust heat flow rate deviation signal for controlling the opening and closing of the flow rate control valve 20. The input is made to the controller 41.

【0030】第2制御手段として、低圧蒸発器7のレベ
ル設定に対して低圧蒸発器7の媒体レベルとの偏差信号
に先行的に前記第1制御手段の排熱流量偏差信号に基づ
く第2バイアス信号bと低圧蒸発器7の入口と出口の排
熱流量偏差信号に基づく第3バイアス信号cとを加減算
して得られる偏差信号をレベル調節弁23を開閉制御す
るレベル偏差信号としてPID調節計42に入力するよ
うにしている。
As the second control means, the second bias based on the exhaust heat flow rate deviation signal of the first control means is preceded by the deviation signal of the level setting of the low pressure evaporator 7 from the medium level of the low pressure evaporator 7. The deviation signal obtained by adding and subtracting the signal b and the third bias signal c based on the exhaust heat flow deviation signal at the inlet and outlet of the low pressure evaporator 7 is used as the level deviation signal for controlling the opening and closing of the level adjusting valve 23 as the PID controller 42. I am trying to type in.

【0031】第3制御手段として、高圧蒸発器5のレベ
ル設定に対して、高圧蒸発器5の媒体レベルとの偏差信
号に先行的に高圧蒸発器5の入口と出口の排熱温度偏差
信号に基づく第4バイアス信号dと高圧予熱器6の入口
と出口の温度偏差信号に基づく第5バイアス信号eとの
内でいずれか高値を第6バイアス信号fとし、この第6
バイアス信号fと第2バイアス信号bとを加減算して得
られる偏差信号をレベル調節弁26を開閉制御するレベ
ル偏差信号としてPID調節計43に入力するようにし
ている。
As a third control means, when the level of the high-pressure evaporator 5 is set, the deviation signal from the medium level of the high-pressure evaporator 5 is preceded by the exhaust heat temperature deviation signal of the inlet and the outlet of the high-pressure evaporator 5. Of the fourth bias signal d based on this and the fifth bias signal e based on the temperature deviation signal at the inlet and outlet of the high-pressure preheater 6, whichever has the higher value is set as the sixth bias signal f,
A deviation signal obtained by adding and subtracting the bias signal f and the second bias signal b is input to the PID controller 43 as a level deviation signal for controlling the opening / closing of the level adjusting valve 26.

【0032】第4制御手段として、媒体タービン11の
入口圧力設定に対して、媒体タービン11の入口圧力と
の偏差信号に先行的に第1バイアス信号aと第2バイア
ス信号bと第3バイアス信号cとを加減算して得られる
偏差信号を圧力調節弁30を開閉制御する圧力偏差信号
としてPID調節計44へ入力するようにしている。
As a fourth control means, the deviation signal from the inlet pressure of the medium turbine 11 with respect to the inlet pressure setting of the medium turbine 11 is preceded by a first bias signal a, a second bias signal b, and a third bias signal. A deviation signal obtained by addition and subtraction of c and c is input to the PID controller 44 as a pressure deviation signal for controlling the opening and closing of the pressure adjusting valve 30.

【0033】第5制御手段として、媒体タービン11の
入口圧力設定に対して、媒体タービ11の入口圧力との
偏差信号に、先行的に媒体タービン11の圧力信号と高
圧蒸発器5の圧力信号との圧力偏差信号に基づく第7バ
イアス信号gと第2バイアス信号bと第6バイアス信号
fとを加減算して得られる偏差信号を圧力調節弁29を
開閉制御する圧力偏差信号としてPID調節計45へ入
力するようにしている。
As the fifth control means, the deviation signal from the inlet pressure of the medium turbine 11 with respect to the inlet pressure setting of the medium turbine 11, the pressure signal of the medium turbine 11 and the pressure signal of the high-pressure evaporator 5 are preceded. The deviation signal obtained by adding and subtracting the seventh bias signal g, the second bias signal b, and the sixth bias signal f based on the pressure deviation signal of No. 1 to the PID controller 45 as a pressure deviation signal for controlling the opening and closing of the pressure adjusting valve 29. I am trying to enter.

【0034】第6制御手段として、凝縮器13の出口側
の媒体温度設定に対して、媒体温度信号との偏差信号に
先行的に前記媒体温度信号とホットウェルタンク14の
媒体温度信号との偏差信号に基づく第8バイアス信号h
と第2バイアス信号bとを加減算して得られる偏差信号
を温度調節弁33を開閉制御する温度偏差信号としてP
ID調節計46へ入力するようにしている。
As the sixth control means, with respect to the medium temperature setting on the outlet side of the condenser 13, the deviation signal between the medium temperature signal and the medium temperature signal of the hot well tank 14 is preceded by the deviation signal from the medium temperature signal. Eighth bias signal h based on the signal
The deviation signal obtained by adding and subtracting the second bias signal b and P is used as P as the temperature deviation signal for controlling the opening and closing of the temperature control valve 33.
The input is made to the ID controller 46.

【0035】上記構成で、まず、排熱系統1の排熱流量
が図2および図3に示す制御装置40の第1制御手段に
より次のように制御される。
With the above structure, first, the exhaust heat flow rate of the exhaust heat system 1 is controlled by the first control means of the control device 40 shown in FIGS. 2 and 3 as follows.

【0036】制御装置40では、流量検出器15の検出
信号が開平演算器47によってリニア信号にされ、この
信号が電力設定器48により電流負荷設定信号と比較さ
れる。この得られた偏差信号が加減演算器49に加えら
れ、この加減演算器49では、次の第1バイアス信号a
と図示符号で加減算されてPID調節計41に入力され
る。
In the control device 40, the detection signal of the flow rate detector 15 is converted into a linear signal by the square root calculator 47, and this signal is compared with the current load setting signal by the power setting device 48. The obtained deviation signal is added to the addition / subtraction arithmetic unit 49, and in the addition / subtraction arithmetic unit 49, the following first bias signal a
Is added / subtracted by the symbols shown and input to the PID controller 41.

【0037】すなわち、加減演算器50では、第4の圧
力検出器28の検出信号と低圧蒸発器7の第1の圧力検
出器21の検出信号とが加減算され、この加減算信号に
基づいてバイアス器51によって第1バイアス信号aと
して加減演算器49に入力されている。
That is, in the addition / subtraction calculator 50, the detection signal of the fourth pressure detector 28 and the detection signal of the first pressure detector 21 of the low-pressure evaporator 7 are added / subtracted, and the bias device is based on this addition / subtraction signal. It is input to the addition / subtraction calculator 49 as the first bias signal a by 51.

【0038】そして、PID調節計41からの制御信号
が、電空変換器52により空気信号に変換されて流量調
節弁20の開度を制御する。これにより、排熱流量が媒
体タービン11の発電機12の電力設定値に追従して制
御される。
The control signal from the PID controller 41 is converted into an air signal by the electropneumatic converter 52 to control the opening of the flow rate control valve 20. As a result, the exhaust heat flow rate is controlled by following the power set value of the generator 12 of the medium turbine 11.

【0039】次に、第2制御手段では、低圧蒸発器7の
第1のレベル検出器22の検出信号がレベル設定器53
のレベル設定信号と比較され、偏差信号が加減算器54
に加えられる。さらに、この加減算器54には、第2バ
イアス信号bと第3バイアス信号cとが加えられる。
Next, in the second control means, the detection signal of the first level detector 22 of the low pressure evaporator 7 is the level setter 53.
And the deviation signal is compared with the level setting signal of
Added to. Further, the second bias signal b and the third bias signal c are added to the adder / subtractor 54.

【0040】すなわち、第2バイアス信号bは、加減演
算器49からの排熱流量偏差信号に基づいてバイアス器
55によりバイアス設定されたものである。また、加減
算器56では、低圧蒸発器7の入口の第3の温度検出器
18の検出信号を温度変換器57により変換した電流信
号と低圧蒸発器7の出口の第4の温度検出器19の検出
信号を温度変換器58により変換した電流信号とが加え
られ、この加減算信号がバイアス器59によって第3バ
イアス信号cとしている。
That is, the second bias signal b is biased by the bias unit 55 based on the exhaust heat flow rate deviation signal from the addition / subtraction calculator 49. Further, in the adder / subtractor 56, the current signal obtained by converting the detection signal of the third temperature detector 18 at the inlet of the low pressure evaporator 7 by the temperature converter 57 and the fourth temperature detector 19 at the outlet of the low pressure evaporator 7 are detected. The detection signal and the current signal converted by the temperature converter 58 are added, and this addition / subtraction signal is made the third bias signal c by the bias device 59.

【0041】加減算器54の出力信号は、PID調節計
42に入力され、その制御信号が電空変換器60で空気
信号に変換されてレベル調節弁23の開度の増減によっ
て低圧蒸発器7のレベルが制御される。
The output signal of the adder / subtractor 54 is input to the PID controller 42, and the control signal thereof is converted into an air signal by the electropneumatic converter 60 and the opening degree of the level adjusting valve 23 is increased / decreased. The level is controlled.

【0042】次に、第3制御手段では、高圧蒸発器5の
第2のレベル検出信号25の検出信号がレベル設定器6
1のレベル設定信号と比較され、得られた偏差信号が加
減算器62に加えられる。さらに、この加減算器62は
第2バイアス信号bと第6バイアス信号fとが加えられ
る。
Next, in the third control means, the detection signal of the second level detection signal 25 of the high pressure evaporator 5 is the level setting device 6.
It is compared with the level setting signal of 1, and the obtained deviation signal is added to the adder / subtractor 62. Further, the adder / subtractor 62 is added with the second bias signal b and the sixth bias signal f.

【0043】すなわち、加減算器63では、低圧蒸発器
7の入口の第1の温度検出器16の検出信号を温度変換
器64により変換した電流信号と低圧蒸発器7の出口の
第2の温度検出器17の検出信号を温度変換器65によ
り変換した電流信号とが加えられ、この加減算信号がバ
イアス器66によって第4バイアス信号dとして後述す
る高値優先器67に入力している。
That is, in the adder / subtractor 63, the current signal obtained by converting the detection signal of the first temperature detector 16 at the inlet of the low pressure evaporator 7 by the temperature converter 64 and the second temperature detection at the outlet of the low pressure evaporator 7. The detection signal of the device 17 is added to the current signal converted by the temperature converter 65, and the addition / subtraction signal is input to the high value priority device 67 described later as the fourth bias signal d by the bias device 66.

【0044】また、加減算器68では、前述した温度変
換器57と温度変換器65との電流信号とが加えられ、
この加減算信号がバイアス器69によって第5バイアス
信号eとして高値優先器67に入力している。
In addition, in the adder / subtractor 68, the current signals of the temperature converter 57 and the temperature converter 65 described above are added,
The addition / subtraction signal is input to the high price priority device 67 as the fifth bias signal e by the bias device 69.

【0045】高値優先器67では、第4バイアス信号d
と第5バイアス信号eとのいずれか高値を選択して第6
バイアス信号fとしている。
In the high price priority device 67, the fourth bias signal d
And the fifth bias signal e, whichever is higher,
The bias signal f is used.

【0046】加減算器62の出力信号は、PID調節計
43に入力され、その制御信号が電空変換器70で空気
信号に変換されてレベル調節弁26の開度の増減によっ
て高圧蒸発器5のレベルが制御される。
The output signal of the adder / subtractor 62 is input to the PID controller 43, the control signal of which is converted into an air signal by the electropneumatic converter 70, and the opening degree of the level adjusting valve 26 is increased or decreased to increase or decrease the pressure of the high pressure evaporator 5. The level is controlled.

【0047】次に、第4制御手段では、媒体タービン1
1の入口の第4の圧力検出器28の検出信号が圧力設定
器71の圧力設定信号と比較され、得られた偏差信号が
加減算器72に加えられ、さらに、この加減算器72に
は、第1バイアス信号aと第2バイアス信号bと第3バ
イアス信号cとが図示符号で加減算される。
Next, in the fourth control means, the medium turbine 1
The detection signal of the fourth pressure detector 28 at the inlet of 1 is compared with the pressure setting signal of the pressure setting device 71, and the obtained deviation signal is added to the adder / subtractor 72. The 1-bias signal a, the second bias signal b, and the third bias signal c are added / subtracted by the symbols shown.

【0048】加減算器72の出力信号は、PID調節計
44に入力され、その制御信号が電空変換器73で空気
信号に変換されて、圧力調節弁30の開度の増減によっ
て媒体タービン11の入口圧力が制御される。
The output signal of the adder / subtractor 72 is input to the PID controller 44, the control signal thereof is converted into an air signal by the electropneumatic converter 73, and the opening / closing of the pressure control valve 30 is increased / decreased to cause the medium turbine 11 to move. The inlet pressure is controlled.

【0049】次に、第5制御手段では、媒体タービン1
1の入口の第3の圧力検出器27の検出信号が圧力設定
器74の圧力設定信号と比較され、得られた偏差信号が
加減算器75に加えられ、さらに、加減算器75では第
2バイアス信号bと第6バイアス信号fと第7バイアス
信号gとが図示符号で加減算される。
Next, in the fifth control means, the medium turbine 1
The detection signal of the third pressure detector 27 at the inlet of 1 is compared with the pressure setting signal of the pressure setter 74, the obtained deviation signal is added to the adder / subtractor 75, and the adder / subtractor 75 also outputs the second bias signal. b, the sixth bias signal f, and the seventh bias signal g are added / subtracted by the symbols shown.

【0050】すなわち、加減算器76では、第3の圧力
検出器27の検出信号と第2の圧力検出器24との検出
信号とが加減算され、加減算信号がバイアス器77によ
って第7バイアス信号gとしている。
That is, in the adder / subtractor 76, the detection signal of the third pressure detector 27 and the detection signal of the second pressure detector 24 are added and subtracted, and the addition and subtraction signal is converted into the seventh bias signal g by the bias device 77. There is.

【0051】加減算器75の出力信号は、PID調節計
45に入力され、その制御信号が電空変換器78で空気
信号に変換され、圧力調節弁29の開度の増減によって
媒体タービン11の入口圧力が制御される。
The output signal of the adder / subtractor 75 is input to the PID controller 45, the control signal thereof is converted into an air signal by the electropneumatic converter 78, and the inlet of the medium turbine 11 is changed by increasing or decreasing the opening degree of the pressure adjusting valve 29. The pressure is controlled.

【0052】次に、第6制御手段では、凝縮器13の出
口の第5の温度検出器31の検出信号が温度変換器79
により温度検出信号に変換されて、温度設定器80へ入
力し、この温度設定器80で温度設定信号と比較され、
得られた偏差信号が加減算器81へ加えられ、さらに、
加減算器81には、第2バイアス信号bと第8バイアス
信号hとが図示符号で加減算される。
Next, in the sixth control means, the detection signal of the fifth temperature detector 31 at the outlet of the condenser 13 is the temperature converter 79.
Is converted into a temperature detection signal by the input to the temperature setting device 80, which is compared with the temperature setting signal,
The obtained deviation signal is added to the adder / subtractor 81, and
In the adder / subtractor 81, the second bias signal b and the eighth bias signal h are added / subtracted by the symbols shown.

【0053】すなわち、加減算器82では、温度変換器
79からの電流信号とホットウェルタンク14の第6の
温度検出器32の検出信号を温度変換器83で変換した
電流信号とが加減算され、この加減算信号がバイアス器
84によって第8バイアス信号hとしている。
That is, in the adder / subtractor 82, the current signal from the temperature converter 79 and the current signal obtained by converting the detection signal of the sixth temperature detector 32 of the hot well tank 14 by the temperature converter 83 are added and subtracted. The addition / subtraction signal is made into the eighth bias signal h by the bias device 84.

【0054】加減算器81の出力信号は、PID調節計
46に入力され、その制御信号が電空変換器85で空気
信号に変換され、温度調節弁33の開度が増減されて凝
縮器13の出口の温度が制御される。
The output signal of the adder / subtractor 81 is input to the PID controller 46, the control signal thereof is converted into an air signal by the electropneumatic converter 85, and the opening degree of the temperature control valve 33 is increased / decreased to cause the condenser 13 to cool. The outlet temperature is controlled.

【0055】従って、本実施例によれば媒体タービン1
1の電力負荷設定に追従して高圧蒸発器および低圧蒸発
器、高圧予熱器および低圧予熱器、凝縮器の熱交換時の
2次遅れ分を先行的に補償し、かつ、過渡的な排熱、低
沸点媒体および冷却水温度・流量の変動に対して安定に
制御が図れる。
Therefore, according to this embodiment, the medium turbine 1
Following the power load setting of No. 1, the secondary delay in heat exchange of the high-pressure evaporator and low-pressure evaporator, the high-pressure preheater and low-pressure preheater, and the condenser is compensated in advance, and the transient exhaust heat is removed. In addition, stable control can be achieved against fluctuations in low boiling point medium and cooling water temperature / flow rate.

【0056】[0056]

【発明の効果】以上説明したように本発明は、排熱利用
発電プラントの電力設定負荷に対して、排熱系統への高
圧蒸発器および低圧蒸発器の排熱流量および温度変動に
よる高圧蒸発器および低圧蒸発器の媒体蒸発圧力変動を
防止し、さらに、高圧予熱器および低圧予熱器での排熱
と媒体の熱交換時の2次遅れによる変動防止と、過渡的
な負荷変動を防止するために先行的に排熱系統の高圧蒸
発器および低圧蒸発器の入口および出口の媒体温度変化
率と、凝縮器の冷却水温度と高圧蒸発器および低圧蒸発
器の入口媒体温度変化率を各々バイアス信号として付加
し、排熱流量調節弁の開度を制御することにより、媒体
タービンの発電機の設定電力に追従して制御が図れ、か
つ、媒体タービンの入口圧力の変動を極力小さくなるよ
うに排熱系統、媒体系統、冷却水系統の凝縮器の各熱交
換率を向上させ、過渡的な負荷変動に対して安定に制御
でき、かつ、高効率に運用ができる。
As described above, according to the present invention, the high-pressure evaporator according to the exhaust heat flow rate and the temperature fluctuation of the high-pressure evaporator and the low-pressure evaporator to the exhaust heat system with respect to the power setting load of the exhaust heat utilization power plant. And to prevent fluctuations in the medium evaporation pressure of the low-pressure evaporator, and also to prevent fluctuations due to secondary delay during exhaust heat and medium heat exchange in the high-pressure preheater and low-pressure preheater, and to prevent transient load fluctuations. Bias signals of the medium temperature change rate at the inlet and outlet of the high pressure evaporator and the low pressure evaporator of the exhaust heat system, the cooling water temperature of the condenser and the inlet medium temperature change rate of the high pressure evaporator and the low pressure evaporator By controlling the opening degree of the exhaust heat flow rate control valve, control can be achieved by following the set power of the generator of the medium turbine, and the fluctuation of the inlet pressure of the medium turbine can be reduced as much as possible. Heat system, medium System, to improve the heat exchange efficiency of the condenser cooling water system, can be stably controlled against transient load variations and can operate with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す排熱利用発電プラント
の系統図である。
FIG. 1 is a system diagram of an exhaust heat utilization power plant showing an embodiment of the present invention.

【図2】図1の排熱利用発電プラントを制御する制御装
置の前半部ブロック構成図である。
FIG. 2 is a block diagram of the first half of a control device that controls the power plant using exhaust heat in FIG.

【図3】図1の排熱利用発電プラントを制御する制御装
置の後半部ブロック構成図である。
FIG. 3 is a block configuration diagram of the latter half of a control device that controls the exhaust heat utilization power generation plant of FIG. 1.

【符号の説明】[Explanation of symbols]

1 排熱系統 2 媒体系統 3 冷却水系統 4 排熱ポンプ 5 高圧蒸発器 6 高圧予熱器 7 低圧蒸発器 8 低圧予熱器 9,10 媒体ポンプ 11 媒体タービン 12 発電機 13 凝縮器 14 ホットウェルタンク 15 流量検出器 16 第1の温度検出器 17 第2の温度検出器 18 第3の温度検出器 19 第4の温度検出器 20 流量調整弁 21 第1の圧力検出器 22 第1のレベル検出器 23,26 レベル調節弁 24 第2の圧力検出器 25 第2のレベル検出器 27 第3の圧力検出器 28 第4の圧力検出器 29,30 圧力調節弁 31 第5の温度検出器 32 第6の温度検出器 33 温度調節弁 40 制御装置 1 Exhaust Heat System 2 Medium System 3 Cooling Water System 4 Exhaust Heat Pump 5 High Pressure Evaporator 6 High Pressure Preheater 7 Low Pressure Evaporator 8 Low Pressure Preheater 9,10 Medium Pump 11 Medium Turbine 12 Generator 13 Condenser 14 Hotwell Tank 15 Flow rate detector 16 First temperature detector 17 Second temperature detector 18 Third temperature detector 19 Fourth temperature detector 20 Flow rate adjusting valve 21 First pressure detector 22 First level detector 23 , 26 Level control valve 24 Second pressure detector 25 Second level detector 27 Third pressure detector 28 Fourth pressure detector 29, 30 Pressure control valve 31 Fifth temperature detector 32 Sixth Temperature detector 33 Temperature control valve 40 Control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温熱水および排熱が排熱ポンプによっ
て取り込まれ、高圧蒸発器と高圧予熱器と低圧蒸発器と
低圧予熱器に順次供給され、それぞれと熱交換させる排
熱系統と、ホットウェルタンクから媒体ポンプによって
前記低圧予熱器と前記低圧蒸発器と前記高圧予熱器と前
記高圧蒸発器とへ順次媒体を流して前記高温熱水と排熱
と熱交換され温度上昇された媒体を前記低圧蒸発器およ
び前記高圧蒸発器で媒体を蒸発させて規定圧とし、その
媒体の蒸発ガスを媒体タービンの高圧側および低圧側に
供給し、媒体タービンの発電機を駆動させ、媒体タービ
ンの排ガスが凝縮器に流れて冷却水で冷却され前記ホッ
トウェルタンクに回収して循環させる媒体系統と、前記
凝縮器で媒体タービンの排ガスを冷却水で冷却させる冷
却水系統とからなる排熱利用発電プラントを制御する排
熱利用発電制御装置において、 前記排熱系統には、流量検出器と第1温度検出器と第2
温度検出器と第3温度検出器と第4温度検出器と流量調
節弁をそれぞれ配置し、前記媒体系統の低圧側には、前
記低圧蒸発器に第1圧力検出器と第1レベル検出器とを
配置し、前記低圧蒸発器の入口側に第1レベル調節弁を
配置し、前記媒体系統の高圧側には、前記高圧蒸発器に
第2圧力検出器と第2レベル検出器とを配置し、前記高
圧予熱器の入口側に第2レベル調節弁を配置し、前記媒
体系統の高圧側の媒体タービンの入口側に第3圧力検出
器を配置し、前記媒体系統の低圧側の媒体タービンの入
口側に第4圧力検出器とを配置し、さらに、高圧バイパ
ス系統には、第1圧力調節弁を配置し、低圧側バイパス
系統には第2圧力調節弁を配置し、前記媒体系統の凝縮
器の出口側には、第5温度検出器を配置し、前記ホット
ウェルタンクには第6温度検出器を配置し、冷却水系統
には、温度調節弁と冷却水ポンプとを配置し、 前記媒体タービンの電力設定信号を出力し、この電力設
定信号と、前記流量検出器の排熱流量信号との排熱流量
偏差信号を演算して出力する電力設定手段と、前記第1
圧力検出器の圧力信号と前記第4圧力検出器の圧力信号
との偏差信号に基づいて第1バイアス信号を出力する第
1バイアス信号設定手段と、前記排熱流量量偏差信号と
前記第1バイアス信号とを加減算して加減算信号を出力
する加減算手段と、前記加減算信号を入力して前記流量
調節弁を開閉させ排熱流量を制御する制御信号を出力す
る制御演算手段とからなる第1制御手段と、 前記低圧蒸気発生器のレベル設定信号を出力し、このレ
ベル設定信号と前記第1レベル検出器のレベル検出信号
とのレベル偏差信号を演算出力するレベル設定手段と、
前記第1制御手段の前記加減算信号に基づいて第2バイ
アス信号を出力する第2バイアス設定手段と、前記第3
温度検出器の温度検出信号と前記第4温度検出器の温度
検出信号との温度偏差信号に基ずく第3バイアス信号を
出力する第3バイアス信号設定手段と、前記レベル偏差
信号と前記第2バイアス信号と前記第3バイアス信号と
を加減算して加減算信号を出力する加減算手段と、前記
加減算信号を入力して前記第1レベル調節弁を開閉させ
前記低圧蒸発器のレベルを制御する制御信号を出力する
制御演算手段とからなる第2制御手段と、 前記高圧蒸発器のレベル設定信号を出力し、このレベル
設定信号と第2レベル検出器のレベル検出信号とのレベ
ル偏差信号を演算出力するレベル設定手段と、前記第1
温度検出器の温度検出信号と前記第2温度検出器の温度
検出信号との偏差信号に基づく第4バイアス信号を出力
する第4バイアス設定手段と、前記第2温度検出器の温
度検出信号と前記第3温度検出器の温度検出信号との偏
差信号に基づく第5バイアス信号を出力する第5バイア
ス設定手段と、前記第4バイアス信号と前記第5バイア
ス信号の内でいずれか高値の信号を第6バイアス信号と
して出力する高値優先手段と、前記レベル偏差信号と前
記第2バイアス信号と前記第6バイアス信号とを加減算
して加減算信号を出力する加減算手段と、前記加減算信
号を入力して前記第2レベル調節弁を開閉させ前記高圧
蒸発器のレベルを制御する制御信号を出力する制御演算
手段とからなる第3制御手段と、 前記媒体タービンの低圧側の入口圧力設定信号を出力
し、この入口圧力設定信号と前記第4圧力検出器の圧力
検出信号との圧力偏差信号を演算出力する圧力設定手段
と、前記圧力偏差信号と前記第1バイアス信号と前記第
2バイアス信号と前記第3バイアス信号とを加減算して
加減算信号を出力する加減算出力手段と、前記加減算信
号を入力して前記第2圧力調節弁を開閉させ前記媒体タ
ービンの低圧側の入口圧力を制御する制御信号を出力す
る制御演算手段とからなる第4制御手段と、 前記媒体タービンの高圧側の入口圧力設定信号を出力
し、この入口圧力設定信号と前記第3圧力検出器の圧力
検出信号との圧力偏差信号を演算出力する圧力設定手段
と、前記第2圧力検出器の圧力検出信号と前記第3圧力
検出器の圧力検出信号との偏差信号に基づく第7バイア
ス信号を出力する第7バイアス設定手段と、前記圧力偏
差信号と前記第2バイアス信号と前記第6バイアス信号
と前記第7バイアス信号とを加減算して加減算信号を出
力する加減算手段と、前記加減算信号を入力して前記第
1圧力調節弁を開閉させ前記媒体タービンの高圧側の入
口圧力を制御する制御信号を出力する制御演算手段とか
らなる第5制御手段と、 前記凝縮器の媒体温度設定信号を出力し、この媒体温度
設定信号と前記第5温度検出器の温度検出信号との温度
偏差信号を演算出力する温度設定手段と、前記第5温度
検出器の温度検出信号と前記第6温度検出器の温度検出
信号との偏差信号に基づく第8バイアス信号を出力する
第8バイアス設定手段と、前記温度偏差信号と前記第2
バイアス信号と前記第8バイアス信号とを加減算して加
減算信号を出力する加減算手段と、前記加減算信号を入
力して前記温度調節弁を開閉させ前記凝縮器の媒体温度
を制御する制御信号を出力する制御演算手段からなる第
6制御手段を備えたことを特徴とする排熱利用発電制御
装置。
1. High-temperature hot water and exhaust heat are taken in by an exhaust heat pump and sequentially supplied to a high-pressure evaporator, a high-pressure preheater, a low-pressure evaporator and a low-pressure preheater, and an exhaust heat system for exchanging heat with each and a hot The medium pumped from the well tank to the low-pressure preheater, the low-pressure evaporator, the high-pressure preheater, and the high-pressure evaporator in order by the medium pump, and the high-temperature hot water, the heat exchanged with the exhaust heat, and the temperature-increased medium The medium is evaporated to a specified pressure by the low-pressure evaporator and the high-pressure evaporator, the vaporized gas of the medium is supplied to the high-pressure side and the low-pressure side of the medium turbine, the generator of the medium turbine is driven, and the exhaust gas of the medium turbine is It consists of a medium system that flows into a condenser and is cooled with cooling water to be collected in the hot well tank and circulated, and a cooling water system that cools exhaust gas of a medium turbine with cooling water in the condenser. In an exhaust heat utilization power generation control device for controlling an exhaust heat utilization power generation plant, the exhaust heat system includes a flow rate detector, a first temperature detector, and a second temperature detector.
A temperature detector, a third temperature detector, a fourth temperature detector and a flow rate control valve are arranged respectively, and a low pressure side of the medium system includes a first pressure detector and a first level detector in the low pressure evaporator. And a first level control valve on the inlet side of the low pressure evaporator, and a second pressure detector and a second level detector on the high pressure evaporator on the high pressure side of the medium system. A second level control valve is arranged on the inlet side of the high pressure preheater, a third pressure detector is arranged on the inlet side of the medium turbine on the high pressure side of the medium system, A fourth pressure detector is disposed on the inlet side, a first pressure control valve is disposed on the high pressure bypass system, and a second pressure control valve is disposed on the low pressure side bypass system to condense the medium system. A fifth temperature detector is placed on the outlet side of the vessel and the hot well tank is 6 temperature detectors are arranged, a temperature control valve and a cooling water pump are arranged in the cooling water system, the power setting signal of the medium turbine is output, and this power setting signal and the exhaust heat of the flow rate detector are output. A power setting means for calculating and outputting an exhaust heat flow rate deviation signal from the flow rate signal;
First bias signal setting means for outputting a first bias signal based on a deviation signal between the pressure signal of the pressure detector and the pressure signal of the fourth pressure detector, the exhaust heat flow rate deviation signal and the first bias First control means including addition and subtraction means for adding and subtracting a signal and outputting an addition and subtraction signal, and control calculation means for inputting the addition and subtraction signal and opening and closing the flow rate control valve to output a control signal for controlling the exhaust heat flow rate And level setting means for outputting a level setting signal of the low-pressure steam generator and calculating and outputting a level deviation signal between the level setting signal and the level detection signal of the first level detector,
Second bias setting means for outputting a second bias signal based on the addition / subtraction signal of the first control means; and the third bias setting means.
Third bias signal setting means for outputting a third bias signal based on a temperature deviation signal between the temperature detection signal of the temperature detector and the temperature detection signal of the fourth temperature detector, the level deviation signal and the second bias signal. Signal and the third bias signal are added and subtracted to output an addition and subtraction signal, and an addition and subtraction signal is input to output a control signal for opening and closing the first level control valve to control the level of the low-pressure evaporator. Level setting signal for outputting a level setting signal for the high-pressure evaporator and for calculating and outputting a level deviation signal between the level setting signal and the level detection signal for the second level detector. Means and said first
Fourth bias setting means for outputting a fourth bias signal based on a deviation signal between the temperature detection signal of the temperature detector and the temperature detection signal of the second temperature detector; the temperature detection signal of the second temperature detector; Fifth bias setting means for outputting a fifth bias signal based on a deviation signal from the temperature detection signal of the third temperature detector, and a signal having a higher value out of the fourth bias signal and the fifth bias signal High-value priority means for outputting as a 6-bias signal, addition-and-subtraction means for adding and subtracting the level deviation signal, the second bias signal, and the sixth bias signal, and outputting an addition-and-subtraction signal, A third control means including a control calculation means for opening and closing a two-level control valve to output a control signal for controlling the level of the high-pressure evaporator; and an inlet pressure setting on the low pressure side of the medium turbine. A pressure setting means for outputting a constant signal and calculating and outputting a pressure deviation signal between the inlet pressure setting signal and the pressure detection signal of the fourth pressure detector; the pressure deviation signal, the first bias signal and the second Addition / subtraction output means for adding / subtracting a bias signal and the third bias signal to output an addition / subtraction signal, and inputting the addition / subtraction signal to open / close the second pressure control valve to control the inlet pressure on the low pressure side of the medium turbine And a fourth control means for outputting a control signal for outputting a control signal for controlling the inlet pressure setting signal for the high pressure side of the medium turbine, and the inlet pressure setting signal and the pressure detection signal for the third pressure detector. And a seventh bias signal based on a deviation signal between the pressure detection signal of the second pressure detector and the pressure detection signal of the third pressure detector. A seventh bias setting means, an addition / subtraction means for adding / subtracting the pressure deviation signal, the second bias signal, the sixth bias signal, and the seventh bias signal to output an addition / subtraction signal, and inputting the addition / subtraction signal. Fifth control means comprising a control calculation means for opening and closing the first pressure control valve to output a control signal for controlling the inlet pressure on the high pressure side of the medium turbine; and outputting a medium temperature setting signal for the condenser, Temperature setting means for calculating and outputting a temperature deviation signal between the medium temperature setting signal and the temperature detection signal of the fifth temperature detector, a temperature detection signal of the fifth temperature detector and a temperature detection of the sixth temperature detector. Eighth bias setting means for outputting an eighth bias signal based on a deviation signal from the signal, the temperature deviation signal, and the second
Addition / subtraction means for adding / subtracting a bias signal and the eighth bias signal to output an addition / subtraction signal; and a control signal for inputting the addition / subtraction signal to open / close the temperature control valve and control the medium temperature of the condenser. An exhaust heat utilization power generation control device comprising a sixth control means comprising a control calculation means.
JP21349093A 1993-08-06 1993-08-06 Exhaust heat recovery power generation control device Pending JPH0749005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21349093A JPH0749005A (en) 1993-08-06 1993-08-06 Exhaust heat recovery power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21349093A JPH0749005A (en) 1993-08-06 1993-08-06 Exhaust heat recovery power generation control device

Publications (1)

Publication Number Publication Date
JPH0749005A true JPH0749005A (en) 1995-02-21

Family

ID=16640066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21349093A Pending JPH0749005A (en) 1993-08-06 1993-08-06 Exhaust heat recovery power generation control device

Country Status (1)

Country Link
JP (1) JPH0749005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259533A (en) * 2019-06-21 2019-09-20 中南大学 Couple the card Linne cycle waste heat generating system of lithium bromide absorbing type refrigeration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259533A (en) * 2019-06-21 2019-09-20 中南大学 Couple the card Linne cycle waste heat generating system of lithium bromide absorbing type refrigeration
CN110259533B (en) * 2019-06-21 2021-11-19 中南大学 Kalina circulation waste heat power generation system of coupling lithium bromide absorption refrigeration

Similar Documents

Publication Publication Date Title
CN103216314B (en) Generating method employing ship waste heat recovery system and waste heat recovery system thereof
JPS6239648B2 (en)
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPS6213490B2 (en)
JPH0749005A (en) Exhaust heat recovery power generation control device
CN216554037U (en) System for utilize outside steam to carry out steam turbine and dash commentaries on classics
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JPH05272306A (en) Exhaust heat utilizing power generation control device
Aurora et al. Nonlinear model predictive control of combined cycle power plants
JPH07180979A (en) Power generating control device utilizing waste heat
JPH06241007A (en) Waste heat utilization system controller
JPH0518212A (en) Waste heat utilizing power generation control device
JP2685336B2 (en) Steam-cooled gas turbine combined plant
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2918743B2 (en) Steam cycle controller
JP3939996B2 (en) Operation method of exhaust heat recovery power generation system
JPH08135411A (en) Control device of exhaust heat using power plant
JPH05118203A (en) Power generation control device in exhaust heat utilization system
CN111794820B (en) Organic Rankine cycle system
Chen et al. Active control of stack inlet and outlet coolant temperature for the PEM fuel cell system
CN117386511A (en) TCA cooling water control method and system
CN116667383B (en) Heat pump and low-adding coupling thermal power generating unit frequency modulation system and method
JPH05340205A (en) Controller for combined power generation plant
JP3095575B2 (en) Cycle plant
JPH10184316A (en) Power generation control device utilizing exhaust heat