JPS5953471B2 - Condenser cooling water flow control device - Google Patents

Condenser cooling water flow control device

Info

Publication number
JPS5953471B2
JPS5953471B2 JP10166578A JP10166578A JPS5953471B2 JP S5953471 B2 JPS5953471 B2 JP S5953471B2 JP 10166578 A JP10166578 A JP 10166578A JP 10166578 A JP10166578 A JP 10166578A JP S5953471 B2 JPS5953471 B2 JP S5953471B2
Authority
JP
Japan
Prior art keywords
cooling water
condenser
flow rate
signal
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10166578A
Other languages
Japanese (ja)
Other versions
JPS5528462A (en
Inventor
立夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10166578A priority Critical patent/JPS5953471B2/en
Publication of JPS5528462A publication Critical patent/JPS5528462A/en
Publication of JPS5953471B2 publication Critical patent/JPS5953471B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明は、火力・原子力発電プラントにおいて、真空度
制御および温排水制御を行う復水器の冷却水流量制御装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling water flow rate control device for a condenser that performs vacuum degree control and heated drainage control in a thermal or nuclear power plant.

一般に火力・原子力発電プラントにおいては、蒸気ター
ビン内で膨張して仕事をした蒸気が復水器に導かれる。
Generally, in thermal and nuclear power plants, steam that has expanded and performed work in a steam turbine is led to a condenser.

この復水器は蒸気タービンの排気を冷却凝縮して水にす
るとともに、高真空状態を作って背圧を低め、蒸気ター
ビン中の熱落差を大にし、タービンの出力および効率を
増進させる装置である。
This condenser is a device that cools and condenses the steam turbine's exhaust gas into water, creates a high vacuum state, lowers the back pressure, and increases the heat drop in the steam turbine, increasing the output and efficiency of the turbine. be.

従って、このような復水器は負荷率に応じて最良の効率
とするための真空度に維持されるもので、この真空度を
得るために復水器の冷却水流量制御が行なわれている。
Therefore, such a condenser is maintained at a degree of vacuum to achieve the best efficiency according to the load factor, and the flow rate of cooling water in the condenser is controlled to obtain this degree of vacuum. .

一方、復水器の冷却水としては一般に海水が使用されタ
ービン排気との熱交換が行なわれた海水は再度溝に放出
される。
On the other hand, seawater is generally used as cooling water for the condenser, and the seawater that has undergone heat exchange with the turbine exhaust is discharged into the groove again.

しかし、この排水温度は付近の海水温度よりも高いため
に種々の弊害を引き起すので冷却水の取水口と放出口と
の温度差を規定値以下に保つように温排水と新規に取水
した冷却水の一部とを混合して排出するような温排水流
量制御も行なわなければならない。
However, since the temperature of this waste water is higher than the temperature of the nearby seawater, it causes various adverse effects, so it is necessary to keep the temperature difference between the cooling water intake and outlet below the specified value by combining the heated waste water with the newly taken cooling water. It is also necessary to control the flow rate of heated wastewater so that it is mixed with some water before being discharged.

第1図は一般的な復水器の冷却水系統図である。FIG. 1 is a cooling water system diagram of a general condenser.

同図において冷却水は取水口1から2系統で供給されて
おり、各系統毎に設けられた循環水ポンプ2Aおよび2
Bにより汲み上げられ、復水器人口弁3Aおよび3Bを
通過することになるが、復水器人口弁は電動機4Aおよ
び4Bにより弁開度制御され、冷却水流量が調節されて
いる。
In the figure, cooling water is supplied from water intake 1 through two systems, and circulating water pumps 2A and 2 are provided for each system.
The water is pumped up by B and passes through condenser valves 3A and 3B. The valve openings of the condenser valves are controlled by electric motors 4A and 4B, and the cooling water flow rate is adjusted.

この復水器人口弁を通った冷却水は復水器水室5Aおよ
び5Bに入り復水器6で図示しない冷却管群を矢印方向
に進む間に蒸気タービン7の排気と熱交換され温められ
た水が排水口8に放出される。
The cooling water that has passed through the condenser artificial valve enters the condenser water chambers 5A and 5B and is heated by exchanging heat with the exhaust gas of the steam turbine 7 while traveling in the direction of the arrow through the cooling pipe group (not shown) in the condenser 6. The water is discharged to the drain port 8.

すなわち、この復水器の冷却水流量制御によって前述の
復水器の真空度が最適状態に維持される。
That is, by controlling the flow rate of cooling water in the condenser, the degree of vacuum in the condenser described above is maintained at an optimum state.

一方、循環水ポンプ2Aおよび2Bによって取水された
新規冷却水の一部は復水器バイパス弁9Aおよび9Bを
通るが、ここで電動機10AおよびIOBにより弁開度
制御が行なわれバイパス冷却水として復水器を通過した
温排水と混合され排水口8へ放出される。
On the other hand, a portion of the new cooling water taken in by the circulating water pumps 2A and 2B passes through the condenser bypass valves 9A and 9B, where the valve opening is controlled by the electric motors 10A and IOB and is returned as bypass cooling water. It is mixed with the warm waste water that has passed through the water dispenser and is discharged to the drain port 8.

この復水器バイパス弁の制御は排水温度制御装置によっ
て行なわれている。
This condenser bypass valve is controlled by a wastewater temperature control device.

しかし1、排水温度制御用に設けられている復水器バイ
パス弁は大容量のものが必要となり建設費の増大ととも
に保守項目が多いという欠点があつた。
However, 1. The condenser bypass valve provided for controlling the temperature of the waste water required a large-capacity one, which resulted in an increase in construction costs and a number of maintenance items.

また、保守項目を少なくするために復水器バイパス弁を
除去して復水器人口弁で排水温度をも制御する構成を仮
定しても、やはり、バイパス弁に要求された以上の流量
を確保する大容量人口弁が必要となるので、建設費が増
大する欠点は解消されない。
Furthermore, even if we assume a configuration in which the condenser bypass valve is removed and the condenser artificial valve also controls the waste water temperature in order to reduce maintenance items, a flow rate greater than that required by the bypass valve will still be ensured. Since a large-capacity population valve is required, the disadvantage of increased construction costs remains unsolved.

また、運転員が手動で行っているプラントでは、冷却水
入口温度の変動、タービン負荷率の変化に従って復水器
真空度および排水温度を適切に維持するために復水器入
力弁および復水器バイパス弁の両方を操作する必要があ
り運転員の心労が甚しいという欠点があった。
In addition, in plants where operations are performed manually by operators, condenser input valves and condenser This method has the disadvantage that it is necessary to operate both bypass valves, which causes a great deal of stress on the operator.

本発明は上記の欠点を除去するためになされたものでタ
ービン効率を向上させる復水器の真空度制御と、復水器
冷却水の取水口と放出口との温度差を規定値以下に保つ
ような排水温度制御との両方を循環水ポンプの制御のみ
で行い、冷却水系統の設備費の低減と手動操作部の削減
を計る復水器の冷却水流量制御装置の提供を目的とする
The present invention has been made to eliminate the above-mentioned drawbacks, and includes controlling the vacuum level of the condenser to improve turbine efficiency, and keeping the temperature difference between the condenser cooling water intake and outlet below a specified value. The purpose of the present invention is to provide a cooling water flow rate control device for a condenser that performs both drainage temperature control and water temperature control only by controlling a circulating water pump, thereby reducing equipment costs for a cooling water system and reducing the number of manual operation parts.

第2図は本発明による冷却水流量制御装置が適用される
復水器の冷却水系統図である。
FIG. 2 is a cooling water system diagram of a condenser to which the cooling water flow rate control device according to the present invention is applied.

同図において、取水口1の冷却水は電動機11Aおよび
11Bにより翼開度調節が行なわれる循環水ポンプ2A
および2Bにより汲み上げられ、そのまま直接に復水器
水室5Aおよび5Bに導かれており、また復水器の出口
流量は流量検出器12Aおよび12Bにより測定されて
いる。
In the figure, the cooling water at the water intake 1 is supplied to a circulating water pump 2A whose blade opening is adjusted by electric motors 11A and 11B.
and 2B, and directly led as they are to condenser water chambers 5A and 5B, and the outlet flow rate of the condenser is measured by flow rate detectors 12A and 12B.

第3図は本発明による復水器の冷却水流量制御装置の一
実施例の構成を示すブロック図である。
FIG. 3 is a block diagram showing the configuration of an embodiment of a cooling water flow rate control device for a condenser according to the present invention.

この冷却水流量制御装置100を構成する101は最適
真空度制御流量設定回路と呼ばれる公知のものであるが
、以下簡単に説明する。
101 constituting this cooling water flow rate control device 100 is a well-known circuit called an optimum degree of vacuum control flow rate setting circuit, which will be briefly explained below.

すなわち、タービンを効率よく運転するためには復水器
の真空度を高くして背圧を低くすることが望ましいが、
この真空度を高くするには冷却水量を増すように循環水
ポンプが運転されなければならず、この循環水ポンプを
駆動する消費電力すなわち送電端損失が増えるだけで無
意味な制御となる。
In other words, in order to operate the turbine efficiently, it is desirable to increase the degree of vacuum in the condenser and lower the back pressure.
In order to increase the degree of vacuum, the circulating water pump must be operated to increase the amount of cooling water, and the power consumption for driving the circulating water pump, that is, the power transmission end loss increases, making the control meaningless.

したがって復水器の真空度はタービンの負荷率以外にタ
ービン排気量、排気温度、復水器冷却面々積、冷却水温
度等によって算出するもので、この真空度を得る冷却水
流量を演算して流量信号を出力するものが最適真空度制
御流量設定回路である。
Therefore, the degree of vacuum in the condenser is calculated based on the turbine exhaust volume, exhaust temperature, condenser cooling area, cooling water temperature, etc. in addition to the turbine load factor, and the cooling water flow rate to obtain this degree of vacuum is calculated. The circuit that outputs the flow rate signal is the optimum vacuum degree control flow rate setting circuit.

同様に102は排水温度制御流量設定回路と呼ばれ公知
のものであるが、概略を以下に説明する。
Similarly, 102 is a well-known circuit called a drainage temperature control flow rate setting circuit, and its outline will be explained below.

排水温度制御は冷却水入口温度と排水口出口温度との差
を規定値以下にする制御であるが、排水口の温度は排水
口付近の温度を数点測定し平均化しているので温排水と
海水が混合し排水口温度が定常状態に落ち着くまでには
海水の熱伝導特性等によって長時間必要とする。
Drainage temperature control is a control that keeps the difference between the cooling water inlet temperature and the drain outlet temperature below a specified value, but the temperature of the drain outlet is determined by measuring the temperature at several points near the drain outlet and averaging it, so it cannot be compared to warm wastewater. It takes a long time for the seawater to mix and for the outlet temperature to settle down to a steady state due to the heat conduction properties of seawater.

また、一般に復水器出口から排水口までの水路が極めて
長いために排水口温度変化にはむだ時間要素もあり複雑
となっているのでタービンの負荷率、冷却水温度等の条
件から、温度差を規定値以下にするための冷却水量を予
測した値と、実際の温度差からの補正分冷却水量を加算
した設定値を算出するものである。
In addition, since the water channel from the condenser outlet to the drain port is generally extremely long, changes in the drain port temperature are complicated due to dead time factors. A set value is calculated by adding a predicted value of the amount of cooling water to make the temperature below a specified value and the amount of cooling water corrected from the actual temperature difference.

103は高値優先回路で、前記二つの設定回路の出力を
比較して高レベルの信号を通過させるもの、104Aお
よび104Bは加算器で復水器の出口流量検出器12A
および12Bと高値優先回路の出力とを比較して差信号
を出力するもの、105Aおよび105Bは調節器で加
算器の出力に応じて循環水ポンプ2Aおよび2Bの電動
機11Aおよび11Bを駆動し、加算器の出力が零にな
るように取水口からの冷却水汲み上げ流量を調節する。
103 is a high value priority circuit that compares the outputs of the two setting circuits and passes a high level signal; 104A and 104B are adders that connect the condenser outlet flow rate detector 12A;
And 12B is compared with the output of the high value priority circuit and outputs a difference signal. 105A and 105B are regulators that drive electric motors 11A and 11B of circulating water pumps 2A and 2B according to the output of the adder, and add Adjust the flow rate of cooling water pumped up from the water intake so that the output of the device becomes zero.

以下、本発明による流量制御装置の作用を説明する。Hereinafter, the operation of the flow rate control device according to the present invention will be explained.

最適真空度制御流量設定回路101の出力Qvと排水温
度制御流量設定回路102の出力Q1とが高値優先回路
103に与えられ、流量設定の高い側に等しい冷却水流
量指令Q5を出力する。
The output Qv of the optimum vacuum degree control flow rate setting circuit 101 and the output Q1 of the drainage temperature control flow rate setting circuit 102 are given to a high value priority circuit 103, which outputs a cooling water flow rate command Q5 equal to the higher flow rate setting.

この流量指令Q5は加算器104Aおよび104Bに加
えられ、別途この加算器入力となる復水器出力流量Qa
−□およびQa−nとそれぞれ比較され、偏差信号Qε
−□およびQa−Bが得られる。
This flow rate command Q5 is added to adders 104A and 104B, and the condenser output flow rate Qa is separately input to this adder.
−□ and Qa−n, respectively, and the deviation signal Qε
-□ and Qa-B are obtained.

この偏差信号は調節器105Aおよび105Bに加えら
れ、この偏差が零となるような信号を電動機11Aおよ
びIIBに与えて、ポンプの翼開度を調節し、冷却水汲
上げ流量を制御する。
This deviation signal is applied to regulators 105A and 105B, and a signal that makes this deviation zero is given to electric motors 11A and IIB to adjust the blade opening of the pump and control the flow rate of the cooling water pumped up.

ここで、高値優先回路を用いたことで真空度または排水
温度が設定値以上の制御が行なわれるが支障は生じない
Here, by using the high value priority circuit, the degree of vacuum or the temperature of the drain water is controlled to be higher than the set value, but no problem occurs.

すなわち、Qv>Q□においては排水温度制御用の冷却
水量を必要以上に流すことになるが復水器の排水温度は
その分低くなり冷却水入口温度と排水口温度との差が小
さくなるので排水口付近の海水に与える影響は少ない側
に作用する。
In other words, when Qv>Q□, the amount of cooling water for controlling the drainage temperature will flow more than necessary, but the drainage temperature of the condenser will be correspondingly lower, and the difference between the cooling water inlet temperature and the drainage outlet temperature will become smaller. The effect on the seawater near the drainage outlet will be less.

また、QT>Qvにおいては真空度制御用の冷却水量を
必要以上に流すことになるが、復水器の真空度が増し背
圧が下がるのでタービン効率が良くなる方向であるので
弊害はない。
In addition, when QT>Qv, the amount of cooling water for controlling the vacuum level will flow more than necessary, but this will not cause any harm as the vacuum level of the condenser will increase and the back pressure will decrease, which will improve the turbine efficiency.

上記実施例では復水器冷却水の出口流量を検出して帰還
信号としたが、復水器冷却水入口流量または循環ポンプ
開度を使用しても同等に作動させることが出来る。
In the above embodiment, the flow rate at the outlet of the condenser cooling water was detected and used as the feedback signal, but the same operation can be achieved by using the flow rate at the inlet of the condenser cooling water or the opening degree of the circulation pump.

以上の説明により明らかな如く本発明による復水器の冷
却水流量制御装置によれば循環水ポンプの制御のみで、
真空度と排水温度を適切な値に維持することが出来、大
容量の弁を必要とせず建設費用の大幅削減が可能となり
、運転員に対しても複雑な手動操作から解放し、タービ
ンプラントを効率的に運転すると共に温排水による弊害
を少なくすることが出来る。
As is clear from the above explanation, according to the condenser cooling water flow rate control device according to the present invention, only the circulating water pump can be controlled.
It is possible to maintain the degree of vacuum and the temperature of the waste water at appropriate values, making it possible to significantly reduce construction costs without the need for large-capacity valves, and freeing operators from complex manual operations, making turbine plants more efficient. It is possible to operate efficiently and to reduce the harmful effects caused by heated waste water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な復水器の冷却水系統図、第2図は本発
明の装置が適用される復水器の冷却水系統図、第3図は
本発明による復水器の冷却水流量制御装置の一実施例の
構成を示すブロック図である。 1・・・・・・取水口、2A、2B・・・・・・循環水
ポンプ、3A、3B・・・・・・復水器人口弁、4A、
4B、 10A、IOB、IIA、IIB・・・
・・・電動機、5A。 5B・・・・・・復水器氷室、6・・・・・・復水器、
7・・・・・・蒸気タービン、8・・・・・・排水口、
9A、9B・・・・・・復水器バイパス弁、12A、1
2B・・・・・・流量検出器、100・・・・・・復水
器の冷却水流量制御装置、101・・・・・・最適真空
度制御量設定回路、102・・・・・・排水温度制御流
量設定回路、103・・・・・・高値優先回路、104
A、104B・・・・・・加算器、105A、105B
・・・・・・調節器。
Fig. 1 is a cooling water system diagram of a general condenser, Fig. 2 is a cooling water system diagram of a condenser to which the device of the present invention is applied, and Fig. 3 is a cooling water system diagram of a condenser according to the present invention. FIG. 1 is a block diagram showing the configuration of an embodiment of a flow rate control device. 1... Water intake, 2A, 2B... Circulating water pump, 3A, 3B... Condenser population valve, 4A,
4B, 10A, IOB, IIA, IIB...
...Electric motor, 5A. 5B... Condenser ice chamber, 6... Condenser,
7...Steam turbine, 8...Drain port,
9A, 9B...Condenser bypass valve, 12A, 1
2B...Flow rate detector, 100...Condenser cooling water flow rate control device, 101...Optimum degree of vacuum control amount setting circuit, 102... Drainage temperature control flow rate setting circuit, 103... High value priority circuit, 104
A, 104B...Adder, 105A, 105B
・・・・・・Adjuster.

Claims (1)

【特許請求の範囲】[Claims] 1 電動機によって翼開度の調節が可能なポンプを用い
て復水器の冷却水流量を制御する装置において、タービ
ン効率を向上させるために復水器を最適な真空度に維持
するような冷却水流量信号を出力する第1の設定回路と
、冷却水の取水口と放出口との温度差を規定値以下に保
つような冷却水流量信号を出力する第2の設定回路と、
前記第1の設定回路および第2の設定回路の出力を比較
してレベルの高い側の信号を通過させる高値優先回路と
、前記復水器の冷却水流量の検出信号と前記高値優先回
路の出力とを比較した偏差信号が与えられることにより
前記電動機を駆動すると共に、この偏差信号が零になる
方向にポンプの翼開度を調節する調節器とを具備した復
水器の冷却水流量制御装置。
1. In a device that controls the flow rate of cooling water in a condenser using a pump whose blade opening can be adjusted by an electric motor, the cooling water is used to maintain the condenser at an optimal degree of vacuum in order to improve turbine efficiency. a first setting circuit that outputs a flow rate signal; a second setting circuit that outputs a cooling water flow rate signal that maintains a temperature difference between a cooling water intake and a cooling water outlet below a specified value;
a high value priority circuit that compares the outputs of the first setting circuit and the second setting circuit and passes a higher level signal; a detection signal of the cooling water flow rate of the condenser; and an output of the high value priority circuit. A cooling water flow rate control device for a condenser, comprising: a controller that drives the electric motor in response to a deviation signal compared with the deviation signal; and a regulator that adjusts the blade opening of the pump in a direction in which the deviation signal becomes zero. .
JP10166578A 1978-08-21 1978-08-21 Condenser cooling water flow control device Expired JPS5953471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10166578A JPS5953471B2 (en) 1978-08-21 1978-08-21 Condenser cooling water flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10166578A JPS5953471B2 (en) 1978-08-21 1978-08-21 Condenser cooling water flow control device

Publications (2)

Publication Number Publication Date
JPS5528462A JPS5528462A (en) 1980-02-29
JPS5953471B2 true JPS5953471B2 (en) 1984-12-25

Family

ID=14306659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10166578A Expired JPS5953471B2 (en) 1978-08-21 1978-08-21 Condenser cooling water flow control device

Country Status (1)

Country Link
JP (1) JPS5953471B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711677B (en) * 2013-12-25 2016-03-30 大唐贵州发耳发电有限公司 A kind of generator unit cooling water pipe structure

Also Published As

Publication number Publication date
JPS5528462A (en) 1980-02-29

Similar Documents

Publication Publication Date Title
JP6599293B2 (en) Central fresh water cooling system for ships
EP0557113A3 (en) Engine cooling system
KR100218205B1 (en) System for controlling hydraulic drive for cooling fan in cooling tower
JPS5953471B2 (en) Condenser cooling water flow control device
JPH0721362B2 (en) Waste heat recovery power generator
KR101852187B1 (en) Coolant flow rate control method for the optimum operation of the vacuum condenser
Komareji et al. Optimal set-point synthesis in HVAC systems
JPS6256427B2 (en)
JPS6112195B2 (en)
KR102624688B1 (en) Cooling water bypass apparatus for maintaining the vacuum degree of the condenser and controlling method of the same
JPH0418984B2 (en)
US4006596A (en) Cooling-water supply system with self-adjusting hydraulics
US4716740A (en) Controller apparatus and method for heat exchange system
JPS60247089A (en) Operation controller for pump
JPS5952193A (en) Vacuum control device of condenser
JPH074758A (en) Cooling device
CN219955771U (en) Cooling water adjusting system
JPH0742509A (en) Movable blade control device for ciculating water pump
JPH08135411A (en) Control device of exhaust heat using power plant
JPS6054595B2 (en) Cooling water flow control device
JPH0145005Y2 (en)
JPS5637485A (en) Condenser controller
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPS6256430B2 (en)
JPS5953470B2 (en) Condenser wastewater temperature control device