JPS6112195B2 - - Google Patents

Info

Publication number
JPS6112195B2
JPS6112195B2 JP8056079A JP8056079A JPS6112195B2 JP S6112195 B2 JPS6112195 B2 JP S6112195B2 JP 8056079 A JP8056079 A JP 8056079A JP 8056079 A JP8056079 A JP 8056079A JP S6112195 B2 JPS6112195 B2 JP S6112195B2
Authority
JP
Japan
Prior art keywords
condenser
flow rate
cooling water
rate command
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8056079A
Other languages
Japanese (ja)
Other versions
JPS563885A (en
Inventor
Tatsuo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8056079A priority Critical patent/JPS563885A/en
Publication of JPS563885A publication Critical patent/JPS563885A/en
Publication of JPS6112195B2 publication Critical patent/JPS6112195B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は火力、原子力発電プラントの復水器に
冷却水を供給する冷却水流量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling water flow rate control device for supplying cooling water to a condenser of a thermal or nuclear power plant.

一般に火力、原子力発電プラントにおいては蒸
気タービン内で膨張して仕事を終えた蒸気が復水
器に導かれ、ここで冷却凝縮され水になると共に
復水器内部は高度の真空状態にして背圧を下げ、
蒸気タービン中の熱落差を大きくし、タービンの
出力および効率を増進させている。このような復
水器はタービンの負荷率に応じて最良の効率で運
転されるような真空度が演算され、この真空度を
維持するものが冷却水流量制御装置である。
Generally, in thermal and nuclear power plants, steam that has expanded in a steam turbine and completed its work is led to a condenser, where it is cooled and condensed to become water, and the inside of the condenser is kept in a high vacuum state to create back pressure. lower the
The heat drop in the steam turbine is increased, increasing the output and efficiency of the turbine. In such a condenser, a degree of vacuum is calculated so that the condenser can be operated at the best efficiency according to the load factor of the turbine, and a cooling water flow rate control device maintains this degree of vacuum.

このような復水器の冷却水としては一般に海水
が使用され、タービン排気と熱交換された後は再
度海に排出される。しかし、排水温度は付近の海
水の温度よりも高く、このために種々の弊害を引
き起こすので、この温度上昇分を所定の範囲に維
持することが社会的な責務となつている。
Seawater is generally used as the cooling water for such condensers, and after exchanging heat with the turbine exhaust, it is discharged into the sea again. However, the temperature of the wastewater is higher than the temperature of the nearby seawater, which causes various adverse effects, so it has become a social responsibility to maintain this temperature increase within a predetermined range.

第1図は復水器の冷却水の循環系統を示す図
で、取水口1の冷却水は循環水ポンプ2Aおよび
2Bによつて汲み上げられ、その一部は復水器入
口弁3Aおよび3Bを介して復水器に流入する
が、この復水器入口弁はそれぞれ電動機4Aおよ
び4Bにより弁開度が調節され、これによつて復
水器への冷却水流量が調節されるので、復水器の
真空度および排水温度制御が行なわれる。
Figure 1 is a diagram showing the cooling water circulation system of the condenser. Cooling water at water intake 1 is pumped up by circulating water pumps 2A and 2B, and a part of it is pumped up by the condenser inlet valves 3A and 3B. The opening of the condenser inlet valves is adjusted by electric motors 4A and 4B, which adjusts the flow rate of cooling water to the condenser. The degree of vacuum in the vessel and the temperature of the waste water are controlled.

かくして、復水器水室5Aおよび5Bに入つた
冷却水は図示しない冷却管群を実線矢印方向に通
る間に蒸気タービン7の排気と熱交換され、ここ
で温められた冷却水は排水口8に放出される。
In this way, the cooling water that has entered the condenser water chambers 5A and 5B exchanges heat with the exhaust gas of the steam turbine 7 while passing through a group of cooling pipes (not shown) in the direction of the solid line arrow, and the cooling water warmed here passes through the drain port 8. is released.

一方、循環水ポンプによつて汲み上げられた冷
却水の中、復水器に供給された残りの冷却水は、
電動機10Aおよび10Bにより弁開度が調節さ
れる復水器バイパス弁9Aおよび9Bを通り、前
述の復水器排水と混合され排水口8に放出され
る。ここで、冷却水流量としては復水器排水量と
復水器バイパス流量の和が用いられ、流量検出器
11Aおよび11Bによつて検出されている。
On the other hand, the remaining cooling water pumped up by the circulating water pump and supplied to the condenser is
The water passes through condenser bypass valves 9A and 9B whose valve openings are adjusted by electric motors 10A and 10B, is mixed with the aforementioned condenser waste water, and is discharged to drain port 8. Here, the sum of the condenser drainage amount and the condenser bypass flow rate is used as the cooling water flow rate, and is detected by the flow rate detectors 11A and 11B.

以上の冷却水系統において、復水器バイパス弁
9Aおよび9Bは通常全閉され、復水器入口弁3
Aおよび3Bの開度調節によつて復水器の真空度
および排水温度が制御され、例えば、タービンが
最大負荷運転されても最適な真空度が得られるよ
うに復水器入口弁および復水器冷却管の容量設計
がなされている。また、復水器の最適真空度を得
るために必要な流量以上の冷却水が排水温度制御
に必要となるのが一般的で、実際上は多量の冷却
水が復水器に供給されるために冷却効果が増し
て、その分だけ熱落差が大きくなるために、ター
ビンの効率はきらに向上することになる。
In the above cooling water system, the condenser bypass valves 9A and 9B are normally fully closed, and the condenser inlet valve 3
The degree of vacuum in the condenser and the temperature of the drain water are controlled by adjusting the openings of A and 3B. For example, the condenser inlet valve and the condensate temperature are The capacity of the cooling pipe is designed. Additionally, it is common that a flow rate of cooling water greater than the flow rate required to obtain the optimum degree of vacuum in the condenser is required to control the drainage temperature, and in practice, a large amount of cooling water is supplied to the condenser. The cooling effect increases, and the heat drop increases accordingly, resulting in a significant improvement in turbine efficiency.

しかしながら、温排水温度制御は取水口(海水
温度)と排水温度との差を一定に制御するため
に、海水の温度変化やタービンの負荷状態または
排水温度の測定点(他のタービンの排水と合流す
る点を測定することもある)によつては、復水器
内に流し得る最大流量を超えることもある。
However, in order to control the difference between the water intake (seawater temperature) and the wastewater temperature to a constant level, thermal wastewater temperature control takes into consideration changes in seawater temperature, turbine load conditions, and wastewater temperature measurement points (where it joins the wastewater from other turbines). In some cases, the maximum flow rate that can flow into the condenser may be exceeded.

斯かる従来の装置では運転員が復水器の真空度
を監視し乍ら、復水器バイパス弁を手動操作して
温排水温度を規定の範囲に維持していたが、ター
ビン負荷率、取水口の温度等種々の変動に追随さ
せることは運転員の心労が大きく、また、信頼性
も低いという欠点があつた。
In such conventional equipment, operators monitor the vacuum level of the condenser and manually operate the condenser bypass valve to maintain the temperature of the heated wastewater within a specified range. The drawback is that it requires a lot of effort for the operator to keep up with various changes in mouth temperature, etc., and is also low in reliability.

本発明は上記の欠点を除去するためになされた
もので、復水器内を流れる冷却水が定格流量を超
えたときに復水器バイパス弁の開度調節を自動的
に行う復水器の冷却水流量制御装置の提供を目的
とする。
The present invention has been made to eliminate the above-mentioned drawbacks, and is a condenser that automatically adjusts the opening of the condenser bypass valve when the cooling water flowing in the condenser exceeds the rated flow rate. The purpose is to provide a cooling water flow rate control device.

以下、添付図面を参照して本発明の一実施例に
ついて説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第2図は本発明による冷却水流量制御装置の構
成を示すブロツク図で、冷却水系統AおよびBの
中、A系統の制御装置を100として示し、B系
統もこれと全く同一なものが用いられる。101
は流量設定回路で、タービン負荷率や取水口海水
温度等から流量設定値Q1を算出するもの、10
2は加算器で、復水器流量および復水器バイパス
弁流量の合計値(以下総合実流量という)を流量
検出器11Aによつて検出した値Q2と前述の流
量設定値Q1との差Q3を算出するもの、103は
流量指令回路で、差信号Q3に基いて、冷却管路
の遅れ、流量損失および流量変化率制限等を考慮
し、復水器流量と復水器バイパス弁流量との合計
値(以下総合流量指令値という)Q4を出力する
もの、104は復水器入口弁流量指令器で、復水
器入口弁および復水器冷却管から制限を受けるま
では前述の総合流量指令値Q4に比例し、それ以
降は一定の値に制限された流量指令値Q5を出力
するもの、105は復水器バイパス弁流量指令器
で、復水器側の冷却水量が最大流量を超えたとき
にその増加分、すなわち、バイパス管に流すべき
流量指令値Q6を出力するもの、106は復水器
側流量指令値Q5を復水器入口弁開度値ηに変
換する復水器入口弁開度変換器、107は加算器
で復水器入口弁3Aの開度検出器12Aの開度η
と前記復水器入口弁開度値ηとの差信号η
を算出するもの、108は復水器入口弁開度調節
器で差信号ηによつて復水器入口弁開度調節電
動機4Aを調節して復水器入口弁開度を調節す
る。
FIG. 2 is a block diagram showing the configuration of a cooling water flow rate control device according to the present invention. Among cooling water systems A and B, the control device for system A is shown as 100, and the same system is also used for system B. It will be done. 101
is a flow rate setting circuit that calculates the flow rate setting value Q1 from the turbine load factor, water intake seawater temperature, etc., 10
2 is an adder that calculates the sum of the condenser flow rate and the condenser bypass valve flow rate (hereinafter referred to as total actual flow rate) between the value Q2 detected by the flow rate detector 11A and the aforementioned flow rate set value Q1 . 103 is a flow rate command circuit that calculates the difference Q 3. Based on the difference signal Q 3 , the condenser flow rate and condenser bypass are calculated by taking into consideration cooling pipe delay, flow loss, flow rate change rate restriction, etc. 104 is the condenser inlet valve flow rate command device that outputs the total value (hereinafter referred to as the total flow rate command value) Q 4 with the valve flow rate. 105 is a condenser bypass valve flow rate command device that outputs a flow rate command value Q 5 that is proportional to the aforementioned total flow rate command value Q 4 and is limited to a constant value thereafter. 106 outputs the increased amount of water when it exceeds the maximum flow rate, that is, the flow rate command value Q 6 to be sent to the bypass pipe, and 106 is the condenser side flow rate command value Q 5 as the condenser inlet valve opening value. A condenser inlet valve opening converter 107 converts the opening degree η of the opening detector 12A of the condenser inlet valve 3A to an adder 107.
2 and the condenser inlet valve opening value η 2 , the difference signal η 3
, and 108 is a condenser inlet valve opening degree regulator which adjusts the condenser inlet valve opening degree adjusting motor 4A based on the difference signal η 3 to adjust the condenser inlet valve opening degree.

また、109は復水器バイパス側流量指令値
Q6を復水器バイパス弁開度値ηに変換する復
水器バイパス弁開度変換器、110は加算器で復
水器バイパス弁開度検出器13Aの開度ηと前
記復水器バイパス弁開度ηとの差信号ηを算
出するもの、111は復水器バイパス弁開度調節
器で差信号ηによつて復水器バイパス弁開度調
節電動機10Aを調節して復水器バイパス弁開度
を制御する。
In addition, 109 is the condenser bypass side flow rate command value
A condenser bypass valve opening converter converts Q 6 into a condenser bypass valve opening value η 4 ; 110 is an adder that converts the opening η 5 of the condenser bypass valve opening detector 13A and the condenser bypass valve opening value η 4; 111 is a condenser bypass valve opening regulator which adjusts the condenser bypass valve opening regulating motor 10A based on the difference signal η6 . to control the condenser bypass valve opening.

上記の如く構成された本発明の冷却水流量制御
装置の作用を説明する。
The operation of the cooling water flow rate control device of the present invention configured as described above will be explained.

先ず、流量設定回路101によつてタービン負
荷率や冷却水温および温排水温度設定値等から流
量設定値Q1を算出し、総合実流量Q2との差Q3
加算器102によつて求められ、この差信号Q3
を基にして、冷却管路の遅れ、流量損失および冷
却管路から制限される流量変化率制限等を加味し
た総合流量指令値Q4が流量指令回路103より
出力される。
First, the flow rate setting circuit 101 calculates the flow rate setting value Q 1 from the turbine load factor, cooling water temperature, heated wastewater temperature setting values, etc., and the difference Q 3 from the total actual flow rate Q 2 is determined by the adder 102. and this difference signal Q 3
Based on this, the flow rate command circuit 103 outputs a total flow rate command value Q 4 that takes into account cooling pipe delay, flow loss, flow rate change rate restriction limited from the cooling pipe, and the like.

この総合流量指令値Q4が比較的小さい場合に
はこの指令値Q4と同一の信号Q5が復水器入口弁
流量指令器より出力されるが、総合流量指令値
Q4が大きくなつて復水器入口弁および復水器冷
却管で制限される量を超えた場合にはこの総合流
量指令値に見合う程の冷却水を復水器に供給でき
ないことになる。この状態はとりもなおさず、復
水器の真空度は十分維持できるけれども、冷却水
の取水側と排出側との温度差を規定の範囲に維持
し得ないことになる。このような状態に対処する
ために復水器バイパス弁流量指令器105が設け
られ、復水器を環流し得る量以上に必要な量を復
水器バイパス弁を通して排出温度を下げている。
よつて、復水器入口弁104の出力が最大点に達
する点で、復水器バイパス弁流量指令器105よ
りバイパス管流量指令値Q6が出力される。これ
らの流量指令値Q5およびQ6に対応した弁開度値
ηおよびηがそれぞれ復水器入口弁開度調節
器108および復水器バイパス弁開度調節器より
出力し、さらにこれらの出力は、各弁開度検出器
の検出値と比較され、その差に相当する分だけ復
水器入口弁3Aおよび復水器バイパス弁9Aが制
御される。これによつて、発電機負荷および海水
の取水側温度の変動に対して適切な量の冷却水を
供給することができる。
When this total flow rate command value Q 4 is relatively small, the same signal Q 5 as this command value Q 4 is output from the condenser inlet valve flow rate controller, but the total flow rate command value
If Q 4 becomes large and exceeds the amount limited by the condenser inlet valve and condenser cooling pipe, it will not be possible to supply enough cooling water to the condenser to match this total flow rate command value. In this state, although the degree of vacuum in the condenser can be maintained sufficiently, the temperature difference between the intake side and the discharge side of the cooling water cannot be maintained within a specified range. In order to cope with such a situation, a condenser bypass valve flow rate controller 105 is provided to lower the discharge temperature by passing a necessary amount through the condenser bypass valve beyond the amount that can be recycled through the condenser.
Therefore, at the point where the output of the condenser inlet valve 104 reaches the maximum point, the bypass pipe flow rate command value Q 6 is outputted from the condenser bypass valve flow rate command device 105. Valve opening values η 1 and η 4 corresponding to these flow rate command values Q 5 and Q 6 are output from the condenser inlet valve opening regulator 108 and the condenser bypass valve opening regulator, respectively. The output of is compared with the detection value of each valve opening degree detector, and the condenser inlet valve 3A and the condenser bypass valve 9A are controlled by an amount corresponding to the difference. Thereby, an appropriate amount of cooling water can be supplied in response to fluctuations in the generator load and the temperature on the seawater intake side.

なお、上記実施例では流量指令回路を復水器側
とバイパス側との合計流量で演算しているが、復
水器側とバイパス管側とを別々に設けて、この部
分より2系統に分け各弁開度を調節してもよい。
In addition, in the above example, the flow rate command circuit is calculated based on the total flow rate of the condenser side and the bypass side, but the condenser side and the bypass pipe side are provided separately, and this part is divided into two systems. The opening degree of each valve may be adjusted.

以上の説明により明らかな如く本発明の冷却水
流量制御装置によれば、復水器バイパス弁の開度
制御が自動的に行なわれ、運転員の負担を軽減す
ると共に、運転員の判断に頼つたために発生する
誤操作を未然に防ぎ、運転効率および信頼性を向
上させることができる。さらに、復水器バイパス
弁が開かれるまでは、復水器の最適真空度を維持
するために必要とする以上の冷却水が排水温度制
御に必要となるので、この余分の冷却水が復水器
内を通過することで、真空度がさらに向上し、効
率も上がることになる。
As is clear from the above description, according to the cooling water flow rate control device of the present invention, the opening degree control of the condenser bypass valve is automatically performed, reducing the burden on the operator and relying on the operator's judgment. It is possible to prevent erroneous operations caused by dripping and improve operational efficiency and reliability. Furthermore, until the condenser bypass valve is opened, more cooling water is required to control the drain temperature than is required to maintain the optimum vacuum level in the condenser, so this excess cooling water is By passing through the chamber, the degree of vacuum is further improved and efficiency is also increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は復水器の冷却水の循環する系統図、第
2図は本発明の一実施例による復水器の冷却水流
量制御装置の構成を示すブロツク図である。 1……取水口、2A,2B……循環水ポンプ、
3A,3B……復水器入口弁、4A,4B……電
動機、5A,5B……復水器水室、6……復水
器、7……蒸気タービン、8……排水口、9A,
9B……復水器バイパス弁、10A,10B……
復水器バイパス弁開度調節電動機、11A,11
B……流量検出器、101……流量設定回路、1
02,107,110……加算器、103……流
量指令回路、104……復水器入口弁流量指令
器、105……復水器バイパス弁流量指令器、1
06……復水器入口弁開度変換器、108……復
水器入口弁開度調節器、109……復水器バイパ
ス弁開度変換器、111……復水器バイパス弁開
度調節器。
FIG. 1 is a system diagram of the circulation of cooling water in a condenser, and FIG. 2 is a block diagram showing the configuration of a cooling water flow rate control device for a condenser according to an embodiment of the present invention. 1...Water intake, 2A, 2B...Circulating water pump,
3A, 3B... Condenser inlet valve, 4A, 4B... Electric motor, 5A, 5B... Condenser water chamber, 6... Condenser, 7... Steam turbine, 8... Drain port, 9A,
9B... Condenser bypass valve, 10A, 10B...
Condenser bypass valve opening adjustment motor, 11A, 11
B...Flow rate detector, 101...Flow rate setting circuit, 1
02, 107, 110... Adder, 103... Flow rate command circuit, 104... Condenser inlet valve flow rate commander, 105... Condenser bypass valve flow rate commander, 1
06... Condenser inlet valve opening converter, 108... Condenser inlet valve opening regulator, 109... Condenser bypass valve opening converter, 111... Condenser bypass valve opening adjustment vessel.

Claims (1)

【特許請求の範囲】[Claims] 1 冷却水の一部が第1の弁を介して復水器を環
流した後、第2の弁を通つた残りの冷却水と混合
して放出される復水器の冷却水流量制御装置にお
いて、タービンの負荷率および取水口温度を用い
て算出される冷却水量の設定値と実冷却水量との
差に基いて総合冷却水流量信号を出力する流量指
令回路と、前記復水器を環流する冷却水量の上限
以下で前記流量指令回路の出力を通過させる第1
の流量指令器と、前記流量指令回路の出力が前記
復水器を環流する冷却水量の上限を超えた超過分
のみを出力する第2の流量指令器とを具備し、前
記第1の流量指令器の出力によつて前記第1の弁
の開度を調節し、前記第2の流量指令器の出力に
よつて前記第2の弁の開度を調節するように構成
した復水器の冷却水流量制御装置。
1. In a cooling water flow control device for a condenser where a part of the cooling water circulates through the condenser through the first valve, mixes with the remaining cooling water that passes through the second valve, and is discharged. , a flow rate command circuit that outputs a total cooling water flow rate signal based on the difference between a set value of the amount of cooling water calculated using the turbine load factor and the water intake temperature and the actual amount of cooling water; and a flow rate command circuit that circulates the condenser. A first circuit that allows the output of the flow rate command circuit to pass when the amount of cooling water is below the upper limit.
a second flow rate command device that outputs only an excess amount of cooling water that the output of the flow rate command circuit exceeds the upper limit of the amount of cooling water circulating through the condenser; Cooling of a condenser configured to adjust the opening degree of the first valve according to the output of the device, and adjust the opening degree of the second valve according to the output of the second flow rate command device. Water flow control device.
JP8056079A 1979-06-26 1979-06-26 Cooling-water flow rate controller of condenser Granted JPS563885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8056079A JPS563885A (en) 1979-06-26 1979-06-26 Cooling-water flow rate controller of condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8056079A JPS563885A (en) 1979-06-26 1979-06-26 Cooling-water flow rate controller of condenser

Publications (2)

Publication Number Publication Date
JPS563885A JPS563885A (en) 1981-01-16
JPS6112195B2 true JPS6112195B2 (en) 1986-04-07

Family

ID=13721713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8056079A Granted JPS563885A (en) 1979-06-26 1979-06-26 Cooling-water flow rate controller of condenser

Country Status (1)

Country Link
JP (1) JPS563885A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165589A (en) * 1985-01-14 1986-07-26 Fuji Electric Co Ltd Cooling water system in condensor
JP5184211B2 (en) * 2008-05-23 2013-04-17 株式会社日立製作所 Condenser and power generation equipment
JP5739302B2 (en) * 2011-10-19 2015-06-24 株式会社日立製作所 Condenser cooling water system

Also Published As

Publication number Publication date
JPS563885A (en) 1981-01-16

Similar Documents

Publication Publication Date Title
US4402183A (en) Sliding pressure flash tank
JPH0629035A (en) Co-operative control device of fuel cell power-generation plant and waste heat collection system
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPS6112195B2 (en)
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JPH08135411A (en) Control device of exhaust heat using power plant
JPH0518212A (en) Waste heat utilizing power generation control device
KR102624688B1 (en) Cooling water bypass apparatus for maintaining the vacuum degree of the condenser and controlling method of the same
JPS59221410A (en) Starting method of combined plant
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPS6154927B2 (en)
JPH05272306A (en) Exhaust heat utilizing power generation control device
JPS6346387A (en) Condenser cooling water supplier
JPS5855322B2 (en) Power plant cooling water drainage temperature control device
JPS5953471B2 (en) Condenser cooling water flow control device
JPH05118203A (en) Power generation control device in exhaust heat utilization system
JP3340866B2 (en) Hot water system facilities in nuclear power plants
JPS5953470B2 (en) Condenser wastewater temperature control device
JPH0223928Y2 (en)
JPH0146684B2 (en)
JPS58206812A (en) Device for adjusting discharged gas of steam turbine with vacuum
JP2965607B2 (en) Steam turbine controller
JPS6223256Y2 (en)
JPS62197601A (en) Steam turbine controller
JPS62103496A (en) Revolutional speed controller of condenser booster pump