JPS5855322B2 - Power plant cooling water drainage temperature control device - Google Patents
Power plant cooling water drainage temperature control deviceInfo
- Publication number
- JPS5855322B2 JPS5855322B2 JP6466479A JP6466479A JPS5855322B2 JP S5855322 B2 JPS5855322 B2 JP S5855322B2 JP 6466479 A JP6466479 A JP 6466479A JP 6466479 A JP6466479 A JP 6466479A JP S5855322 B2 JPS5855322 B2 JP S5855322B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- flow rate
- unit
- temperature difference
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Control Of Temperature (AREA)
Description
【発明の詳細な説明】
本発明は、複数の復水式蒸気タービンユニットを有する
発電所における復水器冷却水排水温度制御装置に関し、
特に発電所の冷却水取排水温度差を規定値内に抑えるよ
うに、各蒸気タービンユニットの運転状態に対応した冷
却水量を得るのに好適な冷却水排水温度制御装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a condenser cooling water drainage temperature control device in a power plant having a plurality of condensing steam turbine units.
In particular, the present invention relates to a cooling water drainage temperature control device suitable for obtaining a cooling water amount corresponding to the operating state of each steam turbine unit so as to suppress the temperature difference between cooling water intake and drainage in a power plant within a specified value.
複数の排水式タービンユニットを備えた発電所では、冷
却水は共通の取水口から、それぞれのユニットの冷却水
ポンプにより取水されそれぞれのユニットの復水器に至
り、タービン排気との熱交換により温度上昇した後、共
通の排水已に排水される。In a power plant equipped with multiple displacement turbine units, cooling water is taken from a common water intake by the cooling water pump of each unit, reaches the condenser of each unit, and the temperature is increased by heat exchange with the turbine exhaust. After rising, it drains into a common drainage basin.
この場合、過度に温度上昇した排水を流すと、排水口付
近の海、河川、湖沼等を熱汚染するおそれがあるため、
発電所冷却水の温度上昇を適正値以下に保たなければな
らない。In this case, discharging wastewater whose temperature has risen excessively may cause thermal contamination of the sea, rivers, lakes, etc. near the drainage outlet.
The temperature rise of power plant cooling water must be kept below an appropriate value.
しかるに従来のユニットの多くは、時々刻々変化する負
荷状態に応じて冷却水流量を調整する調整手段を備えて
おらず、新設のユニットについてのみ冷却水調整手段を
設けることにより、新設のユニットの冷却水排水温度上
昇を適正値にしても、発電所全体の冷却水排水を適正値
に維持することができず、発電所全体の熱汚染対策とし
て満足できない。However, many conventional units are not equipped with an adjustment means to adjust the cooling water flow rate according to the load condition that changes from time to time. Even if the water drainage temperature rise is set to an appropriate value, the cooling water drainage of the entire power plant cannot be maintained at an appropriate value, and this is not satisfactory as a measure against thermal pollution of the entire power plant.
本発明は、上記のような現況を考慮してなされたもので
、本発明の目的は、複数のタービンユニットの一部のみ
が冷却水流量調整装置を備えている場合にも、発電所全
体の冷却水排水の温度上昇を適正値にすることができる
冷却水排水温度制御装置を提供することにある。The present invention has been made in consideration of the above-mentioned current situation, and an object of the present invention is to improve the efficiency of the entire power plant even when only some of the plurality of turbine units are equipped with a cooling water flow rate adjustment device. An object of the present invention is to provide a cooling water drainage temperature control device capable of controlling the temperature rise of cooling water drainage to an appropriate value.
本発明によれば、冷却水流量調整装置を備えていないタ
ービンユニットの冷却水不足分が、冷却水流量調整装置
を備えているタービンユニットの冷却水系統に流される
よう(へ制御が行なわれる。According to the present invention, control is performed so that the insufficient amount of cooling water in a turbine unit that is not equipped with a cooling water flow rate adjustment device is channeled into the cooling water system of a turbine unit that is equipped with a cooling water flow rate adjustment device.
以下本発明の一実施例について説明する。An embodiment of the present invention will be described below.
第1図は、本発明に係る冷却水制御装置を適用する発電
所の冷却水系統を示したものである。FIG. 1 shows a cooling water system of a power plant to which a cooling water control device according to the present invention is applied.
同図において、A、B及びNはそれぞれ復水式タービン
ユニットで、取水口1から各ユニットの冷却水ポンプ(
以下単にポンプという)2A、2B、2Nによって取水
された冷却水は各々の冷初氷管及び復水器人口弁3A、
3B、3Nを通ってそれぞれの復水器4A、4B、4N
に供給さへ各ユニットの負荷状態に見合った熱交換を行
なって、冷却水の温度は上昇する。In the figure, A, B, and N are condensing turbine units, respectively, and each unit's cooling water pump (
(hereinafter simply referred to as pumps) 2A, 2B, and 2N (hereinafter simply referred to as pumps) coolant water is supplied to each cold first ice tube and condenser valve 3A,
3B, 3N to each condenser 4A, 4B, 4N
The temperature of the cooling water increases by performing heat exchange commensurate with the load condition of each unit.
温度が上昇した排水は復水器出口弁5A 、5B 、5
N及び冷却水管排水側を通って排水口8に至る。The waste water whose temperature has increased is discharged from the condenser outlet valves 5A, 5B, 5.
It reaches the drain port 8 through the N and cooling water pipe drain side.
排水口において各ユニットの排水が混合し、排水口付近
の温度ははゾ、各ユニットの排水の質量を考慮に入れた
加重平均温度となり、この温度が、排水口に接する飄河
用、湖沼の水に拡散していく。At the drain outlet, the wastewater from each unit is mixed, and the temperature near the outlet becomes a weighted average temperature that takes into account the mass of the wastewater from each unit. It diffuses into the water.
ここで、ユニットA、Bの冷却水系統は、ポンプ2A
、2Bが運転している限り、各ユニットの負荷量に関係
なく略一定の冷却水量を取水しているが、ユニツl−N
では可動翼ポンプ2Nの翼開度を制御することにより冷
却水管を流れる冷却水量を変えることができるようにな
っている。Here, the cooling water system of units A and B is pump 2A.
, 2B is in operation, it takes in an almost constant amount of cooling water regardless of the load amount of each unit, but unit 1-N
By controlling the blade opening degree of the movable blade pump 2N, the amount of cooling water flowing through the cooling water pipe can be changed.
、ユニツI−A、Bの冷却水
系統では、それぞれ同−系統内の弁3Aまたは5A 、
3Bまたは5Bの開度を変えることによって復水器を流
れる冷却水量を変えることができるが、時々刻々と変化
する各ユニットの負荷状態に対応して各弁を操作するこ
とは、非常に困難を伴なうため、これらの弁3A 、5
A、3B5Bの開度は常時一定即ち、冷却水量一定で運
転される。, in the cooling water systems of Units I-A and B, valves 3A or 5A in the same system, respectively.
The amount of cooling water flowing through the condenser can be changed by changing the opening degree of 3B or 5B, but it is extremely difficult to operate each valve in response to the constantly changing load conditions of each unit. Therefore, these valves 3A, 5
The opening degrees of A and 3B5B are always constant, that is, the amount of cooling water is constant.
また同様な理由でユニツl−Nの弁3N、5Nは一定開
度で運転されるが、ユニツI−Nのポンプ2Nは翼開度
を調整することができる形式のもので、ポンプ2Nの翼
開度の調整により、ユニツI−Nの冷却水流量を、小刻
みに、即ち時々刻々変化する負荷状態に対応して、調整
することができる。Also, for the same reason, the valves 3N and 5N of Units I-N are operated at a constant opening, but the pump 2N of Units I-N is of a type that can adjust the blade opening. By adjusting the opening degree, the cooling water flow rate of the unit I-N can be adjusted in small steps, that is, in response to the load condition that changes from time to time.
またユニツ)Nの冷却水系統は復水器バイパス管6及び
復水器バイパス弁7を有している。Further, the cooling water system of Unit) N has a condenser bypass pipe 6 and a condenser bypass valve 7.
バイパス弁は、復水器側とバイパス管6を流れる冷却水
流量の割合を変化させる機能を持っており、量弁の自動
操作または手動操作によって、復水器4Nに流し得ない
過量の冷却水をバイパス管6に流すことができる横取と
なっている。The bypass valve has the function of changing the ratio of the flow rate of cooling water flowing through the condenser side and the bypass pipe 6, and automatically or manually operates the volume valve to prevent excess cooling water that cannot flow into the condenser 4N. This allows the flow of the water to the bypass pipe 6.
第2図は、本発明による発電所冷却水排水温度制御装置
の一実施例を示したものである。FIG. 2 shows an embodiment of the power plant cooling water drainage temperature control device according to the present invention.
同図において、取排水温度差設定部21によって設定さ
れた信号は、取水温度検出部22、排水口温度検出部2
3からの信号を受ける取排水温度差演算部24によって
求められた実温度差とともに、偏差演算器25に入力さ
れて、温度差偏差信号が得られる。In the same figure, the signal set by the intake water temperature difference setting unit 21 is transmitted to the intake water temperature detection unit 22, the water outlet temperature detection unit 2
The actual temperature difference calculated by the intake/water temperature difference calculating section 24 which receives the signal from 3 is input to the deviation calculating section 25, and a temperature difference deviation signal is obtained.
温度差偏差信号は、温度差偏差信号処理演算部26にお
いて、制御系に適した不感帯セット、一次遅へ積分、無
駄時間等の処理、温度差偏差に見合った冷却水量への変
換等が行なわれ、温度差偏差に対応して増減させるべき
冷却水量の信号が得られる。The temperature difference deviation signal is subjected to processing such as setting a dead band suitable for the control system, integrating to a first-order delay, dead time, etc., and converting it into a cooling water amount commensurate with the temperature difference deviation in the temperature difference deviation signal processing calculation unit 26. , a signal of the amount of cooling water to be increased or decreased in response to the temperature difference deviation is obtained.
この信号は、加算器35において、後述する冷却水流量
先行指令信号と加算され、冷却水流量指令信号処理部3
6において、プラント及び発電所設備のいろいろな条件
に応じた制御等をされて冷却水量に対する実指令値とな
り、さらに減算器37においてユニットNの冷却水量の
検出部38からの実流量信号との差が求められて、偏差
信号が得られる。This signal is added to a cooling water flow rate advance command signal, which will be described later, in an adder 35, and is added to a cooling water flow rate command signal processing section 3.
6, the control etc. according to various conditions of the plant and power plant equipment are performed to obtain the actual command value for the cooling water amount, and further, in the subtracter 37, the difference between the cooling water amount of the unit N and the actual flow signal from the detection unit 38 is calculated. is determined and a deviation signal is obtained.
この信号は、ポンプ翼開度演算部39によって冷却水流
量指令に見合ったポンプ翼開度指令値となり、減算器4
2において、ポンプ翼開度検出部47からの実開度信号
との偏差が得られる。This signal is converted into a pump blade opening command value commensurate with the cooling water flow rate command by the pump blade opening calculating section 39, and the subtractor 4
2, the deviation from the actual opening signal from the pump blade opening detection section 47 is obtained.
この偏差が、ポンプ翼駆動回路部43によって翼駆動信
号となり、要求される翼開度となるようにポンプ翼駆動
部46を制御する。This deviation becomes a blade drive signal by the pump blade drive circuit unit 43, and the pump blade drive unit 46 is controlled so that the required blade opening is achieved.
尚、40はポンプ翼開度信号切替器で、図示の位置にあ
るときにはポンプ翼開度設定器41により手動設定を行
なうことができる。Reference numeral 40 denotes a pump blade opening degree signal switch, and when it is in the position shown in the figure, manual setting can be performed using a pump blade opening degree setting device 41.
また、44はポンプ翼開度操作器44で、図示の位置に
あるときにはポンプ翼操作器45により手動操作を行な
うことができる。Reference numeral 44 denotes a pump blade opening degree control device 44, which can be manually operated by a pump blade control device 45 when in the illustrated position.
上記の取排水温度差設定部21.取水温度検出部22、
排水温度検出部23、取排水温度差演算部24、偏差演
算部25、温度差偏差処理演算部26、冷却水流量指令
信号処理部36、減算器37、冷却水量検出部38、ポ
ンプ翼開度演算部39、減算器42、ポンプ翼駆動回路
部43、ポンプ翼駆動部46、及びポンプ翼開度検出部
47により、冷却水取水と排水との実温度差に基づいて
該実温度差を温度差目標値に一致させるように冷却水流
量が調整される。The above-mentioned intake and water temperature difference setting section 21. Intake water temperature detection unit 22,
Drainage temperature detection section 23, intake and drainage temperature difference calculation section 24, deviation calculation section 25, temperature difference deviation processing calculation section 26, cooling water flow rate command signal processing section 36, subtractor 37, cooling water amount detection section 38, pump blade opening degree The calculation unit 39, subtractor 42, pump blade drive circuit unit 43, pump blade drive unit 46, and pump blade opening detection unit 47 convert the actual temperature difference into a temperature based on the actual temperature difference between the cooling water intake and the drainage water. The cooling water flow rate is adjusted to match the target difference value.
しかしながら、上記のような実温度差に基づいて冷却水
流量を調整するだけでは、下記のような問題がある。However, simply adjusting the cooling water flow rate based on the actual temperature difference as described above causes the following problems.
即ち、一般に取水口から排水口に至る冷却水配管は、距
離が長く、系の遅れが太きいため、取排水温度差による
信号のみでは、タービンの負荷変動等に対応した制御を
行なうことができない。In other words, the cooling water piping from the water intake to the water outlet generally has a long distance and a large system delay, so it is not possible to perform control in response to turbine load fluctuations, etc. using only signals based on the temperature difference between the intake and the water. .
このための運転状態に対応した先行要素を入れる必要が
ある。For this purpose, it is necessary to include preceding elements corresponding to the operating conditions.
冷却水の温度上昇は、タービン負荷に基づく復水器交換
熱量と冷却水流量とによって決定されるので、温度上昇
を規定値に保つための冷却水流量は、復水器交換熱量を
決定する発電機出力の関数として与えられる。The temperature rise of cooling water is determined by the amount of heat exchanged by the condenser based on the turbine load and the flow rate of cooling water, so the flow rate of cooling water to maintain the temperature rise at the specified value is determined by the amount of heat exchanged by the condenser, which determines the amount of heat exchanged by the power generation. It is given as a function of machine power.
ここで、第1図におけるユニットA及びユニットBの冷
却水量はそれぞれのユニットの負荷と関係なく一定流量
であるため、各ユニットの発電機の出力の関数として求
められた冷却水流と、各ユニットの冷却水系統に実際に
流れている冷却水流量との差をユニットNの冷却水系統
に流せば、排水口に於ける発電所冷却水温度上昇を規定
値にすることができる。Here, since the amount of cooling water in unit A and unit B in Fig. 1 is a constant flow rate regardless of the load of each unit, the cooling water flow calculated as a function of the output of the generator of each unit and the amount of cooling water in each unit are If the difference between the flow rate of the cooling water and the flow rate of the cooling water actually flowing through the cooling water system is sent to the cooling water system of the unit N, the temperature rise of the power plant cooling water at the drain can be brought to a specified value.
第2図において、ユニットAの発電機の出力はユニット
A用発電機出力検出部27により検出され この検出値
はユニットA用冷却水不足流量演算部30に供給され、
ここでユニットAの発電機の運転状態から見て(即ち復
水器交換熱量に応じて)、ユニットAの排水温度上昇を
規定値にするために必要な冷却水流量と実際の冷却水流
量との差即ち不足流量を示す信号が作られる(実際の冷
却水流量が過剰の場合には不足流量値が負となる。In FIG. 2, the output of the generator of unit A is detected by the unit A generator output detection section 27, and this detected value is supplied to the cooling water shortage flow rate calculation section 30 for unit A.
Here, from the operating state of the generator in unit A (that is, according to the amount of heat exchanged by the condenser), the flow rate of cooling water required to bring the temperature rise of the waste water in unit A to the specified value and the actual flow rate of cooling water are calculated. (If the actual cooling water flow is in excess, the underflow value will be negative.)
)。同様に、ユニットBの発電機の出力は、ユニットB
用発電機出力検出部28により検出さヘ ユニツl−B
用冷却水不足流量演算部31でユニットBの発電機の運
転状態に基づいて、ユニツ)Bの不足流量を示す信号が
作られる。). Similarly, the output of the generator in unit B is
Units l-B detected by the generator output detection unit 28
Based on the operating state of the generator of unit B, a cooling water shortage flow calculation section 31 generates a signal indicating the insufficient flow of unit B.
ユニットNの発電機の出力はユニツt−N用発電機出力
検出部29で検出さへ この検出値はユニツl−N用冷
却水必要流量演算部32に供給さへここでユニツ)Hの
発電機の運転状態から見て、ユニットNの排水温度上昇
を規定値にするために必要な冷却水流量を示す信号が作
られる。The output of the generator of unit N is detected by the generator output detection section 29 for unit t-N. This detected value is supplied to the required cooling water flow rate calculation section 32 for unit 1-N. A signal is generated that indicates the flow rate of cooling water necessary to bring the temperature rise of the waste water of the unit N to a specified value from the viewpoint of the operating state of the machine.
ユニットA及びユニットBの冷却水不足流量及びユニツ
t−Nの冷却水必要流量は、加算器33において加算さ
れ、発電所全体として取排水温度差を規定値にするため
にユニットNの冷却水系統を流れるべき冷却水流量を示
す信号が得られる。The cooling water shortage flow rate of units A and B and the required cooling water flow rate of unit t-N are added in an adder 33, and the cooling water system of unit N is added in order to bring the temperature difference between intake and drainage to a specified value for the entire power plant. A signal is obtained indicating the amount of cooling water that should flow.
この信号は先行信号処理部34に送られ、ここでユニツ
l−Hのプラント側の機器条件、各ユニットの負荷変動
の条件等による制限またはバイアス等を加え冷却水流量
に関する先行信号が求められる。This signal is sent to the advance signal processing section 34, where limitations or biases based on equipment conditions on the plant side of units I-H, load fluctuation conditions of each unit, etc. are added to obtain a advance signal regarding the cooling water flow rate.
この先行信号は加算器35において、前述の、温度差偏
差に対応して増減させるべき冷却水流量の信号と加算さ
へ この加算の結果が冷却水流量指令信号として冷却水
流量指令信号処置部36に伝えられる。This advance signal is added in the adder 35 to the above-mentioned signal of the cooling water flow rate to be increased or decreased in accordance with the temperature difference deviation.The result of this addition is used as the cooling water flow rate command signal in the cooling water flow rate command signal processing unit 36. can be conveyed to.
このように、ユニットA及びユニットBの発電機の運転
状態を考慮に入れて、ユニツl−Nの冷却水流量を調整
することにより、発電所全体の取排水温度差を規定値に
するための制御が行なわれる。In this way, by taking into account the operating conditions of the generators in Unit A and Unit B and adjusting the cooling water flow rate of Units I-N, it is possible to maintain the temperature difference between intake and drainage water throughout the power plant to the specified value. Control takes place.
なお、発電機の運転状態に対応する冷却水流量を演算す
る場合に、発電機負荷の信号のほかに冷却水温度、復水
器真空度等を演算条件にすれば、更に精度の高い演算が
できる。In addition, when calculating the cooling water flow rate corresponding to the operating status of the generator, even more accurate calculations can be achieved if the cooling water temperature, condenser vacuum level, etc. are used as calculation conditions in addition to the generator load signal. can.
また、ポンプや配管系統が複数ある場合には、該当する
制御装置部分を複数の回路により横取する必要がある。Furthermore, if there are multiple pumps or piping systems, it is necessary to use multiple circuits to control the corresponding control device.
さらに、制御系の応答に見合った予想負荷指令に基づい
て、冷却水流量を演算することも有効である。Furthermore, it is also effective to calculate the cooling water flow rate based on an expected load command that matches the response of the control system.
また、上記の実施例で(ス単一のユニットN(通常、一
つの蒸気タービン設備においては三つ復水器を一対にし
たいわゆる単一ユニットとして使われることが多い。Furthermore, in the above embodiment, a single unit N (normally, in one steam turbine facility, a so-called single unit consisting of a pair of three condensers is often used).
)についてのみ、冷却水流量を調整するようにしたが、
2以上のユニットが冷却水流量調整手段を備えている場
合には、2以上のユニットの冷却水流量を調整して、他
のユニットの冷却水不足流量を補うようにしてもよい。), the cooling water flow rate was adjusted only for
When two or more units are equipped with cooling water flow rate adjusting means, the cooling water flow rate of the two or more units may be adjusted to compensate for the insufficient flow rate of cooling water in other units.
以上のように、本発明によれば、複数台の復水タービン
ユニットを有する発電所の複数台の復水タービンユニッ
トのうちの一部のユニットの冷却水系統の冷却水流量を
自動的に調整することにより、発電所0−)全体として
の取排水温度差を適正値に制御することができる。As described above, according to the present invention, the cooling water flow rate of the cooling water system of some of the plurality of condensing turbine units of a power plant having a plurality of condensing turbine units is automatically adjusted. By doing so, it is possible to control the temperature difference between the intake and drainage water of the entire power plant 0-) to an appropriate value.
特に冷却水流量を頻繁に変えることが難しいユニットが
既存し、新たに取排水温度をある数値以下に抑える必要
が生じた場合には、新しいユニットを1台増設すること
により、または既設のユニットのうちの1台を改造する
ことによって、発電所全体の冷却水排水温度制御が可能
になる。In particular, if you have an existing unit that makes it difficult to change the cooling water flow rate frequently, and it becomes necessary to keep the intake and drainage temperature below a certain value, you can install a new unit or replace the existing unit. By modifying one of these units, it will be possible to control the cooling water drainage temperature for the entire power plant.
また、本装置の採用により、必要以上の冷却水を流さな
くなるので、ポンプ動力の無駄がなくなり、発電所内の
エネルギの節減にも効果的である。Furthermore, by adopting this device, no more cooling water than is required is flown, which eliminates waste of pump power and is effective in saving energy within the power plant.
第1図は本発明一実施例の制御対象となる複数の復水式
蒸気タービンユニットを有する発電所冷却水系統系統図
、第2図は本発明−実施例の制御\
装置を示すブロック線図である。
1・・・・・・取水口、2N・・・・・・ユニットN用
可動翼冷却水ポンプ、4A、4B、4N・・・・・・復
水器、8・・・・・・排水口、21・・・・・・取排水
温度差設定部、22・・・・・・取水温度検出餓23・
・・・・・排水温度検出音医26・・・・・・温度差偏
差信号処理演算部、27 、28 。
29・・・・・・発電機出力検出部、30.31・・・
・・・冷却水不足流量演算部、32・・・・・・冷却水
不足流量演算部 34・・・・・・先行信号処置部、3
6・・・・・・冷却水流量指令信号処置部。Fig. 1 is a system diagram of a power plant cooling water system having a plurality of condensing steam turbine units to be controlled by an embodiment of the present invention, and Fig. 2 is a block diagram showing a control device according to an embodiment of the present invention. It is. 1... Water intake, 2N... Movable blade cooling water pump for unit N, 4A, 4B, 4N... Condenser, 8... Drain port , 21... Intake water temperature difference setting section, 22... Intake water temperature detection section 23.
... Drainage temperature detection sound doctor 26 ... Temperature difference deviation signal processing calculation section, 27 , 28 . 29... Generator output detection section, 30.31...
...Cooling water shortage flow rate calculation unit, 32...Cooling water shortage flow rate calculation unit 34...Advance signal processing unit, 3
6...Cooling water flow rate command signal processing unit.
Claims (1)
取排水の実温度差に基づいて、該実温度差を温度差膜定
値に一致させるために前記複数のタービンユニットのう
ちの一部のタービンユニットの冷却水系統に流れるべき
冷却水流量を求める温度差偏差処理演算部と、前記一部
のタービンユニットの復水器における交換熱量に基づい
て前記一部のタービンユニットの排水温度上昇を所定値
にするために必要な冷却水必要流量を演算する冷却水必
要流量演算部と、前記一部のタービンユニット以外のタ
ービンユニットの復水器における交換熱量に基づいて前
記一部のタービンユニット以外のタービンユニットの排
水温度上昇を所定値にする上で不足している冷却水不足
流量を演算する冷却水不足流量演算部と、前記冷却水必
要流量及び前記冷却水不足流量の和に、プラント条件等
による信号処理を行なって先行信号を求める先行信号処
置部とを備え、前記温度差偏差処理演算部において演算
される冷却水流量と、前記先行信号とに基づいて、前記
一部のタービンユニットの冷却水流量を調整することに
より、冷却水排水の温度を制御する発電所冷却水排水温
度制御装置。1 Based on the actual temperature difference between intake and discharge of cooling water in a power plant having a plurality of turbine units, some turbine units among the plurality of turbine units are adjusted to match the actual temperature difference with the temperature difference film constant value. a temperature difference/deviation processing calculation unit that calculates the flow rate of cooling water that should flow into the cooling water system; and a temperature difference processing unit that calculates the flow rate of cooling water that should flow into the cooling water system; a cooling water required flow rate calculation unit that calculates the required flow rate of cooling water necessary for the operation of the turbine unit, and a cooling water required flow rate calculation unit that calculates the required flow rate of cooling water necessary for the operation of the turbine unit, and a turbine unit other than the some of the turbine units based on the amount of heat exchanged in the condenser of the turbine unit other than the some of the turbine units. a cooling water shortage flow rate calculation unit that calculates a cooling water shortage flow rate that is insufficient to bring the wastewater temperature rise to a predetermined value; and a cooling water shortage flow rate calculation unit that performs signal processing based on plant conditions, etc. on the sum of the cooling water required flow rate and the cooling water shortage flow rate. and a preceding signal processing unit that obtains a preceding signal based on the preceding signal and the cooling water flow rate calculated in the temperature difference deviation processing calculation unit, and adjusting the cooling water flow rate of the some of the turbine units. Power plant cooling water drainage temperature control device that controls the temperature of cooling water drainage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6466479A JPS5855322B2 (en) | 1979-05-25 | 1979-05-25 | Power plant cooling water drainage temperature control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6466479A JPS5855322B2 (en) | 1979-05-25 | 1979-05-25 | Power plant cooling water drainage temperature control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55156204A JPS55156204A (en) | 1980-12-05 |
JPS5855322B2 true JPS5855322B2 (en) | 1983-12-09 |
Family
ID=13264693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6466479A Expired JPS5855322B2 (en) | 1979-05-25 | 1979-05-25 | Power plant cooling water drainage temperature control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5855322B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4664842B2 (en) * | 2006-03-20 | 2011-04-06 | 株式会社東芝 | Energy plant optimal operation system and method, and program |
JP5252375B2 (en) | 2008-12-26 | 2013-07-31 | 日立工機株式会社 | Portable cutting machine |
JP5739302B2 (en) * | 2011-10-19 | 2015-06-24 | 株式会社日立製作所 | Condenser cooling water system |
-
1979
- 1979-05-25 JP JP6466479A patent/JPS5855322B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55156204A (en) | 1980-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2010074173A1 (en) | Control device for exhaust heat recovery system | |
JPS6158644B2 (en) | ||
CN112711282A (en) | Water temperature control method and system of fuel cell | |
JPS5855322B2 (en) | Power plant cooling water drainage temperature control device | |
JPH05222906A (en) | Controller for power plant utilizing exhaust heat | |
JP2001027104A (en) | Condensate flow control method for condensate steam turbine | |
JPS6112195B2 (en) | ||
JP3658478B2 (en) | Condenser equipment | |
JP3603145B2 (en) | Operating device for seawater pump | |
JP2758250B2 (en) | Feed water heater drain water level control device | |
JPH10184316A (en) | Power generation control device utilizing exhaust heat | |
JP2001317305A (en) | Method and device for controlling turbine generator | |
JP2523153B2 (en) | Feed water heater Drain water level control device | |
JPH08135411A (en) | Control device of exhaust heat using power plant | |
JPH04148101A (en) | Controlling method for steam drum water level at time of switching of feed water control valve | |
JP2557930B2 (en) | Circulating water pump blade opening control device for steam turbine exhaust cooling | |
JPS6250756B2 (en) | ||
JPS6139046Y2 (en) | ||
JPS61256187A (en) | Operation control device for circulating water pump | |
JPH05118203A (en) | Power generation control device in exhaust heat utilization system | |
JPS60247089A (en) | Operation controller for pump | |
JPH05272306A (en) | Exhaust heat utilizing power generation control device | |
CN115507357A (en) | Water replenishing system of recoverer of boiler and water level control method and device thereof | |
JPH0727413A (en) | Device for exhaust heat utilization | |
JPS5953470B2 (en) | Condenser wastewater temperature control device |