JP2001317305A - Method and device for controlling turbine generator - Google Patents

Method and device for controlling turbine generator

Info

Publication number
JP2001317305A
JP2001317305A JP2000139556A JP2000139556A JP2001317305A JP 2001317305 A JP2001317305 A JP 2001317305A JP 2000139556 A JP2000139556 A JP 2000139556A JP 2000139556 A JP2000139556 A JP 2000139556A JP 2001317305 A JP2001317305 A JP 2001317305A
Authority
JP
Japan
Prior art keywords
steam
amount
pressure
turbine
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000139556A
Other languages
Japanese (ja)
Inventor
Hidenori Arakawa
英則 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000139556A priority Critical patent/JP2001317305A/en
Publication of JP2001317305A publication Critical patent/JP2001317305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of a turbine generator by maximizing power generating quantity within a limited range of the power generating quantity and in such a way as not to flow it backwards, and provide a device therefor. SOLUTION: (1) Air bleeding pressure is controlled to be constant as a change of air bleeding quantity appears to be variation of the air bleeding pressure as a means to constantly secure necessary quantity of steam quantity (air bleeding quantity). (2) Controllable power generating quantity is restricted by the control of (1), a condensate flow is increased to the maximum in this restricted range of power generating quantity, the air bleeding quantity at that time is maximized, and it is made to be the largest power generating quantity. (3) The power generating quantity is forcibly restricted in the case that it becomes a reverse flow when the power generating quantity exceeds necessary quantity by the combination of (1) and (2). It is possible to prevent pressure variation of a steam header in the case when the steam quantity is suddenly decreased, and it is possible to secure the power generating quantity by controlling an atmospheric air discharge valve even when the turbine itself cannot increase the power generating quantity as it comes to be a limit of quantity of a condense, that is, when opening of a low pressure valve comes to be the upper limit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業用において蒸
気エネルギーと電力エネルギーを供給する設備に係り、
特に復水器容量に制限がある場合のタービン発電機出力
を最大に制御するのに好適な、又は特に復水器容量に制
限がある場合の必要抽気蒸気・電力量を確保するために
好適なタービン・発電機の制御方法と装置に関する。
The present invention relates to a facility for supplying steam energy and electric power energy for industrial use,
Particularly suitable for controlling the turbine generator output to the maximum when the capacity of the condenser is limited, or suitable for securing the required extraction steam and electric energy especially when the capacity of the condenser is limited. The present invention relates to a method and an apparatus for controlling a turbine / generator.

【0002】[0002]

【従来の技術】従来、工場内の各種設備などの需要設備
に蒸気と電力の両方のエネルギーを供給する産業用の自
家発電設備が用いられているが、この自家発電設備には
抽気タービン・発電機系が用いられる。
2. Description of the Related Art Conventionally, industrial private power generation equipment that supplies both steam and electric power to demand equipment such as various facilities in a factory has been used. A system is used.

【0003】ボイラでの発生蒸気は発電と工場内の各種
設備用の蒸気と二つの目的で使用される。蒸気を使用す
るに当たってボイラの発生蒸気をそのまま工場用蒸気に
使用すると温度、圧力ともに高く減圧、減温する必要が
ある。すなわちせっかく確保したエネルギーを無駄に捨
てることになる。
[0003] The steam generated in the boiler is used for two purposes: steam for power generation and various equipment in the factory. In using steam, if the steam generated by the boiler is used as it is for factory steam, it is necessary to reduce the temperature and pressure and reduce the temperature. That is, the energy that has been secured is wasted.

【0004】それを防ぐため、ボイラで生成した蒸気を
いったん抽気タービンに供給し、発電に使用した後の蒸
気を一部抜き出し、工場用の蒸気に使用する。すなわち
抽気をしてそれを利用する。抽気しない蒸気はさらに抽
気タービン内を経て復水器へ戻す。
[0004] To prevent this, steam generated by the boiler is once supplied to an extraction turbine, and a portion of the steam used for power generation is extracted and used as factory steam. That is, bleed air is used. The steam that is not extracted is further returned to the condenser through the extraction turbine.

【0005】前記抽気タービン・発電機系が十分な復水
器の容量を備えている場合は、蒸気量と電力量を各々必
要量に応じて制御することができる。
When the extraction turbine / generator system has a sufficient condenser capacity, the steam amount and the electric power amount can be controlled according to the required amounts.

【0006】抽気タービン・発電機系の電力系統は図4
に示すように、外線(外部の電気を買うための系統で、
いわゆる買電用のものである。)と自家用発電機の2系
統により電力の需要設備に供給する。通常は外線(電力
会社から供給される)と自家用発電機を並列運転とし、
ベースは自家用発電機により電力を需要設備に供給し、
その電力需要設備での不足分を外線(買電)で補う。
The power system of the bleed turbine / generator system is shown in FIG.
As shown in the figure, the outside line (a system for buying external electricity,
It is for power purchase. ) And private power generators to supply power to demand equipment. Usually, the outside line (supplied by the power company) and the private generator are operated in parallel,
The base supplies electric power to demand equipment by a private generator,
The shortfall in the power demand facilities is supplemented by external lines (power purchase).

【0007】電力会社との約束上、自家用発電機側から
外線に対して電力を供給する現象である、いわゆる逆潮
現象が起こらないように、自家用発電機の発電能力を電
力需要設備で必要とする電力より少なくして、いわゆる
買電をするのが一般的な抽気タービン・発電機の運転方
法であるが、外線から補う受電量設定値は可変できるよ
うにしておく。従来の自家発電用の抽気タービン・発電
機の制御系統図を図7に示す。前述のように通常の自家
発電用の抽気タービン・発電機系では復水器の容量が十
分大きいため、工場内で使用する蒸気量(抽気量)に対
して自家用発電機に使用する蒸気量が大きい場合は復水
量を増すことにより抽気量と発電用蒸気量は個別に制御
することが可能である。
[0007] On a promise to the electric power company, the power generation facilities of the private power generator need to have the power generation capability of the private power generator so that the so-called reverse tide phenomenon, which is the phenomenon of supplying power from the private generator side to the outside line, does not occur. It is a general method of operating an extraction turbine / generator to perform so-called power purchase with less power than the power to be supplied. However, the set value of the amount of received power supplemented from an external line is made variable. FIG. 7 shows a control system diagram of a conventional extraction turbine / generator for private power generation. As described above, the capacity of the condenser in a normal extraction turbine / generator system for private power generation is sufficiently large, so that the amount of steam used for the private generator is smaller than the amount of steam used in the factory (the amount of extracted air). When it is large, the amount of extracted air and the amount of steam for power generation can be individually controlled by increasing the amount of condensate.

【0008】したがって、いわゆる逆潮現象が起こらな
いように、外線により一定の電力が供給(買電)される
よう受電量設定値(可変)と実測受電電力量をつき合わ
せ、必ず買電するように受電電力量が0kwを超える設
定値、例えば100kw以上となるように発電用蒸気量
を演算し、必要な発電用蒸気量の制御信号によりガバナ
制御装置は図示しない高圧タービンと低圧タービン等の
複数の圧力系のタービンからなる抽気タービンの中の高
圧タービンへの導入蒸気用の高圧弁と低圧タービンへの
導入蒸気用の低圧弁の開度調整を行う。
Therefore, in order to prevent the so-called reverse tide phenomenon from occurring, the received power set value (variable) and the actually measured received power are matched so that constant power is supplied (purchased) by the outside line, and the power is always purchased. The governor control device calculates the amount of steam for power generation such that the amount of received power exceeds 0 kW, for example, 100 kw or more, and controls the governor control device based on a necessary control signal of the amount of steam for power generation. The opening of the high-pressure valve for introducing steam to the high-pressure turbine and the low-pressure valve for introducing steam to the low-pressure turbine in the extraction turbine including the pressure system turbine is adjusted.

【0009】このとき、工場で必要とする蒸気量を優先
的に制御すると、工場蒸気の必要量が多い時はどんどん
タービンに蒸気を供給して抽気量を増やす必要がある。
そのとき発電電力を増やす必要があれば、さらに供給蒸
気量を増やして発電し、その蒸気は復水器に戻す。しか
し、本発明が対象とするような抽気タービン発電系で
は、抽気タービン中の高圧タービンと低圧タービン等の
タービンの駆動に使用した後に冷却して得られる復水は
復水タンクに貯溜されるが、復水タンクの容量に制限が
あるため発電に必要な蒸気量にまだ余裕があっても復水
器の能力いっぱいに達するとそれ以上は発電できないこ
とになる。すなわち発電電力は制御不要となり、なりゆ
きまかせとなる。
At this time, if the amount of steam required in the factory is controlled preferentially, when the required amount of factory steam is large, it is necessary to increase steam extraction by supplying steam to the turbine.
If the generated power needs to be increased at that time, the amount of steam to be supplied is further increased to generate power, and the steam is returned to the condenser. However, in the extraction turbine power generation system as an object of the present invention, the condensate obtained by cooling after being used for driving turbines such as a high pressure turbine and a low pressure turbine in the extraction turbine is stored in a condensate tank. However, because the capacity of the condenser tank is limited, even if the amount of steam required for power generation still has a margin, it cannot be generated any more when the capacity of the condenser reaches its full capacity. In other words, the generated power is not required to be controlled, and it is left to the end.

【0010】一方、発電電力を優先的に制御すると、電
力の必要量が小さい場合は、タービンに供給する蒸気量
も少なくなり、その分だけ抽気量も少なくなり、工場蒸
気の必要量が確保出来ない場合が生じる。
On the other hand, if the generated power is controlled preferentially, when the required amount of power is small, the amount of steam supplied to the turbine is also reduced, and the amount of extracted air is reduced accordingly, so that the required amount of factory steam can be secured. There is no case.

【0011】次に、発電必要量が多い場合は、抽気ター
ビンに供給する蒸気も増やす必要がある。復水器が満杯
になってもまだ発電量を増やす必要がある場合は、供給
蒸気量を増やして発電に供するが、発電で使用した後の
蒸気は復水器には戻せないので抽気量を増やす必要があ
る。その場合、工場用設備で蒸気がそれほど必要なけれ
ば、それは余剰蒸気となり捨てる必要がある。
Next, when the required amount of power generation is large, it is necessary to increase the amount of steam supplied to the extraction turbine. If it is still necessary to increase the amount of power generation even when the condenser is full, increase the amount of steam supplied and use it for power generation, but since the steam used for power generation cannot be returned to the condenser, the amount of bleed air must be reduced. Need to increase. In that case, if the plant equipment does not need as much steam, it becomes excess steam and must be discarded.

【0012】[0012]

【発明が解決しようとする課題】上記従来のタービン発
電設備は、ある運転状態においてタービン・発電機の最
大出力を得る方法について考慮されておらず、抽気ター
ビンを有するタービン発電設備は下記条件を満足し、経
済的運転の方法を考える必要がある。
The above conventional turbine power plant does not consider a method of obtaining the maximum output of the turbine / generator in a certain operating state, and the turbine power plant having the extraction turbine satisfies the following conditions. And it is necessary to consider a method of economical driving.

【0013】(1)電力会社との関係で発電機側から外
線に対して電力を供給する現象である、いわゆる発電量
の逆潮が生じることは許されない。 (2)工場内などで使用する蒸気量を確保するために発
電に用いないで抽気タービンから抽気する蒸気量確保を
最優先する。そのためには発電量の制御方法を考える必
要がある。 (3)使用電力量に対して発電量が不足する場合は外線
から一定の電力の供給を受ける(買電)ことにより賄う
が、むだな出費を避けるために外線からの受電量はでき
るだけ少なくしなければならない。
(1) It is not permissible to generate a so-called reverse tide of the amount of power generation, which is a phenomenon in which power is supplied from a generator to an outside line in relation to a power company. (2) In order to secure the amount of steam used in a factory or the like, the highest priority is given to securing the amount of steam extracted from the extraction turbine without using it for power generation. For that purpose, it is necessary to consider a method of controlling the amount of power generation. (3) If the amount of power generation is insufficient for the amount of power used, it will be covered by receiving a fixed amount of power from an external line (power purchase), but minimize the amount of power received from the external line to avoid unnecessary expenses. There must be.

【0014】また、工場用蒸気(抽気蒸気)がそれ程必
要ないのに電力量が多く必要とされる場合、抽気した蒸
気は行き場がなく、余剰蒸気として大気に放出する必要
がある。
When a large amount of electric power is required without much need for factory steam (extracted steam), the extracted steam has no place to go and needs to be released to the atmosphere as surplus steam.

【0015】(4)通常は蒸気・電力供給設備は工場に
1ユニット設置されるため、この設備のみで工場用蒸気
量と発電量の協調を図る必要がある。 (5)復水容量に制限がある。 (6)蒸気を消費する工場内設備の性質上、蒸気消費量
が不定期に急減または不要になることがある。このよう
な工場側の設備に対して常に発電量を確保し、蒸気圧力
(抽気圧力)を一定に保たないと、蒸気を利用する装置
が正常に稼動しなくなり、例えば当該装置で得られる製
品の品質に悪影響を及ぼすことになる。しかも、蒸気消
費量の急変が頻繁に発生することがあり、またそのよう
なことがいつ発生するか分からない。
(4) Normally, one unit of steam / power supply equipment is installed in a factory. Therefore, it is necessary to achieve coordination between the amount of steam for the factory and the amount of power generation using only this equipment. (5) There is a limit on the condensing capacity. (6) Due to the nature of equipment in a factory that consumes steam, the amount of steam consumption may suddenly drop or become unnecessary at random. Unless the power generation amount is always secured and the steam pressure (bleeding pressure) is kept constant for such plant-side equipment, a device using steam will not operate normally, and for example, products obtained by the device will be used. Will have a negative effect on the quality of the product. Moreover, sudden changes in steam consumption can frequently occur, and it is not known when such will occur.

【0016】従来の技術では抽気タービンから工場設備
用に蒸気を送るための蒸気ヘッダに取り付けられている
大気放出弁は圧力制御回路のみで制御していたため消費
蒸気量が急減すると或いは蒸気が不要になると、あるい
は消費蒸気量に比べ消費電力の方が多く、バランスがく
ずれると、発電量を抑えて不足分は買電でまかなわざる
を得なかった。工場用設備での必要蒸気量が急激に変化
した場合は圧力制御のみでは遅れを生じることに起因し
て圧力変動が起こり、工場製品の品質管理上問題があっ
た。
In the prior art, the atmospheric discharge valve attached to the steam header for sending steam from the extraction turbine to the plant equipment is controlled only by the pressure control circuit. At that point, or the amount of power consumed was greater than the amount of steam consumed, and when the balance was lost, the amount of power generation was reduced and the shortfall had to be covered by power purchase. When the required steam amount in the factory equipment changes suddenly, the pressure control alone causes a delay, which causes a pressure fluctuation, which causes a problem in quality control of factory products.

【0017】本発明の課題は、以上の状況をふまえ、復
水容量が小さいことなどにより発電量が制限された範囲
内で、発電量を最大にし、いわゆる逆潮させないような
抽気式のタービン・発電機の制御方法と装置を提供する
ことにある。
In view of the above circumstances, it is an object of the present invention to provide a bleed-type turbine which maximizes the power generation within a range where the power generation is limited due to a small condensing capacity or the like, and prevents the so-called reverse tide. An object of the present invention is to provide a generator control method and apparatus.

【0018】また、本発明の課題は、自家消費目的の発
電設備において、復水器の容量に制限があるために、発
電量と抽気量のバランスがくずれ、余剰蒸気を放出せざ
るを得なくなったときのタービン・発電設備の制御方法
と装置を提供することである。
Another object of the present invention is to reduce the balance between the amount of power generation and the amount of bleed air in power generation equipment intended for self-consumption because the capacity of the condenser is limited, resulting in the release of excess steam. And a method and apparatus for controlling the turbine and power generation equipment when the power generation is stopped.

【0019】さらに、本発明の課題は、必要蒸気量(抽
気量)が急変しても蒸気圧力が一定となるようなタービ
ン・発電設備の制御方法と装置を提供することである。
It is a further object of the present invention to provide a method and an apparatus for controlling a turbine and a power generation facility in which the steam pressure is kept constant even when the required steam amount (bleed amount) changes suddenly.

【0020】[0020]

【課題を解決するための手段】本発明は概略、次のよう
な構成からなる。 (1)工場などで必要な蒸気量(抽気量)を常に確保
し、かつ抽気量の変化は抽気圧力の変動となってあらわ
れるので、抽気圧力の変動を来さないように抽気圧力が
一定となるような制御を最優先の制御とする。これは従
来技術のガバナ制御装置で行う。
SUMMARY OF THE INVENTION The present invention generally has the following arrangement. (1) The steam amount (bleed amount) required at a factory or the like is always secured, and a change in the bleed amount appears as a change in the bleed pressure, so that the bleed pressure is kept constant so as not to change the bleed pressure. Such control is the highest priority control. This is done with a governor control device of the prior art.

【0021】(2)前記(1)の制御によって、工場設
備などで必要な蒸気量(抽気量)を確保した後、発電の
ために蒸気が使用され、かつ、制御可能な蒸気量は制限
されるので、制御可能な発電量も制限される。したがっ
て、制限された発電量の範囲で発電出力をできるだけ大
きくするため、復水量を最大限まで増やし、さらにその
時の抽気量を最大限まで増やし、最大の発電量となるよ
う制御系を組む。
(2) According to the control of the above (1), after securing a necessary steam amount (extracted air amount) in a factory facility or the like, the steam is used for power generation and the controllable steam amount is limited. Therefore, the controllable power generation amount is also limited. Therefore, in order to maximize the power generation output within the range of the limited power generation amount, the condensate amount is increased to the maximum, and the bleeding amount at that time is also increased to the maximum, and a control system is formed so as to obtain the maximum power generation amount.

【0022】(3)前記(1)、(2)の組み合わせと
した場合、実際の発電量が必要とする発電量を上回るケ
ースがある。この場合は、いわゆる逆潮となるので発電
量に制限を加える必要がある。その場合は強制的に発電
量を制限する制御信号を作り、この制御系を自動的に選
択させることによって達成される。
(3) In the case of the combination of (1) and (2), there are cases where the actual amount of power generation exceeds the required amount of power generation. In this case, a so-called reverse tide occurs, so it is necessary to limit the amount of power generation. In that case, it is achieved by generating a control signal for forcibly restricting the power generation amount and automatically selecting this control system.

【0023】(4)工場送気蒸気量(抽気量)に比べて
電力消費量が多い場合であって、低圧タービンと高圧タ
ービンを有する抽気タービンの中の低圧タービンの低圧
弁の開度の上限に達してもなお発電量が不足する場合に
は、次のような制御を行う。すなわち、蒸気圧力とその
設定値の偏差に基づく蒸気ヘッダへ送る蒸気流量の制御
を行なわずに受電電力とその設定値の偏差に基づいて蒸
気流量を調整することと蒸気ヘッダに取り付けられてい
る大気放出弁の開度により受電電力を一定値にする制御
を行い、前記受電電力を一定値にする制御の後に、前記
低圧弁の開度が前記上限値以下になると、通常の低圧弁
の開度の上限値以下の範囲では蒸気圧力とその設定値の
偏差に基づき、蒸気ヘッダへ送る蒸気流量の制御を行
う。
(4) The upper limit of the opening degree of the low-pressure valve of the low-pressure turbine in the extraction turbine having the low-pressure turbine and the high-pressure turbine when the power consumption is greater than the amount of steam supplied to the factory (the amount of extracted air). If the amount of power generation is still insufficient even after reaching, the following control is performed. That is, without controlling the steam flow rate to be sent to the steam header based on the difference between the steam pressure and the set value, adjusting the steam flow rate based on the received power and the difference between the set value and the atmosphere attached to the steam header. When the opening of the low-pressure valve becomes equal to or less than the upper limit after the control for making the received power constant, the opening of the normal low-pressure valve is controlled. In the range below the upper limit of, the steam flow sent to the steam header is controlled based on the deviation between the steam pressure and the set value.

【0024】(5)余剰蒸気放出の制御に下記のような
機能を持たせることにより解決するものである。機能的
には工場内設備等で必要な蒸気量(抽気量)との関係で
はなく、発電量との関係でタービン抽気も発電に貢献す
る。タービンから抽気する蒸気量が多くなる場合は、発
電量を確保するために使用した後の余剰蒸気を大気中へ
放出する機能を設ける。また、必要蒸気量が急減または
不要になった場合、蒸気圧力を検出してから、蒸気流量
調整のための制御をすると、その制御のスタートが遅れ
ることになり、それは蒸気圧力の変動になって現れる。
(5) The problem can be solved by giving the following functions to the control of surplus steam release. Functionally, turbine bleeding also contributes to power generation in relation to the amount of power generation, not the amount of steam (the amount of bleed air) required by the facilities in the factory. When the amount of steam extracted from the turbine increases, a function is provided to release excess steam after use to secure the power generation amount to the atmosphere. Also, if the required amount of steam suddenly decreases or becomes unnecessary, if control for adjusting the steam flow rate is performed after detecting the steam pressure, the start of the control will be delayed, resulting in a change in steam pressure. appear.

【0025】これを解決するために蒸気圧力(抽気圧
力)が急減する要素を検出し、工場内設備等へ蒸気を送
気するための蒸気ヘッダにおいて必要な蒸気圧力(抽気
圧力)の変動となって現れる前に、余剰蒸気を大気に放
出する。その場合、大気放出弁の開度を一定とするの
で、どこでバランスするか分からない。それを防ぐため
に、ある一定時間後に前記抽気圧力が一定となるような
通常の最優先の蒸気圧力制御に戻す。こうして、大気放
出弁を強制的に開放したままの状態から前記(1)の通
常の圧力制御に戻すまでの時間を適切に制御することが
でき、蒸気圧力(抽気圧力)は実質的に変動しないこと
になる。
In order to solve this, an element in which the steam pressure (bleed pressure) decreases rapidly is detected, and the steam pressure (bleed pressure) required in the steam header for sending steam to the facilities in the factory is changed. Releases excess steam into the atmosphere before appearing. In this case, since the opening of the air release valve is kept constant, it is not known where the balance is obtained. In order to prevent this, the control is returned to the normal top priority steam pressure control such that the bleed pressure becomes constant after a certain period of time. Thus, it is possible to appropriately control the time required to return from the state in which the atmospheric discharge valve is forcibly opened to the normal pressure control of the above (1), and the steam pressure (bleed pressure) does not substantially fluctuate. Will be.

【0026】したがって、本発明の上記課題は次の構成
により解決される。 (A)復水器の容量に制限がある抽気タービンと該抽気
タービンにより発電する発電機を備えたタービン・発電
機の制御方法において、抽気蒸気圧力が一定となるよう
に抽気必要蒸気量を常に確保する制御を最優先とし、前
記抽気必要蒸気量制御によって制限される発電量の範囲
内で復水量を最大とし、かつ、当該抽気必要蒸気量にお
ける最大の発電量となるように発電機での蒸気消費量を
制御し、このときの発電量が発電必要量を上回る場合は
強制的に発電量を発電必要量以内になるように制御する
タービン・発電機の制御方法。
Therefore, the above object of the present invention is solved by the following constitution. (A) In a control method of a turbine / generator including a bleeding turbine having a limited capacity of a condenser and a generator for generating power by the bleeding turbine, the required amount of bleeding steam is always adjusted so that the bleeding steam pressure is constant. The control to be secured is given the highest priority, the condensed water amount is maximized within the range of the power generation amount limited by the bleeding necessary steam amount control, and the generator is set so as to have the maximum power generation amount in the bleeding necessary steam amount. A method of controlling a turbine / generator that controls steam consumption and forcibly controls the amount of power generation to be within the required amount of power generation when the amount of generated power at this time exceeds the required amount of power generation.

【0027】(B)復水器の容量に制限がある抽気ター
ビンと該抽気タービンにより発電する発電機を備えたタ
ービン・発電機の制御装置において、抽気蒸気圧力が一
定となるような抽気蒸気量と該抽気蒸気量により制限さ
れる発電量の範囲内で復水量を最大とし、かつ、当該抽
気蒸気量における予め決められた最大の発電量を出力す
る関数発生器と実測発電量とに基づき、当該抽気蒸気量
における最大の発電量以下の発電量を出力する発電量演
算器と、外線より一定の電力の供給を受けるように受電
量を設定した受電量設定値と実測受電電力量とに基づき
実測受電電力量が受電量設定値以上になるような発電量
を演算して、演算した発電電力量を出力する発電量演算
器と、前記2つの発電量演算器の出力する発電量のなか
で低位の発電量を選択して出力する低位選択器と、該低
位の発電量に基づき抽気タービンの一以上の蒸気圧力の
異なる圧力弁を制御する圧力弁制御装置とを備えたター
ビン・発電機の制御装置。
(B) In a control apparatus for a turbine / generator provided with an extraction turbine having a limited capacity of a condenser and a generator for generating electric power by the extraction turbine, the extraction steam amount at which the extraction steam pressure becomes constant. And the maximum condensate amount within the range of the power generation amount limited by the extracted steam amount, and based on the function generator and the measured power generation amount that output a predetermined maximum power generation amount in the extracted steam amount, Based on a power generation amount calculator that outputs a power generation amount equal to or less than the maximum power generation amount in the extracted steam amount, a power reception amount set value in which the power reception amount is set to receive a constant power supply from an external line, and an actually measured power reception amount. A power generation amount calculator that calculates a power generation amount such that the measured received power amount is equal to or greater than the received power amount set value, and outputs a calculated power generation amount, and a power generation amount output by the two power generation amount calculators. Low power generation -Option and a low selector for outputting the control device of the turbine generator with a pressure valve control device for controlling the differential pressure valve of one or more steam pressure bleed turbine based on the power generation amount of position low.

【0028】(C)少なくとも高圧弁と低圧弁をそれぞ
れ備えた高圧タービンと低圧タービンを有する抽気ター
ビンと該抽気タービンにより発電する発電機と抽気ター
ビンからの抽気を工場に送気するための大気放出弁付き
の蒸気ヘッダを備えたタービン・発電機の制御方法にお
いて、(a)前記低圧弁の開度の上限値以下の範囲では
蒸気圧力とその設定値の偏差に基づき、蒸気ヘッダへ送
る蒸気流量の制御を行い、(b)工場送気蒸気量に比べ
て電力用蒸気消費量が多い場合であって、前記低圧弁の
開度の上限に達してもなお発電量が不足する場合には、
蒸気圧力とその設定値の偏差に基づく蒸気ヘッダへ送る
蒸気流量の制御を行なわずに受電電力とその設定値の偏
差に基づいて蒸気流量を制御することと大気放出弁の開
度により受電電力を一定値にする制御を行い、(c)前
記受電電力を一定値にする制御の後に、前記低圧弁の開
度が前記上限値以下になると、前記(a)の制御に戻る
タービン・発電機の制御方法。
(C) A bleed turbine having at least a high-pressure turbine and a low-pressure turbine respectively provided with a high-pressure valve and a low-pressure valve, a generator for generating power by the bleed turbine, and atmospheric discharge for sending bleed air from the bleed turbine to a factory In the control method of a turbine / generator provided with a steam header having a valve, (a) a steam flow to be sent to a steam header based on a difference between a steam pressure and a set value thereof in a range equal to or less than an upper limit of an opening of the low-pressure valve. (B) When the power steam consumption is large compared to the factory air supply steam amount, and the power generation amount is still insufficient even when the upper limit of the opening degree of the low-pressure valve is reached,
Without controlling the steam flow to be sent to the steam header based on the difference between the steam pressure and the set value, the received power is controlled based on the difference between the received power and the set value and the received power is controlled by the opening of the atmospheric release valve. (C) After the control to set the received power to a constant value, when the opening of the low-pressure valve becomes equal to or less than the upper limit, the control returns to the control of (a). Control method.

【0029】(D)少なくとも高圧弁と低圧弁をそれぞ
れ備えた高圧タービンと低圧タービンを有する抽気ター
ビンと該抽気タービンにより発電する発電機と抽気ター
ビンからの抽気を工場に送気するための、大気放出弁を
有する蒸気ヘッダを備えたタービン・発電機の制御方法
において、(a)前記低圧弁の開度の上限値以下の範囲
では蒸気圧力とその設定値の偏差に基づき、蒸気ヘッダ
へ送る蒸気流量の制御を行い、(b)異常が起きた場合
に備えて予め異常時の蒸気圧力に対応して大気放出弁の
開度を決めておき、(c)異常が起きた場合、前記
(a)の制御を中止して前記(b)の制御を行うタービ
ン・発電機の制御方法。
(D) an extraction turbine having at least a high-pressure turbine and a low-pressure turbine respectively provided with a high-pressure valve and a low-pressure valve, a generator for generating electric power by the extraction turbine, and an atmosphere for sending extraction air from the extraction turbine to a factory. In the method for controlling a turbine / generator provided with a steam header having a discharge valve, (a) steam to be sent to a steam header based on a deviation between a steam pressure and a set value thereof in a range equal to or less than an upper limit of an opening of the low-pressure valve. The flow rate is controlled, and (b) the opening degree of the atmosphere release valve is determined in advance in accordance with the vapor pressure at the time of abnormality in preparation for the case where an abnormality occurs. A) The control method of the turbine / generator for stopping the control and performing the control of (b).

【0030】(E)前記(C)の方法を実施するための
制御装置。 (F)前記(D)の方法を実施するための制御装置。 上記本発明により蒸気量(抽気量)を必要量分だけ常に
タービン・発電機より供給することができるとともに、
その時の抽気量に見合った最大の発電量を発生させるこ
とにより経済的運転が可能である。
(E) A control device for performing the method (C). (F) A control device for performing the method (D). According to the present invention, a steam amount (extracted amount) can always be supplied from a turbine / generator by a required amount.
Economic operation is possible by generating the maximum power generation amount corresponding to the bleeding amount at that time.

【0031】[0031]

【発明の実施の形態】本発明の実施の形態を図面ととも
に説明する。図1にはタービン発電設備の全体の系統を
示す。抽気タービン1に発電機2が直結されており、高
圧弁3を通して図示しないボイラで発生した蒸気を抽気
タービン1に導く。抽気タービン1に流入した蒸気は高
圧タービン1−1に供給され、一部は抽気出口20より
排出され、給水流量調整弁11から供給される減温水に
より減温されて蒸気ヘッダ13へ供給される。また、抽
気タービン1内で一部の蒸気は低圧弁4を通して低圧タ
ービン1−2の駆動用に利用された後、図示しない復水
器に流入する。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the entire system of the turbine power generation facility. A generator 2 is directly connected to the extraction turbine 1, and guides steam generated by a boiler (not shown) to the extraction turbine 1 through a high-pressure valve 3. The steam flowing into the bleed turbine 1 is supplied to the high-pressure turbine 1-1, a part of the steam is discharged from the bleed outlet 20, the temperature of the steam is reduced by the temperature-reduced water supplied from the feedwater flow control valve 11, and the steam is supplied to the steam header 13. . A part of the steam in the extraction turbine 1 is used for driving the low-pressure turbine 1-2 through the low-pressure valve 4 and then flows into a condenser (not shown).

【0032】高圧弁3と低圧弁4を適切に制御すること
により抽気タービン1から取り出す(抽気する)蒸気量
は必要量に応じて蒸気ヘッダ13に供給され、工場内の
諸設備に利用される。その際ガバナ制御装置16(図3
も参照)により抽気圧力は一定となるよう制御される。
By appropriately controlling the high-pressure valve 3 and the low-pressure valve 4, the amount of steam extracted (extracted) from the extraction turbine 1 is supplied to the steam header 13 according to the required amount, and is used for various facilities in the factory. . At this time, the governor control device 16 (FIG. 3)
Also, the bleed pressure is controlled to be constant.

【0033】また、そのとき抽気量に応じて発電機2の
発電量は、基本的には高圧弁3により制御される。しか
しながら本発明のタービン1は抽気式のものであるた
め、抽気量を必要に応じて勝手に取られると、低圧ター
ビン1−2に供給される発電用蒸気量が変動する。それ
を防ぐために低圧タービン1−2に流入する量を低圧弁
4で制御し、発電量を制御する必要がある。したがって
発電量を制御するには低圧弁4の開度を制御する必要が
あるが、最終的には高圧弁3の開度が制御される。な
お、低圧弁4で抽気量と復水器に戻す割合を調整するこ
とができる。
At that time, the amount of power generated by the generator 2 is basically controlled by the high-pressure valve 3 in accordance with the amount of extracted air. However, since the turbine 1 of the present invention is of the bleed type, if the bleed amount is taken as needed, the amount of power generation steam supplied to the low-pressure turbine 1-2 fluctuates. In order to prevent this, it is necessary to control the amount flowing into the low-pressure turbine 1-2 by the low-pressure valve 4 to control the power generation amount. Therefore, in order to control the power generation amount, it is necessary to control the opening of the low-pressure valve 4, but finally, the opening of the high-pressure valve 3 is controlled. The low-pressure valve 4 can adjust the amount of bleed air and the rate of return to the condenser.

【0034】また図1に示すタービンバイパス弁5は抽
気タービン1の起動時および運転中において抽気タービ
ン1からの抽気量だけでは工場に送る蒸気の必要量が満
たされないとき作動させる。通常はタービンバイパス弁
5は閉じており、蒸気ヘッダ13の圧力が規定値より低
下した場合、圧力調節計8によりタービンバイパス弁5
が自動的に開くようになっている。
The turbine bypass valve 5 shown in FIG. 1 is operated when the required amount of steam to be sent to the factory is not satisfied only by the amount of bleed air from the bleed air turbine 1 when the bleed turbine 1 is started and during operation. Normally, the turbine bypass valve 5 is closed, and when the pressure in the steam header 13 falls below a specified value, the turbine bypass valve 5 is controlled by the pressure controller 8.
Is automatically opened.

【0035】しかし、図示しないボイラからタービンバ
イパス弁5の設置されている蒸気流路に送られてくる蒸
気の温度は高いので給水流量調節弁9により減温して蒸
気ヘッダ13に導く。タービン1の抽気口20からの蒸
気を高圧タービン1−1で使用した後に、蒸気は流量検
出器14で流量が測定されるが、その温度は給水流量調
節弁11からの減温水により温度計12で温度測定され
ながら減温され、その中の工場に送る蒸気の必要量が蒸
気ヘッダ13に導入される。
However, since the temperature of the steam sent from the boiler (not shown) to the steam passage in which the turbine bypass valve 5 is installed is high, the temperature of the steam is reduced by the feed water flow control valve 9 and is guided to the steam header 13. After the steam from the bleed port 20 of the turbine 1 is used in the high-pressure turbine 1-1, the flow rate of the steam is measured by the flow rate detector 14. The temperature is reduced while the temperature is measured in the above, and the required amount of steam to be sent to the factory therein is introduced into the steam header 13.

【0036】また、大気放出弁7は蒸気ヘッダ13の圧
力が規定値以上に高くなったとき、蒸気を放出ノズル1
0より放出するために設けられている。放出蒸気量は蒸
気ヘッダ13の圧力により圧力調節計6で制御される。
また蒸気流量検出器15の検出信号と圧力調節計6に基
づき工場送気用蒸気流量が調節される。
When the pressure of the steam header 13 becomes higher than a specified value, the atmosphere discharge valve 7 discharges steam to the nozzle 1.
It is provided to release from zero. The amount of released steam is controlled by the pressure controller 6 based on the pressure of the steam header 13.
The steam flow rate for factory air supply is adjusted based on the detection signal of the steam flow rate detector 15 and the pressure controller 6.

【0037】抽気タービン1で消費する蒸気量と発電量
は比例関係にある。蒸気消費量が多ければそれだけ発電
量も多くなる。蒸気消費量が少なければ発電量も少なく
なる。抽気とは抽気タービン1の途中から蒸気を抜き出
すことである。すなわち抽気式のタービン1とは蒸気の
持っているエネルギーの一部を抽気タービン1で発電用
に消費し、残りのエネルギーを工場蒸気として利用使用
するものである。
The amount of steam consumed by the extraction turbine 1 and the amount of power generation are in a proportional relationship. The higher the steam consumption, the higher the power generation. The lower the steam consumption, the lower the power generation. The extraction is to extract steam from the middle of the extraction turbine 1. That is, the bleed-type turbine 1 consumes part of the energy of the steam for power generation in the bleed turbine 1, and uses the remaining energy as factory steam.

【0038】抽気しないで復水器へ蒸気を戻すというこ
とは、蒸気の持っているエネルギーを全て抽気タービン
1で発電用に消費しようとするものである。このこと
は、抽気タービン1に入る蒸気量は同じでも抽気する量
が違えば発電量が違ってくるということを意味する。抽
気タービン1に入る蒸気量が同じでも抽気量が多ければ
発電量は全ての蒸気を抽気タービン1で使用した後に復
水器に戻す場合に比べて少なくなる。
Returning steam to the condenser without bleeding means that all the energy of the steam is to be consumed by the bleeding turbine 1 for power generation. This means that even if the amount of steam entering the extraction turbine 1 is the same, the amount of power generation will be different if the amount of extraction is different. Even if the amount of steam entering the extraction turbine 1 is the same, if the amount of extraction is large, the amount of power generation will be smaller than when all the steam is used in the extraction turbine 1 and returned to the condenser.

【0039】その関係を図2に表す。まず復水量が最小
の場合と最大の場合で蒸気消費量と発電量のカーブが違
っている。復水量が最小(抽気量が最大)の場合は同じ
蒸気消費量でも発電量は少なくなっている。復水量が中
間の場合は発電量も中間になる。
FIG. 2 shows the relationship. First, the curves of steam consumption and power generation are different when the amount of condensate is minimum and maximum. When the amount of condensed water is minimum (the amount of extracted air is maximum), the amount of power generation is small even with the same steam consumption. If the amount of condensate is intermediate, the amount of power generation is also intermediate.

【0040】図2は図1に示す図示しない復水器の容量
に限界のある抽気タービン・発電機の特性を示す。説明
を簡単にするため数値は具体例で示す。 例 発電機容量 9900KW タービン蒸気消費量 70 T/Hr 抽気量 60 T/Hr 復水量 1〜10 T/Hr 以上の各物性値で示す容量を持つタービン・発電機の場
合、抽気タービン1での蒸気消費量と発電機2での発電
量は次のようになる。
FIG. 2 shows the characteristics of the bleed turbine / generator whose capacity of the condenser not shown in FIG. 1 is limited. Numerical values are shown by specific examples for simplicity of explanation. Example Generator capacity 9900 KW Turbine steam consumption 70 T / Hr Bleed air volume 60 T / Hr Condensate water volume 1-10 T / Hr In the case of a turbine / generator having a capacity indicated by each physical property value or more, steam in the bleed turbine 1 The amount of consumption and the amount of power generated by the generator 2 are as follows.

【0041】すなわち、工場内の設備などで必要とする
蒸気量(抽気量)が40T/Hrの場合、復水量を1〜
10T/Hrの間で変化させることにより、発電機2で
の発電量は5,700〜8,700KWの間で制御可能
となる。このとき抽気タービン1で消費される蒸気消費
量は41〜50T/Hrである。また、抽気量が30T
/Hrに変化した場合は発電量は3,900〜6,80
0KWの間で制御可能となる。このとき抽気タービン1
で消費される蒸気消費量は31〜40T/Hrである。
すなわち抽気量に応じて可能な発電量は変化することに
なる。
That is, when the amount of steam (extracted air) required by the facilities in the factory is 40 T / Hr, the condensed water amount is 1 to
By changing between 10 T / Hr, the amount of power generated by the generator 2 can be controlled between 5,700 to 8,700 KW. At this time, the amount of steam consumed by the extraction turbine 1 is 41 to 50 T / Hr. In addition, the amount of bleed air is 30T
/ Hr, the power generation amount is 3,900-6,80
Control becomes possible between 0 KW. At this time, the extraction turbine 1
Is 31 to 40 T / Hr.
That is, the possible power generation amount changes according to the amount of extracted air.

【0042】前記復水量1〜10T/Hrの領域をずれ
た場合で、抽気量に比べて要求発電量が多い場合、復水
器の容量に限りがあるので、復水量は物理的に10T/
Hrを超えることができない。
When the required amount of generated power is larger than the amount of extracted air when the condensate amount is shifted from the region of 1 to 10 T / Hr, the capacity of the condenser is limited.
Hr cannot be exceeded.

【0043】また、発電量を増やすためには高圧弁3を
より大きく開き、抽気タービン1での蒸気消費量を増す
こと、すなわち発電機出力を高めることになる。この場
合は、抽気タービン1での蒸気消費量を増やすことによ
り要求発電量を確保することができるが、抽気タービン
1の抽気口20から蒸気ヘッダ13へ送られる抽気量も
増えるため、余剰の抽気蒸気は大気放出弁7により放出
することになる。
Further, in order to increase the power generation amount, the high pressure valve 3 is opened more widely, and the steam consumption in the extraction turbine 1 is increased, that is, the generator output is increased. In this case, the required power generation amount can be secured by increasing the amount of steam consumed in the extraction turbine 1, but the amount of extraction gas sent from the extraction port 20 of the extraction turbine 1 to the steam header 13 also increases. The steam will be released by the atmosphere release valve 7.

【0044】これは復水器が満杯になるので低圧タービ
ン1−2にそれ以上蒸気を送ることができないため、高
圧タービン1−1での消費量を増やす以外にないためで
あり、この結果抽気量が増えることになる。
This is because the condenser is full, so that no more steam can be sent to the low-pressure turbine 1-2, and there is no other way than to increase the consumption in the high-pressure turbine 1-1. The amount will increase.

【0045】前記復水量1〜10T/Hrの領域をずれ
た場合で、工場内設備などで使用する蒸気を確保するた
めの抽気量に比べて要求発電量が少ない場合は上記した
場合と逆になり抽気量が不足する。
In the case where the condensed water amount is shifted from the region of 1 to 10 T / Hr, if the required power generation amount is smaller than the amount of extracted air for securing the steam used in the facilities in the factory, the above case is reversed. The amount of bleeding is insufficient.

【0046】これは抽気量すなわち工場用蒸気の使用量
が大きく、必要発電量が小さい場合においては抽気量を
増やす必要があり、抽気量を増やすことにより高圧ター
ビン1−1の蒸気消費量が増えて発電量も必然的に増え
てくる。それが必要電力量を越えると、逆潮となるた
め、必要電力量以上の発電量が得られる蒸気を抽気ター
ビン1に導入することは許されない。従って、必要電力
量に見合ってタービン供給蒸気量を絞る必要があり、そ
の結果、抽気タービン1からの抽気量も減少するため工
場用蒸気量も不足することになる。
This is because when the amount of bleed air, that is, the amount of factory steam used is large and the required power generation amount is small, it is necessary to increase the bleed air amount. By increasing the bleed air amount, the steam consumption of the high-pressure turbine 1-1 increases. As a result, the amount of power generation will inevitably increase. If the power exceeds the required power, reverse tide will occur, and it is not allowed to introduce steam into the bleeding turbine 1 that can generate more power than the required power. Therefore, it is necessary to reduce the amount of steam supplied to the turbine in accordance with the required amount of electric power. As a result, the amount of extracted air from the extraction turbine 1 also decreases, so that the amount of steam for the factory becomes insufficient.

【0047】前記抽気量が不足すると蒸気ヘッダ13の
圧力が低下し、圧力調節計8の信号に基づきタービンバ
イパス弁5が開となり抽気不足分の蒸気量をタービン1
をバイパスさせてボイラから蒸気ヘッダ13に供給す
る。
If the amount of bleed air is insufficient, the pressure of the steam header 13 decreases, and the turbine bypass valve 5 is opened based on the signal of the pressure controller 8 to reduce the amount of bleed air to the turbine 1.
Is supplied from the boiler to the steam header 13.

【0048】本発明の実施の形態の抽気タービンの制御
系統図を図3に示す。ガバナ制御装置16は既知のもの
であり、本実施の形態はそれに入力する制御信号を考慮
したものである。
FIG. 3 shows a control system diagram of the bleed turbine according to the embodiment of the present invention. The governor control device 16 is known, and the present embodiment takes into consideration a control signal input thereto.

【0049】(1)いわゆる逆潮を防止するための発電
量制限回路 いわゆる逆潮は許されないので、外線により一定の電力
を供給(買電)するよう受電量設定値(可変)と実測受
電電力量をつき合わせ、受電電力量が設定値以上となる
ように発電量を減少させる発電量の制御信号を演算器1
7から出す。
(1) A power generation amount limiting circuit for preventing a so-called reverse tide Since a so-called reverse tide is not allowed, a set value (variable) of the amount of received power and a measured measured received power are set so that constant power is supplied (purchased) through an external line. The power generation control signal for reducing the power generation amount so that the received power amount becomes equal to or more than the set value is calculated by the arithmetic unit 1
Take out from 7.

【0050】(2)抽気量に応じたその時の発電量が最
大となるような発電量制御回路 抽気圧力が一定となるように制御される抽気量と、該抽
気量に対応する最大発電量を関数発生器19により演算
し、この演算発電量と実測発電量とをつき合わせて、当
該抽気量における最大の発電量を出力する演算器21に
より発電量を制御する。この信号により、そのときの抽
気量における最大電力、すなわち復水量が最大になるよ
う制御する。ここで最大電力を得るときの発電用に使用
する最大の蒸気量により、蒸気消費量も最大となり、そ
の結果、復水量も最大になる。
(2) A power generation amount control circuit that maximizes the amount of power generation at that time in accordance with the amount of air bleeding The amount of air bleeding controlled so that the bleeding pressure is constant and the maximum amount of power generation corresponding to the amount of air bleeding Calculation is performed by the function generator 19, the calculated power generation amount is compared with the actually measured power generation amount, and the power generation amount is controlled by the calculator 21 that outputs the maximum power generation amount in the extracted air amount. Based on this signal, control is performed so that the maximum power at the time of the extracted air amount, that is, the condensed water amount, is maximized. Here, the maximum amount of steam used for power generation when obtaining the maximum electric power also maximizes the amount of steam consumption, and as a result, the amount of condensate also maximizes.

【0051】この特性を図5に示す。通常は所定の抽気
量に対してA点が復水量最大であり、その時の発生電力
量は最大となる。その発電量となるよう制御信号を出
す。従って要求される抽気量が変化すると、その抽気量
変化に応じてB線上に沿って最大の発電量は変化するこ
とになる。
FIG. 5 shows this characteristic. Normally, point A is the maximum amount of condensed water for a predetermined bleed air amount, and the amount of generated power at that time is the maximum. A control signal is issued so that the amount of power generation is obtained. Therefore, when the required bleed air amount changes, the maximum power generation amount changes along the B line according to the change in the bleed air amount.

【0052】以上の(1)と(2)の2つの制御系によ
り抽気量と発電量の制御を行うが、この他に実際にはタ
ービン・発電機の起動時あるいは通常運転時に制御モー
ドが切り替わった場合、スムーズな制御ができるように
トラッキング回路を設けるが、これは既存の技術をその
まま採用するので説明は省略する。
The control of the amount of bleed air and the amount of power generation is performed by the two control systems (1) and (2). In addition, the control mode is actually switched when the turbine / generator is started or during normal operation. In such a case, a tracking circuit is provided to enable smooth control. However, since the existing technology is employed as it is, a description thereof will be omitted.

【0053】前記(1)いわゆる逆潮を防止するための
発電量制限回路と(2)抽気量に応じて、その時の発電
量が最大となるような発電量制御回路の2つの制御回路
の信号を低位選択器18(図3)により低い信号を選択
し、発電量を制御する。
Signals of two control circuits, (1) a power generation amount limiting circuit for preventing a so-called reverse tide, and (2) a power generation amount control circuit for maximizing the power generation amount at that time according to the amount of extracted air. Is selected by the low-level selector 18 (FIG. 3) to control the power generation amount.

【0054】抽気量に対して関数発生器19から得られ
る最大の発電量より、実際に必要な発電量が少なくて良
い時は(1)の制限回路が働き、発電量は当該抽気量に
相当するC線上で制御される。更に発電量が少なくて良
い場合はD点に達して、なお発電量を少なくしなければ
ならない場合は、抽気タービン1の保護、温度のアンバ
ランスと振動を防ぐ関係上、抽気タービン1の使用時の
最低限の蒸気を流しておく必要があり、もはや抽気ター
ビン1側で抽気量と発電量を制御することは不可能とな
り、E線上に沿って減少することになり抽気量も確保で
きなくなる。その結果、蒸気ヘッダ13の圧力が低下
し、それを検出してタービンバイパス弁5が作動して抽
気量を確保する。
When the actually required amount of power generation is smaller than the maximum amount of power generation obtained from the function generator 19 with respect to the amount of bleed air, the limiting circuit (1) operates, and the amount of power generation corresponds to the amount of bleed air. Is controlled on line C. If the amount of power generation is further reduced, the point reaches point D. If the amount of power generation must be further reduced, the point of use of the bleeding turbine 1 is reduced due to protection of the bleeding turbine 1 and prevention of temperature imbalance and vibration. , It is no longer possible to control the amount of bleeding and the amount of power generation on the bleeding turbine 1 side, and the amount of bleeding cannot be ensured because it decreases along the E line. As a result, the pressure of the steam header 13 is reduced, and when the pressure is detected, the turbine bypass valve 5 operates to secure the amount of extracted air.

【0055】以上の構成により、いわゆる逆潮とならな
い範囲内で、常にそのとき可能な最大電力を供給するよ
うにし、かつ、むやみに発電量を大きくして抽気量を必
要以上に蒸気ヘッダ13に供給し、その結果蒸気ヘッダ
13の圧力上昇により大気放出弁7により余剰蒸気を放
出しないようにする経済運転ができるようになる。
With the above configuration, the maximum power possible at that time is always supplied within a range that does not cause a reverse tide, and the amount of power generation is increased unnecessarily to increase the amount of extracted air to the steam header 13 more than necessary. As a result, it becomes possible to perform an economic operation in which the excess pressure is not released by the atmosphere release valve 7 due to the increase in the pressure of the steam header 13.

【0056】次に工場送気蒸気量に比べて電力消費量が
多い場合に低圧弁4の開度が増し、上限に達してもなお
電力量が不足する場合の抽気量を増すための制御(=タ
ービン1側に制限があっても必要な発電量を確保するた
めの制御)と工場送気先の装置に異常がおきて、そこで
の必要蒸気量の急減又は不要になることが頻繁に起きる
場合の制御について説明する。
Next, when the power consumption is larger than the amount of steam supplied to the factory, the opening of the low-pressure valve 4 is increased, and control is performed to increase the bleeding amount when the amount of power is still insufficient even after reaching the upper limit ( = Control to ensure necessary power generation even if the turbine 1 side is limited) and abnormalities in the equipment at the factory air supply often cause a sudden decrease in the required steam amount or the need for it to become unnecessary. The control in this case will be described.

【0057】これは、次のような理由から行われるもの
である。一般に、長期的にみればボイラは蒸気を消費す
る分だけ発生させるように制御する。ただし、ボイラは
時定数が大きく急激には変えることができない。したが
って、蒸気消費量が急増減するとボイラ出口圧力変化
(高、低)となって現れてくる。これを避けるために蒸
気消費量が急減した場合はボイラ出口における圧力が高
くなるので強制的に蒸気を大気へ放出して蒸気圧力を一
定になるようにする。
This is performed for the following reasons. Generally, in the long run, the boiler is controlled to generate only the amount of steam consumed. However, the boiler has a large time constant and cannot be changed rapidly. Therefore, when the steam consumption increases or decreases rapidly, it appears as a change in boiler outlet pressure (high or low). In order to avoid this, if the steam consumption decreases sharply, the pressure at the boiler outlet increases, so that the steam is forcibly released to the atmosphere to keep the steam pressure constant.

【0058】このように、発電量を確保するために、ボ
イラは蒸気(抽気)消費量が急減しないこと又は不要に
なることを前提に蒸気を生成させているので、蒸気消費
量が急減すると余剰蒸気を大気に放出せざるを得ない。
すなわち必要とする発電量が多い場合(復水器容量を超
える場合)は発電量を抑えざるを得ないので、余剰蒸気
を大気放出弁7から大気中に放出するが、その場合大気
放出中の蒸気ヘッダ13での蒸気量の制御方法が良くな
いと、蒸気圧力(抽気圧力)が急変することになる。そ
うなると、当該蒸気によって製造している製品の品質に
悪影響を及ぼすことになる。従って、必要蒸気量が急変
しても蒸気ヘッダ13内の圧力が一定となるように余剰
蒸気量の放出の制御を考える必要がある。
As described above, in order to secure the power generation amount, the boiler generates steam on the assumption that the steam (extracted air) consumption does not rapidly decrease or becomes unnecessary. The steam must be released to the atmosphere.
In other words, when the required amount of power generation is large (when the capacity exceeds the condenser capacity), the amount of power generation must be suppressed. Therefore, surplus steam is released into the atmosphere from the air release valve 7. If the method of controlling the amount of steam in the steam header 13 is not good, the steam pressure (bleed pressure) will suddenly change. This would adversely affect the quality of the product being manufactured with the steam. Therefore, it is necessary to consider controlling the release of the surplus steam amount so that the pressure in the steam header 13 is kept constant even when the necessary steam amount changes suddenly.

【0059】図1に示すタービン・発電機系では復水器
容量に制限があるため、能力一杯に復水量を増やしても
発電量が不足する場合は大気放出弁7を開いておく。こ
れは次のような理由による。すなわち、タービン抽気量
は即工場用蒸気として使用されるので勝手に増加させる
ことはできない。その抽気量で発電量が不足する場合は
抽気量を変えずに復水量を増やすことにより抽気タービ
ン1に入れる蒸気量を増やして発電量を増加させる。
In the turbine / generator system shown in FIG. 1, the capacity of the condenser is limited. Therefore, if the amount of generated water is insufficient even if the amount of condensed water is increased to the full capacity, the atmospheric discharge valve 7 is opened. This is for the following reasons. That is, the amount of turbine bleed cannot be increased without permission because it is used immediately as factory steam. When the amount of power generation is insufficient with the amount of extracted air, the amount of steam to be supplied to the extraction turbine 1 is increased by increasing the amount of condensed water without changing the amount of extracted air, thereby increasing the amount of generated electric power.

【0060】復水量が限度いっぱいになっても発電量が
不足するときは抽気量を増やさざるを得ない。工場用蒸
気を必要量以上に増やすために抽気系統の蒸気圧力上昇
になって現れる。そこで必要以上に抽気した蒸気の中の
余剰の蒸気を大気放出弁7を開けることにより大気放出
する。
If the amount of power generation is insufficient even when the amount of condensed water is full, the amount of bleed air must be increased. Appears as an increase in steam pressure in the bleed air system in order to increase factory steam more than necessary. Then, the excess steam in the steam extracted more than necessary is released to the atmosphere by opening the air release valve 7.

【0061】図2のグラフに示すように、タービン抽気
量を増加させない限り発電量は増加できない。従って余
剰蒸気は大気放出弁7から大気放出する。制御方法とし
ては復水器の容量一杯すなわち低圧弁4の開度が上限に
なったことを確認し、受電力の一定制御に切り換えて、
同時に大気放出弁7を開いてタービン1の発電量を必要
に応じて増やしてやる。こうして、復水器の容量一杯に
なってもボイラからの蒸気を抽気タービン1に供給して
必要発電量が得られるように発電機を駆動させ、発電で
使用した蒸気のうちで復水器に回収できない余分の蒸気
は大気放出弁7から放出する。
As shown in the graph of FIG. 2, the power generation amount cannot be increased unless the turbine bleed amount is increased. Therefore, the surplus steam is released from the atmosphere release valve 7 to the atmosphere. As a control method, it is confirmed that the capacity of the condenser is full, that is, the opening of the low-pressure valve 4 has reached the upper limit, and the control is switched to the constant control of the power reception,
At the same time, the air release valve 7 is opened to increase the power generation of the turbine 1 as needed. In this way, even when the capacity of the condenser is full, the steam from the boiler is supplied to the extraction turbine 1 and the generator is driven so that the required power generation amount is obtained. Excess steam that cannot be recovered is released from the atmosphere release valve 7.

【0062】また、工場送気蒸気が装置の関係で急に不
要または急激に送気蒸気量が低下したとき、蒸気ヘッダ
13の蒸気圧力検出のみで制御を行うと大気放出弁7の
開動作が遅れ、圧力変動となって現れる。そこで、送気
蒸気量が急減または急に不要になる要素を把握して、そ
れに基づき、先行的に大気放出弁7を強制的に一定開度
とし、安定したところで蒸気ヘッダ13の通常の圧力制
御に移行させ、圧力変動を少なくする。
When the amount of steam supplied to the factory is suddenly unnecessary or suddenly reduced due to the equipment, if the control is performed only by detecting the steam pressure of the steam header 13, the opening operation of the atmospheric discharge valve 7 is performed. Appears as delays and pressure fluctuations. Therefore, the element that the amount of supplied steam suddenly decreases or becomes unnecessary suddenly is grasped, and based on that, the air release valve 7 is forcibly set to a fixed opening in advance, and the normal pressure control of the steam header 13 is performed when it is stabilized. To reduce pressure fluctuations.

【0063】上記の実施の形態を図6の制御図で示す。
基本的には蒸気圧力検出器30にて実測した圧力と蒸気
圧力設定器31にて設定した圧力との偏差が無くなるよ
うに圧力調節計6で大気放出弁7を制御する。
The above embodiment is shown in the control diagram of FIG.
Basically, the air release valve 7 is controlled by the pressure controller 6 so that the deviation between the pressure actually measured by the steam pressure detector 30 and the pressure set by the steam pressure setting device 31 is eliminated.

【0064】工場送気蒸気量に比べて電力消費量が多い
場合は、まず低圧弁4の開度が増し、上限に達してもな
お電力量が不足する場合は抽気量を増やさざるを得な
い。抽気量を増やすために、図2のグラフで示した抽気
量と発電量との関係から圧力制御のラインbを切替器3
3により受電電力とその設定値の偏差に基づく流量調節
計32による受電電力を一定値にする制御ラインaに切
り替えて大気放出弁7を制御する。逆潮にはならないよ
う受電電力が一定になるよう制御している。
If the power consumption is larger than the amount of steam supplied to the factory, the opening of the low-pressure valve 4 first increases, and if the amount of power is still insufficient even after reaching the upper limit, the amount of bleed air must be increased. . In order to increase the amount of bleed air, the pressure control line b is switched to the switch 3 based on the relationship between the amount of bleed air and the amount of power generation shown in the graph of FIG.
3, the control is switched to the control line a for setting the received power by the flow controller 32 to a constant value based on the difference between the received power and its set value, and the atmospheric release valve 7 is controlled. The received power is controlled so that it does not become reverse tide.

【0065】抽気量が低下して、低圧弁4の開度が一定
値以下になればタービン1で制御可能となるため切替器
33を圧力調節計6を用いる圧力制御側のラインbに切
り替える。このようにタービン1側に制限があっても必
要な発電量を確保できることを特徴とした制限回路を設
置した。
When the amount of bleed air decreases and the degree of opening of the low-pressure valve 4 falls below a certain value, the turbine 1 can be controlled. Therefore, the switch 33 is switched to the line b on the pressure control side using the pressure controller 6. In this way, a limiting circuit characterized by being able to secure a required power generation amount even if the turbine 1 side is limited is provided.

【0066】また、工場送気先の装置に異常がおきて、
必要蒸気量が急減するようなこと又は蒸気量が不要にな
るようなことが頻繁に起きる場合がある。その場合は、
前記異常が起きた場合に備えて予め設定した異常時蒸気
圧力設定器34により大気放出弁7の開度が一定になる
ように決めておき、異常の発生を知らせる信号により切
替器35の切り替えラインをライン(a−c)に、かつ
切替器37をライン(a−c)に切り替えることによ
り、蒸気圧力制御から異常発生時の制御に切り替え、設
定器34により大気放出弁7の開度設定信号を発生さ
せ、自動/手動切替器38を経て決められた開度まで直
接大気放出弁7を開く。
In addition, when an abnormality occurs in the device at the factory air supply destination,
Frequently, the amount of steam required suddenly decreases or becomes unnecessary. In that case,
In preparation for the case where the abnormality occurs, the opening of the atmosphere release valve 7 is determined to be constant by the preset abnormal-time steam pressure setting device 34, and the switching line of the switching device 35 is transmitted by a signal notifying the occurrence of the abnormality. Is switched to the line (ac) and the switch 37 is switched to the line (ac), thereby switching from the steam pressure control to the control at the time of occurrence of an abnormality, and the setting device 34 sets the opening degree setting signal of the atmosphere release valve 7. Is generated, and the air release valve 7 is directly opened to the opening determined through the automatic / manual switch 38.

【0067】これにより蒸気ヘッダ13の蒸気圧力が急
上昇するのを防ぐ。このままの状態にしておくと蒸気ヘ
ッダ13の蒸気圧力はなりゆきまかせとなるので、一定
時限後切替器35をライン(a−b)に切り替え、加算
器36側とし先行信号に切り替える。
This prevents the steam pressure in the steam header 13 from rising rapidly. In this state, the steam pressure in the steam header 13 is gradually increased. Therefore, the switch 35 is switched to the line (ab) after the certain time limit, and the adder 36 is switched to the preceding signal.

【0068】すなわち、切替器35がライン(a−c)
の場合は大気放出弁7は一定開度になるように制御され
ているが、切替器35がライン(a−b)に切り替えら
れると加算器36によりbの信号と加算される。bは圧
力が一定、または受電電力が一定になるような信号であ
る。すなわち、加算器36の出口cはaとbとの信号が
加算されているわけであるが、圧力が変動すると圧力が
一定値または受電電力が変動すると受電電力が一定にな
るようにbの信号が変化し補正されるのである。その結
果、圧力調節計6からの信号により蒸気ヘッダ13の蒸
気圧力が一定になるよう補正される。
That is, when the switch 35 is connected to the line (ac)
In this case, the atmosphere release valve 7 is controlled to have a constant opening. However, when the switch 35 is switched to the line (ab), the adder 36 adds the signal to the signal b. b is a signal such that the pressure is constant or the received power is constant. That is, the signal of a and b is added to the exit c of the adder 36. The signal of b is set so that the pressure becomes constant when the pressure fluctuates or the power becomes constant when the received power fluctuates. Is changed and corrected. As a result, the signal from the pressure controller 6 is corrected so that the steam pressure of the steam header 13 becomes constant.

【0069】このように蒸気流量、工場送気側装置異常
検出による先行制御回路を有したことを特徴とする制御
回路が得られる。
As described above, a control circuit characterized by having a preceding control circuit based on the detection of a steam flow rate and a factory air supply side device abnormality is obtained.

【0070】[0070]

【発明の効果】必要抽気量、発電量の総和に比べて復水
器の容量が小さく設備費用の低減を図った設備におい
て、必要抽気量を確保し、かつ、その時の抽気量で設備
が常に高効率で運転できるように最大発電をするととも
に発電電力が逆潮にならないようにできる。また、蒸気
量の急減した場合に蒸気ヘッダの圧力変動の防止をする
ことができる。また、復水器容量制限いっぱいすなわち
低圧弁開度が上限となりタービン自身では発電量を増や
せなくなっても大気放出弁を制御することにより発電量
を確保できる。
According to the present invention, in a facility in which the capacity of the condenser is small compared to the sum of the required bleed air amount and the power generation amount and the facility cost is reduced, the required bleed air amount is secured, and the equipment is constantly operated with the bleed air amount at that time It can generate the maximum power so that it can be operated with high efficiency, and can prevent the generated power from going into reverse tide. In addition, when the amount of steam suddenly decreases, it is possible to prevent pressure fluctuation of the steam header. Further, even if the condenser capacity limit is full, that is, the low pressure valve opening becomes the upper limit and the turbine itself cannot increase the power generation amount, the power generation amount can be secured by controlling the atmospheric discharge valve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態のタービン・発電機系統
を示す図である。
FIG. 1 is a diagram showing a turbine / generator system according to an embodiment of the present invention.

【図2】 図1のタービン・発電機の特性を示す図であ
る。
FIG. 2 is a diagram showing characteristics of the turbine / generator of FIG.

【図3】 図1のタービン・発電機系統の制御図であ
る。
FIG. 3 is a control diagram of the turbine / generator system of FIG.

【図4】 図1のタービン・発電機系統の電力系統図で
ある。
FIG. 4 is a power system diagram of the turbine / generator system of FIG.

【図5】 図1のタービン・発電機の特性を示す図であ
る。
FIG. 5 is a diagram showing characteristics of the turbine / generator of FIG. 1;

【図6】 本発明の実施の形態のタービン・発電機系統
の大気放出弁の制御回路を示す図である。
FIG. 6 is a diagram showing a control circuit of an atmospheric discharge valve of the turbine / generator system according to the embodiment of the present invention.

【図7】 従来のタービン・発電機まわりの系統を示す
図である。
FIG. 7 is a diagram showing a system around a conventional turbine / generator.

【符号の説明】 1 抽気タービン 1−1 高圧タ
ービン 1−2 低圧タービン 2 発電機 3 高圧弁 4 低圧弁 5 タービンバイパス弁 6、8 圧力調
節計 7 大気放出弁 9、11 給水
流量調節弁 12 温度計 10 大気放出
ノズル 13 蒸気ヘッダ 14、15 流
量検出器 16 ガバナ制御装置 17、21 発
電量演算器 18 低位選択器 19 関数発生
器 20 抽気口 30 蒸気圧力
検出器 31 蒸気圧力設定器 32 流量調節
計 33、35、37、切替器 34 異常時蒸
気圧力設定器 36 加算器 38 自動/手
動切替器
[Description of Signs] 1 Extraction Turbine 1-1 High Pressure Turbine 1-2 Low Pressure Turbine 2 Generator 3 High Pressure Valve 4 Low Pressure Valve 5 Turbine Bypass Valve 6, 8 Pressure Controller 7 Atmospheric Release Valve 9, 11 Feed Water Flow Control Valve 12 Temperature Total 10 Atmospheric discharge nozzle 13 Steam header 14, 15 Flow detector 16 Governor control device 17, 21 Power generation calculator 18 Low-order selector 19 Function generator 20 Bleed port 30 Steam pressure detector 31 Steam pressure setter 32 Flow controller 33, 35, 37, switching unit 34 steam pressure setting unit at abnormal time 36 adder 38 automatic / manual switching unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 復水器の容量に制限がある抽気タービン
と該抽気タービンにより発電する発電機を備えたタービ
ン・発電機の制御方法において、 抽気蒸気圧力が一定となるように抽気必要蒸気量を常に
確保する制御を最優先とし、前記抽気必要蒸気量制御に
よって制限される発電量の範囲内で復水量を最大とし、
かつ、当該抽気必要蒸気量における最大の発電量となる
ように発電機での蒸気消費量を制御し、このときの発電
量が発電必要量を上回る場合は強制的に発電量を発電必
要量以内になるように制御することを特徴とするタービ
ン・発電機の制御方法。
1. A method for controlling a turbine / generator comprising an extraction turbine having a limited capacity of a condenser and a generator for generating electricity by the extraction turbine, wherein a required amount of extraction steam is set so that the extraction steam pressure is constant. Is always given the highest priority, and the condensate amount is maximized within the range of the power generation amount limited by the bleeding necessary steam amount control,
In addition, the amount of steam consumed by the generator is controlled so that the maximum amount of power is generated in the required amount of extracted steam, and if the amount of power generated at this time exceeds the required amount of power generation, the amount of power generation is forcibly within the required amount of power generation. A method for controlling a turbine / generator, wherein the control is performed such that
【請求項2】 復水器の容量に制限がある抽気タービン
と該抽気タービンにより発電する発電機を備えたタービ
ン・発電機の制御装置において、 抽気蒸気圧力が一定となるような抽気蒸気量と該抽気蒸
気量により制限される発電量の範囲内で復水量を最大と
し、かつ、当該抽気蒸気量における予め決められた最大
の発電量を出力する関数発生器と実測発電量とに基づ
き、当該抽気蒸気量における最大の発電量以下の発電量
を出力する発電量演算器と、 外線より一定の電力の供給を受けるように受電量を設定
した受電量設定値と実測受電電力量とに基づき実測受電
電力量が受電量設定値以上になるような発電量を演算し
て、演算した発電電力量を出力する発電量演算器と、 前記2つの発電量演算器の出力する発電量のなかで低位
の発電量を選択して出力する低位選択器と、 該低位の発電量に基づき抽気タービンの一以上の蒸気圧
力の異なる圧力弁を制御する圧力弁制御装置とを備えた
ことを特徴とするタービン・発電機の制御装置。
2. A control device for a turbine / generator including a bleeding turbine having a limited capacity of a condenser and a generator for generating power by the bleeding turbine, wherein: The maximum amount of condensed water within the range of the amount of power generation limited by the amount of extracted steam, and based on a function generator that outputs a predetermined maximum amount of power generation in the amount of extracted steam and the actually measured amount of power generation, A power generation calculator that outputs power generation less than or equal to the maximum power generation in the extracted steam volume, an actual measurement based on the received power set value and the measured received power that set the received power so that constant power is supplied from the outside line A power generation calculator that calculates a power generation amount such that the received power amount is equal to or greater than the received power set value, and outputs a calculated power generation amount; and a lower power generation amount among the two power generation amount output units. Select the amount of power generation And a pressure valve control device for controlling one or more pressure valves having different steam pressures in the extraction turbine based on the low power generation amount. apparatus.
【請求項3】 少なくとも高圧弁と低圧弁をそれぞれ備
えた高圧タービンと低圧タービンを有する抽気タービン
と該抽気タービンにより発電する発電機と抽気タービン
からの抽気を工場に送気するための大気放出弁付きの蒸
気ヘッダを備えたタービン・発電機の制御方法におい
て、(a)前記低圧弁の開度の上限値以下の範囲では蒸
気圧力とその設定値の偏差に基づき、蒸気ヘッダへ送る
蒸気流量の制御を行い、(b)工場送気蒸気量に比べて
電力用蒸気消費量が多い場合であって、前記低圧弁の開
度の上限に達してもなお発電量が不足する場合には、蒸
気圧力とその設定値の偏差に基づく蒸気ヘッダへ送る蒸
気流量の制御を行なわずに受電電力とその設定値の偏差
に基づいて蒸気流量を制御することと大気放出弁の開度
により受電電力を一定値にする制御を行い、(c)前記
受電電力を一定値にする制御の後に、前記低圧弁の開度
が前記上限値以下になると、前記(a)の制御に戻るこ
とを特徴とするタービン・発電機の制御方法。
3. A bleed turbine having at least a high-pressure turbine and a low-pressure turbine respectively provided with a high-pressure valve and a low-pressure valve, a generator for generating power by the bleed turbine, and an atmospheric discharge valve for sending bleed air from the bleed turbine to a factory. A control method for a turbine / generator provided with a steam header provided with: (a) a steam flow rate to be sent to a steam header based on a deviation between a steam pressure and a set value thereof in a range equal to or less than an upper limit value of the opening degree of the low-pressure valve. (B) If the power consumption is large compared to the amount of steam supplied to the factory and the amount of power generation is still insufficient even when the opening of the low-pressure valve reaches the upper limit, Control the steam flow based on the deviation of the received power and its set value without controlling the steam flow sent to the steam header based on the deviation of the pressure and its set value, and keep the received power constant by the opening of the atmospheric release valve And (c) returning to the control of (a) when the opening of the low-pressure valve becomes equal to or less than the upper limit after the control of setting the received power to a constant value. -Generator control method.
【請求項4】 少なくとも高圧弁と低圧弁をそれぞれ備
えた高圧タービンと低圧タービンを有する抽気タービン
と該抽気タービンにより発電する発電機と抽気タービン
からの抽気を工場に送気するための、大気放出弁を有す
る蒸気ヘッダを備えたタービン・発電機の制御方法にお
いて、(a)前記低圧弁の開度の上限値以下の範囲では
蒸気圧力とその設定値の偏差に基づき、蒸気ヘッダへ送
る蒸気流量の制御を行い、(b)異常が起きた場合に備
えて予め異常時の蒸気圧力に対応して大気放出弁の開度
を決めておき、(c)異常が起きた場合、前記(a)の
制御を中止して前記(b)の制御を行うことを特徴とす
るタービン・発電機の制御方法。
4. An air release for supplying an extraction turbine having a high-pressure turbine and a low-pressure turbine respectively provided with at least a high-pressure valve and a low-pressure valve, a generator for generating power by the extraction turbine, and extraction air from the extraction turbine to a factory. In the control method of a turbine / generator provided with a steam header having a valve, (a) a steam flow to be sent to a steam header based on a deviation between a steam pressure and a set value thereof in a range equal to or less than an upper limit of the opening degree of the low-pressure valve. (B) The opening degree of the atmosphere release valve is determined in advance in accordance with the vapor pressure at the time of the abnormality in preparation for the case of an abnormality. A control method of the turbine / generator, wherein the control of (b) is performed while the control of (b) is stopped.
【請求項5】 少なくとも高圧弁と低圧弁をそれぞれ備
えた高圧タービンと低圧タービンを有する抽気タービン
と該抽気タービンにより発電する発電機と抽気タービン
からの抽気を工場に送気するための大気放出弁付きの蒸
気ヘッダを備えたタービン・発電機の制御装置におい
て、 抽気タービンでの蒸気圧力検出器と、 前記低圧弁の開度の上限値以下の範囲での蒸気圧力を設
定する蒸気圧力設定器と、 前記蒸気圧力検出器と蒸気圧力設定器の各出力値の偏差
に基づき、蒸気ヘッダへ送る蒸気流量の制御を行う蒸気
圧力系の蒸気流量調節計と、 前記低圧弁の開度の上限値設定器と、前記低圧弁の開度
の検出器と、 受電電力検出器と受電電力設定器と、 前記受電電力検出器と受電電力設定器の各出力値の偏差
に基づき、受電電力が受電電力設定値以上になるように
蒸気ヘッダへ送る蒸気流量の制御を行う受電電力系の蒸
気流量調節計と、 蒸気圧力系の蒸気流量調節計と受電電力系の蒸気流量調
節計の両出力値の切替器と、 低圧弁の開度の検出器の出力値が低圧弁の開度上限値設
定器の設定値に達しても蒸気圧力系の蒸気流量調節計の
出力値が必要電力量に達しないことを検出すると前記切
替器を受電電力系の蒸気流量調節計の出力値に切り替
え、且つ蒸気ヘッダの大気放出弁を制御して受電電力量
が一定になるように制御し、低圧弁の開度の検出器の出
力値が低圧弁の開度上限値設定器の設定値より小さいと
前記切替器を蒸気圧力系の蒸気流量調節計の出力値を出
力するように切り替える制御装置を備えたことを特徴と
するタービン・発電機の制御装置。
5. A bleed turbine having at least a high-pressure turbine and a low-pressure turbine respectively provided with a high-pressure valve and a low-pressure valve, a generator for generating power by the bleed turbine, and an atmospheric discharge valve for sending bleed air from the bleed turbine to a factory. A turbine / generator control device provided with a steam header, comprising: a steam pressure detector in the extraction turbine; and a steam pressure setter for setting a steam pressure within a range equal to or less than an upper limit of the opening of the low-pressure valve. A steam flow controller for a steam pressure system that controls a steam flow to be sent to a steam header based on a deviation of each output value of the steam pressure detector and the steam pressure setter; and setting an upper limit of an opening of the low-pressure valve. Detector, a detector of the opening degree of the low-pressure valve, a received power detector and a received power setting device, and based on a deviation of each output value of the received power detector and the received power setting device, the received power is set to the received power. The steam flow controller of the receiving power system that controls the steam flow sent to the steam header so that it exceeds the value, and a switch for both output values of the steam flow controller of the steam pressure system and the steam flow controller of the receiving power system Even if the output value of the low-pressure valve opening detector reaches the setting value of the low-pressure valve opening upper limit value setting device, the output value of the steam flow controller of the steam pressure system does not reach the required power. Upon detection, the switch is switched to the output value of the steam flow controller of the receiving power system, and the atmospheric discharge valve of the steam header is controlled so that the receiving power amount becomes constant, and the opening of the low-pressure valve is detected. A control device for switching the switch to output the output value of the steam flow controller of the steam pressure system when the output value of the device is smaller than the set value of the low-pressure valve opening upper limit value setting device. Turbine / generator control device.
【請求項6】 少なくとも高圧弁と低圧弁をそれぞれ備
えた高圧タービンと低圧タービンを有する抽気タービン
と該抽気タービンにより発電する発電機と抽気タービン
からの抽気を工場に送気するための、大気放出弁を有す
る蒸気ヘッダを備えたタービン・発電機の制御装置にお
いて、 抽気タービンでの蒸気圧力検出器と、 前記低圧弁の開度の上限値以下の範囲での蒸気圧力を設
定する蒸気圧力設定器と、 前記蒸気圧力検出器と蒸気圧力設定器の各出力値の偏差
に基づき、蒸気ヘッダへ送る蒸気流量の制御を行う蒸気
圧力系の蒸気流量調節計と、 蒸気圧力系の蒸気流量調節計と、 予め異常時の蒸気圧力に対応して大気放出弁の開度を決
めておく異常蒸気圧力設定器と、 蒸気圧力系の蒸気流量調節計の出力値と異常蒸気圧力設
定器の出力値との切替器と、 前記低圧弁の開度の上限値設定器と、前記低圧弁の開度
の検出器と、 低圧弁の開度の検出器の出力値が低圧弁の開度設定器の
設定値以下であると前記切替器を蒸気圧力系の蒸気流量
調節計の出力値を出力するように切替え、抽気タービン
での蒸気圧力検出器の出力値が前記異常蒸気圧力設定器
の設定値を超えると前記切替器を異常蒸気圧力設定器の
出力値を出力するように切替える制御装置を備えたこと
を特徴とするタービン・発電機の制御装置。
6. An air release for supplying an extraction turbine having at least a high-pressure turbine and a low-pressure turbine respectively provided with a high-pressure valve and a low-pressure valve, a generator for generating power by the extraction turbine, and extraction air from the extraction turbine to a factory. A control device for a turbine / generator provided with a steam header having a valve, comprising: a steam pressure detector in the extraction turbine; and a steam pressure setter for setting a steam pressure in a range equal to or less than an upper limit of an opening of the low-pressure valve. A steam flow controller of a steam pressure system for controlling a steam flow to be sent to a steam header based on a deviation of each output value of the steam pressure detector and the steam pressure setter; and a steam flow controller of a steam pressure system. An abnormal steam pressure setting device that determines the opening of the atmospheric release valve in advance in response to the steam pressure at the time of the abnormality, the output value of the steam flow controller of the steam pressure system and the output value of the abnormal steam pressure setting device. Setting of the low-pressure valve opening degree setting device, the low-pressure valve opening degree detector, and the low-pressure valve opening degree detector output value of the low-pressure valve opening degree setting device. If the value is equal to or less than the value, the switch is switched to output the output value of the steam flow controller of the steam pressure system, and the output value of the steam pressure detector in the extraction turbine exceeds the set value of the abnormal steam pressure setter. And a controller for switching the switch to output the output value of the abnormal steam pressure setter.
JP2000139556A 2000-05-12 2000-05-12 Method and device for controlling turbine generator Pending JP2001317305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000139556A JP2001317305A (en) 2000-05-12 2000-05-12 Method and device for controlling turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000139556A JP2001317305A (en) 2000-05-12 2000-05-12 Method and device for controlling turbine generator

Publications (1)

Publication Number Publication Date
JP2001317305A true JP2001317305A (en) 2001-11-16

Family

ID=18646981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000139556A Pending JP2001317305A (en) 2000-05-12 2000-05-12 Method and device for controlling turbine generator

Country Status (1)

Country Link
JP (1) JP2001317305A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228617A (en) * 2008-03-25 2009-10-08 Pan Pacific Copper Co Ltd Steam turbine, steam turbine plant system, and output increasing method of steam turbine
JP2011117358A (en) * 2009-12-03 2011-06-16 Toshiba Corp Apparatus and method for controlling heat power plant
JP2013124560A (en) * 2011-12-13 2013-06-24 Jfe Steel Corp Turbine bypass device and turbine bypass control method
US9404382B2 (en) 2013-04-05 2016-08-02 Fuji Electric Co., Ltd. Method and apparatus for safety operation of extraction steam turbine utilized for power generation plant
JP2019007391A (en) * 2017-06-22 2019-01-17 住友金属鉱山株式会社 Steam extraction control method for steam turbine generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228617A (en) * 2008-03-25 2009-10-08 Pan Pacific Copper Co Ltd Steam turbine, steam turbine plant system, and output increasing method of steam turbine
JP2011117358A (en) * 2009-12-03 2011-06-16 Toshiba Corp Apparatus and method for controlling heat power plant
JP2013124560A (en) * 2011-12-13 2013-06-24 Jfe Steel Corp Turbine bypass device and turbine bypass control method
US9404382B2 (en) 2013-04-05 2016-08-02 Fuji Electric Co., Ltd. Method and apparatus for safety operation of extraction steam turbine utilized for power generation plant
DE112013001671B4 (en) * 2013-04-05 2016-09-29 Fuji Electric Co., Ltd. Method and apparatus for safety operation of a steam extraction turbine, which is used for a power plant
JP2019007391A (en) * 2017-06-22 2019-01-17 住友金属鉱山株式会社 Steam extraction control method for steam turbine generator

Similar Documents

Publication Publication Date Title
EP2660511B1 (en) Condensate flow rate control device for power-plant, and control method
EP2060752B1 (en) Steam system, and its control system and control method
JP2010121890A (en) Tank water level control system
KR20130115281A (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
US20120183413A1 (en) Reactor Feedwater Pump Control System
KR20050010328A (en) Feedwater Control System in Nuclear Power Plant Considering Feedwater Control Valve Pressure Drop and Control Method thereof
JP4898409B2 (en) Steam supply equipment
JP2001317305A (en) Method and device for controlling turbine generator
CA1231539A (en) Method and apparatus for controlling an operation of plant
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JPH11223302A (en) Automatic control device and method of power generating plant
JPH08261665A (en) Operating method for cooling water pump of condenser
JP2014020713A (en) Supply water flow rate control device in power-generating plant and ventilation flow rate control device
JP4003630B2 (en) Reactor recirculation flow controller
EP4115259B1 (en) Method and system for controlling a plurality of compressors coupled to a compressed-air installation
JP5639808B2 (en) Reactor water supply controller
JPH07133703A (en) Control method for power generating plant
JPH049503A (en) Drain water level controller of feed water heater
JPS6128802B2 (en)
JP3747253B2 (en) Thermal power plant protection system
JP2000097403A (en) Controller for turbine-drive water supply pump
JPH07190305A (en) Deaerator water level controller
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPS6346387A (en) Condenser cooling water supplier
JP3468854B2 (en) Turbine control device