JPS6346387A - Condenser cooling water supplier - Google Patents

Condenser cooling water supplier

Info

Publication number
JPS6346387A
JPS6346387A JP18773286A JP18773286A JPS6346387A JP S6346387 A JPS6346387 A JP S6346387A JP 18773286 A JP18773286 A JP 18773286A JP 18773286 A JP18773286 A JP 18773286A JP S6346387 A JPS6346387 A JP S6346387A
Authority
JP
Japan
Prior art keywords
cooling water
condenser
flow rate
condensers
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18773286A
Other languages
Japanese (ja)
Inventor
Fusaji Kakizaki
柿崎 房司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18773286A priority Critical patent/JPS6346387A/en
Publication of JPS6346387A publication Critical patent/JPS6346387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To reduce power for circulating water pumps (CWP) and to employ a steam turbine at a high efficiency by supplying cooling water in an optimum quantity in accordance with the operating conditions of steam turbines to respective condensers, in equipments for supply cooling water to a plurality of condensers using a common cooling water master pipe for a plurality of CWPs. CONSTITUTION:In equipments for supplying cooling water to a plurality of condensers 7, 10 and 13 by use of a common cooling water master pipe 6 by means of a plurality of moving-vane type circulating water pumps (CWP) 2 and 4, when the flow rate of cooling water is controlled to supply cooling water in an optimum quantity in accordance with the operating conditions of respective steam turbines 8, 11 and 14 on the basis of outputs 20, 23 and 26, a cooling water inlet temperature 17 and vacuum degrees 19, 22 and 25 and the like of the condensers, cooling water in an optimum quantity in accordance with the operating conditions of respective steam turbines is supplied to respective condensers 7, 10 and 13. Accordingly, it becomes possible to use a cooling water system including optimum CWPs 2 and 4 and cooling water blow rate adjusting valves 9, 12 and 15 in accordance with the operating conditions of respective steam turbines 9, 12 and 15.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、蒸気タービンプラントにおいて、複数台の復
水器に最適冷却水流量を供給するよう改善した復水器冷
却水供給装置に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention provides a condenser cooling water system that is improved to supply an optimum cooling water flow rate to a plurality of condensers in a steam turbine plant. Regarding the supply device.

(従来の技術) 蒸気タービンプラントにおいて、1台以上の可動翼形循
環水ポンプ(以下CWPと略す)により、共通冷却水母
管を用いて複数台の復水器に冷却水を供給する設備があ
る1例えば、第3図に可動翼形CWP2台、共通冷却水
母管1条、復水器および蒸気タービン3台を有する設備
が示されている。
(Prior art) In a steam turbine plant, there is equipment that supplies cooling water to multiple condensers using a common cooling water main pipe using one or more movable vane circulating water pumps (hereinafter abbreviated as CWP). 1. For example, FIG. 3 shows an installation having two movable airfoil CWPs, one common cooling water main pipe, a condenser, and three steam turbines.

第3図において、取水口1よりそれぞれ可動翼3および
5を有する可動翼形CWP2および4によって汲み上げ
られた海水は、共通冷却水母管6を通り、各復水器7,
10.13へ供給される。各復水器7,10.13へ供
給された冷却水は、各蒸気タービン8.11.14の排
出蒸気と熱交換され、冷却水流量調節弁9.12.15
を介して放水口16へと流れる。また共通冷却水母管6
には温度検出器17が、各復水器の冷却水管には流量検
出器18,21.24が、各復水器には真空度検出器1
9,22.25が設置されてしする。
In FIG. 3, seawater pumped up from the water intake 1 by movable vanes CWP2 and 4 having movable vanes 3 and 5, respectively, passes through a common cooling water main pipe 6, and passes through each condenser 7,
Supplied to 10.13. The cooling water supplied to each condenser 7, 10.13 is heat exchanged with the exhaust steam of each steam turbine 8.11.14, and the cooling water flow rate control valve 9.12.15
The water flows to the water outlet 16 via the water outlet. In addition, the common cooling water main pipe 6
There is a temperature detector 17 on the cooling water pipe of each condenser, a flow rate detector 18, 21.24 on the cooling water pipe of each condenser, and a vacuum degree detector 1 on each condenser.
9, 22.25 has been installed.

そして各蒸気タービン8,11.14に発電機20,2
3.26が直結されている。
And each steam turbine 8, 11.14 has a generator 20, 2
3.26 is directly connected.

このように従来のシステムでは、各復水器7゜10、1
3の冷却水必要流量の合計のみを用いて可動翼開度を制
御しているものであり、流量検出器18゜21.24を
付属させていても制御に使用せずにたシ一般監視に用い
られており、また各復水器7,10゜13の冷却水弁は
、一定開度で使用していた。この設備における共通冷却
水母管6に流れる冷却水流量は、可動翼形CWP2およ
び4を制御することによって調節される。この可動翼形
CWP2および4の制御システムを第4図に示している
。第4図において、各蒸気タービン8,11.14に直
結した発電機20,23.26の出力は、加算器27に
入力されてトータルの発電機出力として出力される。こ
の出力されたトータル発電機出力と冷却水入口温度17
とは、関数発生器28に入力される。関数発生器28は
、発電機出力と冷却水温度とより復水器7,10゜13
の最適真空度を得るために必要な最低流量を計算して出
力する。
In this way, in the conventional system, each condenser 7°10, 1
The movable blade opening degree is controlled using only the total required flow rate of cooling water in step 3, and even though a flow rate detector 18°21.24 is attached, it is not used for control and is only used for general monitoring. The cooling water valves of each condenser 7, 10° 13 were used at a constant opening. The flow rate of cooling water flowing into the common cooling water main pipe 6 in this installation is adjusted by controlling the movable airfoils CWP2 and 4. The control system for these movable airfoils CWP2 and CWP4 is shown in FIG. In FIG. 4, the output of the generators 20, 23.26 directly connected to each steam turbine 8, 11.14 is input to an adder 27 and output as a total generator output. This total generator output and cooling water inlet temperature 17
is input to the function generator 28. The function generator 28 calculates the condenser 7, 10° 13 based on the generator output and the cooling water temperature.
Calculates and outputs the minimum flow rate required to obtain the optimal degree of vacuum.

この関数発生器28で計算された冷却水流量と、CWP
の運転台数とが関数発生器29へ入力される。
The cooling water flow rate calculated by this function generator 28 and the CWP
The number of operating vehicles is input to the function generator 29.

関数発生器29は、関数発生器28で計算された冷却水
量およびこれを確保するために必要なCWPの運転台数
MoにもとずいてCWPの可動翼開度を計算して出力す
る。この場合CWPのシステムヘッドは一定とした設定
となっている。関数発生器29で計算された可動翼開度
は、加算器30へ入力される。また加算器30には、蒸
気タービンの負荷上昇時に冷却水流量を先行的に確保す
るための先行信号SOが入力される。加算器30の出力
は、変化率制限器31を介して上下限制限器32を通り
、各CWP可動翼のコントローラ33および34へ入力
され、各CWP2,4の可動翼開度を制御する。なお、
変化率制限器31および上下限制限器32の制限値CW
Pの運転台数により設定されている。
The function generator 29 calculates and outputs the CWP movable blade opening degree based on the amount of cooling water calculated by the function generator 28 and the number Mo of operating CWPs required to secure this amount. In this case, the CWP system head is set to be constant. The movable blade opening calculated by the function generator 29 is input to the adder 30. Further, the adder 30 receives an advance signal SO for proactively securing the cooling water flow rate when the load of the steam turbine increases. The output of the adder 30 passes through a change rate limiter 31, an upper limit limiter 32, and is input to controllers 33 and 34 of each CWP movable blade, thereby controlling the movable blade opening degree of each CWP 2, 4. In addition,
Limit value CW of rate of change limiter 31 and upper/lower limit limiter 32
It is set based on the number of P's vehicles in operation.

(糖G吠ηぺ(リヒ331雫妥) しかし、以上のシステムでは、各蒸気タービン8.11
.14が同じ負荷で運転している場合は、問題がないが
、各蒸気タービン8,11.14が蒸気タービンが互い
に異なる負荷で運転している場合には、各復水器7,1
0.13の冷却水流量が均等配分されるため、以下のよ
うな間層が生じる。すなわち、高い負荷で運転している
蒸気タービンの復水器には、必要冷却水流量が確保でき
なくなり、また低い負荷で運転している蒸気タービンの
復水器には、必要冷却水流量以上の冷却水が供給される
可能性がある。必要冷却水流量が確保できなくなると、
その復水器の真空度は低下し、その蒸気タービンは、非
常に効率の悪い運転状態となる。また必要冷却水流量以
上の冷却水を供給することは、CWPの運用上から効率
低下につながる。
However, in the above system, each steam turbine 8.11
.. There is no problem if the steam turbines 8, 14 are operating at the same load, but if the steam turbines 8, 11.14 are operating at different loads, each condenser 7, 1
Since the cooling water flow rate of 0.13 is evenly distributed, the following interlayer occurs. In other words, the condenser of a steam turbine operating at a high load will not be able to secure the necessary cooling water flow rate, and the condenser of a steam turbine operating at a low load will not be able to secure the required cooling water flow rate. Cooling water may be supplied. If the required cooling water flow rate cannot be secured,
The condenser vacuum is reduced and the steam turbine operates very inefficiently. Furthermore, supplying cooling water in excess of the required cooling water flow rate leads to a decrease in efficiency in terms of CWP operation.

本発明の目的は、上記問題点を解決するためになされた
もので1台以上のCWPで共通冷却水母管を用いて複数
台の復水器に冷却水を供給している蒸気タービンプラン
トにおいて、CWPの動力削減および蒸気タービンの高
効率運用を図ることのできる復水器冷却水供給装置を提
供するにある。
An object of the present invention was to solve the above-mentioned problems in a steam turbine plant in which cooling water is supplied to a plurality of condensers using a common cooling water main pipe in one or more CWPs. An object of the present invention is to provide a condenser cooling water supply device that can reduce the power of CWP and operate a steam turbine with high efficiency.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明による蒸気タービンプラントの復水器冷却水供給
装置は、複数台のCWPにより共通冷却水母管を用いて
複数台の復水器へ冷却水を供給している設備において、
各復水器の真空度、各復水器への冷却水流量、各発電機
の出力および共通冷却水母管での冷却水温度を用いて各
復水器に最適冷却水流量を供給するようCWPの可動翼
および復水器の冷却水流量調節弁の開度を制御するよう
構成したことを特徴とする。
(Means for Solving Problems) A condenser cooling water supply system for a steam turbine plant according to the present invention supplies cooling water to a plurality of condensers using a common cooling water main pipe by a plurality of CWPs. In the equipment that
CWP uses the vacuum degree of each condenser, the cooling water flow rate to each condenser, the output of each generator, and the cooling water temperature in the common cooling water main pipe to supply the optimal cooling water flow rate to each condenser. The invention is characterized in that it is configured to control the opening degrees of the cooling water flow rate control valves of the movable blades and the condenser.

(作用) すなわち、発電機出力、冷却水入口温度および復水器の
真空度から各蒸気タービンの運転状態に応じた冷却水流
量を各復水器に供給すると同時に、各復水器の必要冷却
水流量の内最大の冷却水流量とCWPの運転台数とから
、可動翼開度を制御して最適の冷却水量になるように制
御するものである。
(Function) In other words, a cooling water flow rate corresponding to the operating status of each steam turbine is supplied to each condenser based on the generator output, cooling water inlet temperature, and vacuum degree of the condenser, and at the same time, the required cooling of each condenser is The opening degree of the movable blades is controlled based on the maximum cooling water flow rate among the water flow rates and the number of CWPs in operation, so that the optimum amount of cooling water is obtained.

(実施例) 以下本発明を第1図および第2図に示す実施例について
説明する。本発明が適用される蒸気タービンプラントの
復水器に対する冷却水供給設備は、第3図の系統と同一
であり、同一部分は同一符号を付し、その説明を省略す
る。また本発明においては、その冷却水供給設備の制御
システムの改善に特徴を有するもので、第4図に示す従
来のシステムと同一部分には、同一符号を付してその説
明を省略する。
(Example) The present invention will be described below with reference to an example shown in FIGS. 1 and 2. The cooling water supply equipment for the condenser of the steam turbine plant to which the present invention is applied is the same as the system shown in FIG. 3, and the same parts are given the same reference numerals and the explanation thereof will be omitted. Furthermore, the present invention is characterized by an improvement in the control system for the cooling water supply equipment, and the same parts as those in the conventional system shown in FIG. 4 are given the same reference numerals and the explanation thereof will be omitted.

本発明による冷却水供給装置の制御システムを示す第1
図において、第3図に示す各復水器7゜10、13の冷
却水流量調節弁9.12.15および可動翼形CWP2
,4の可動翼3,5に対する開度制御系を各列に組んで
いる。すなわち、各発電機出力20゜23、26および
冷却水入口温度17が各列の関数発生器35,45.5
5に入力され、各関数発生器35,45.55はこれら
の入力を基にして各復水器7,10.13に必要な冷却
水流量を計算して出力する。
A first diagram showing a control system for a cooling water supply device according to the present invention.
In the figure, the cooling water flow rate control valves 9, 12, and 15 of each condenser 7, 10, and 13 shown in FIG.
, 4, and an opening control system for the movable blades 3 and 5 is arranged in each row. That is, each generator output 20° 23, 26 and cooling water inlet temperature 17 are the function generators 35, 45.5 of each column.
5, and each function generator 35, 45.55 calculates and outputs the cooling water flow rate required for each condenser 7, 10.13 based on these inputs.

また一方、各発電機出力20,23,26および冷却水
入口温度17は、関数発生器36,46.56に入力さ
れ、この各関数発生器36,46.56にこれらの入力
を基に各復水器7,10.13に対する最適な真空度を
出力する。この各関数発生器36,46.56で得られ
た値と各復水器の実真空度19,22.25とが減算器
37,47.57に入力され、この各減算器37.47
.57からは、最適真空度と実真空度の差が主力される
。復水器の圧力変動によって制御信号が撹乱されるのを
防ぐため、この差の信号は不感帯回路38,48.58
を介して関数発生器39,49.59に送られる。この
関数発生器39゜49、59は、この差の信号および冷
却水入口温度17を入力として必要冷却水流量の補正信
号を出力する。
On the other hand, each generator output 20, 23, 26 and cooling water inlet temperature 17 are input to the function generator 36, 46.56, and each function generator 36, 46.56 generates each output based on these inputs. Outputs the optimum degree of vacuum for condensers 7, 10, and 13. The values obtained by each of the function generators 36, 46.56 and the actual degree of vacuum 19, 22.25 of each condenser are input to the subtractor 37, 47.57.
.. From 57 onwards, the main focus is on the difference between the optimum degree of vacuum and the actual degree of vacuum. To prevent the control signal from being perturbed by condenser pressure fluctuations, this difference signal is passed through dead band circuits 38, 48, 58.
to the function generators 39, 49.59. The function generators 39, 49, 59 receive this difference signal and the cooling water inlet temperature 17 as inputs and output a correction signal for the required cooling water flow rate.

加算器40 、50 、60では、前記の関数発生器3
5,45゜55から出力された各復水器7,10.13
に対する必要冷却水流量に、関数発生器39,49,5
9がらの補正信号および蒸気タービン8,11.14の
負荷上昇時に冷却水流量を先行的に確保するための先行
信号sOが加算され、この出力が各復水器7,10.1
3に対する最終的な必要冷却水流量となる。この加算器
40゜50、60の値と測定された実際の冷却水流量と
の差が減算器41,51.61より出力され、この減算
器41゜51、61の信号が変化率制限器42,52,
62および上限制限器43,53.63を介して各冷却
水の流量調節弁9゜12.15のコントローラ44,5
4.64に送られる。
In the adders 40, 50, 60, the function generator 3
Each condenser 7,10.13 output from 5,45°55
Function generators 39, 49, 5 are used to determine the required cooling water flow rate for
9 and a preceding signal sO for ensuring the flow rate of cooling water in advance when the load of the steam turbines 8, 11.14 increases, and this output is sent to each condenser 7, 10.1.
This is the final required cooling water flow rate for 3. The difference between the value of the adder 40°50, 60 and the measured actual cooling water flow rate is output from the subtractor 41,51. ,52,
62 and the controller 44, 5 of each cooling water flow rate control valve 9° 12.15 via the upper limit limiter 43, 53, 63.
Sent on 4.64.

一方、各冷却水流量調節弁9.12.15に対する弁開
度制御系の動きと同時に、可動形CWP2,4の可動翼
3,5に対する開度制御系も作動を開始している。すな
わち、各制御系の加算器40,50.60で補正された
最終的な冷却水必要流量は、加算器65で加算されて3
つの復水器7,10.13に必要な冷却水流量の合計が
計算される。また他方では、高値選択器66で各制御系
の加算器40,50.60からの各復水器の必要冷却水
流量の内最大の冷却水流量を選択し、関数発生器67へ
出力する。この関数発生器67では、高値選択器66で
選択された最大の冷却水流量を基に高値選択器66で選
択された制御系の冷却水流量調節弁開度が全開とするた
めの必要なcwp全揚程を出力する。
On the other hand, simultaneously with the operation of the valve opening control system for each cooling water flow rate control valve 9, 12, 15, the opening control system for the movable blades 3, 5 of the movable CWPs 2, 4 also starts operating. That is, the final required cooling water flow rate corrected by the adders 40, 50, and 60 of each control system is added by the adder 65 and becomes 3.
The total cooling water flow rate required for the two condensers 7, 10.13 is calculated. On the other hand, the high value selector 66 selects the maximum cooling water flow rate among the required cooling water flow rates for each condenser from the adders 40, 50, 60 of each control system, and outputs it to the function generator 67. This function generator 67 calculates the cwp required for the cooling water flow rate control valve opening degree of the control system selected by the high value selector 66 to be fully open based on the maximum cooling water flow rate selected by the high value selector 66. Outputs the total head.

関数発生器68では、前記の関数発生器67がら出力さ
れたCWP全揚程に加算器65で計算された3つの復水
器7,10.13に必要な冷却水流量の合計値信号およ
びCWPの運転台数Moを基にCWPの可動翼開度を計
算して出力する。関数発生器68で計算されたCWPの
可動翼開度は、変化率制限器69を介して上下限制限器
70へ入力され、各CWP可動翼のコントローラ71、
および72へ入力され、各CWP2,4の可動翼開度3
5をM御する。なお、変化率制限器69.および上下限
制限器、70の制限値はCWPの運転台数により設定さ
れている。
The function generator 68 adds the CWP total head outputted from the function generator 67 to the total value signal of the cooling water flow rate required for the three condensers 7, 10.13 calculated by the adder 65 and the CWP. The CWP movable blade opening degree is calculated and output based on the number of operating vehicles Mo. The CWP movable blade opening degree calculated by the function generator 68 is input to the upper and lower limit limiter 70 via the rate of change limiter 69, and is input to the controller 71 of each CWP movable blade.
and 72, and the movable blade opening degree 3 of each CWP2 and 4 is inputted to
Control 5 with M. Note that the rate of change limiter 69. The upper and lower limit limiters and the limit values of 70 are set depending on the number of CWPs in operation.

このように第1図に示す一実施例では、複数台のCWP
2,4で共通冷却水母管6を用いて複数台の復水器7,
10.13に冷却水を供給する設備において、9!電機
出力20.23,26、冷却水入口温度17、および復
水器の真空度19,22,25などを基に各蒸気タービ
ン8,11.14の運転状態に応じた最適な冷却水流量
を各復水器に供給するように冷却水流量を制御するもの
で、各復水器7,10.13には、各蒸気タービン8,
11.14の運転状態に応じた最適な冷却水流量が供給
されることになる。したがって、各蒸気タービン8,1
1.14の運転状態に応じた最適なCWP2,4および
冷却水流量調節弁9.12.15を含む冷却水系の運用
が可能となる。
In this way, in one embodiment shown in FIG.
In 2 and 4, a common cooling water main pipe 6 is used to connect multiple condensers 7,
In the equipment that supplies cooling water to 10.13, 9! Based on the electric machine output 20.23, 26, cooling water inlet temperature 17, and condenser vacuum degree 19, 22, 25, etc., determine the optimal cooling water flow rate according to the operating status of each steam turbine 8, 11.14. It controls the flow rate of cooling water to be supplied to each condenser, and each condenser 7, 10.13 has a steam turbine 8,
11. The optimum flow rate of cooling water according to the operating state of 14 will be supplied. Therefore, each steam turbine 8,1
It becomes possible to operate the cooling water system including the CWPs 2 and 4 and the cooling water flow rate control valve 9.12.15 in an optimal manner according to the operating state of 1.14.

また第4図に示す従来の制御システムが、3台の発電機
出力20,23.26の合計および冷却水入口温度17
からCWP2,4の可動翼3,5の開度を求め、cwp
の可動翼開度をこの値に一致させるという開ループ型の
制御システムであるのに比べ、本発明の第1図に示す実
施例による制御システムは、各復水器に供給される冷却
水流量およびその合計値を用いて各冷却水の流量調整弁
9.12.15の開度をフィードバック制御すると云う
閉ループ型の制御システムである。この結果、本発明の
制御システムに従来の制御システムに比べて安定がっ良
好な制御が可能であること、制御システム内に入る外乱
の制御結果への影響が小さいことなどのすぐれた特徴を
も有する。
Furthermore, the conventional control system shown in FIG.
Find the opening degree of the movable blades 3 and 5 of CWP2 and 4 from
The control system according to the embodiment of the present invention shown in FIG. This is a closed-loop control system in which the opening degree of each cooling water flow rate regulating valve 9, 12, and 15 is feedback-controlled using the total value. As a result, the control system of the present invention has superior features such as being able to perform more stable and better control than conventional control systems, and having less influence of disturbances entering the control system on control results. have

次に第2図に示す本発明の他の実施例においては、蒸気
タービンプラントを建設する現地の環境保全のために、
冷却水の出入口の温度差が7℃以内に押さえるよう取り
決められているが、この取り決めに対応するため、必要
冷却水流量を冷却水の復水器への入口温度および冷却水
の復水器からの出口温度の差が7℃以内に納まるように
補正する装置を付加したものである。
Next, in another embodiment of the present invention shown in FIG. 2, in order to preserve the environment at the site where a steam turbine plant is constructed,
It is agreed that the temperature difference between the inlet and outlet of the cooling water should be kept within 7 degrees Celsius. A device is added to correct the difference in outlet temperature to within 7°C.

すなわち、第2図において、冷却水の出口温度と入口温
度の差を減算器72,74.76で計算して関数発生器
73,75.77に入力する。この関数発生器73゜7
5、77は、冷却水の出入口温度差に応じて冷却水必要
流量を加算的に補正する信号を出力し、加算器40,5
0.60に送る。特に冷却水の出入口温度差が7℃を越
える場合には、関数発生器73,75.77は大きな値
を出力し、冷却水必要流量を大きくして冷却水の流量を
大きくし、結果として冷却水の出入口温度差が7℃以内
に納まるよう制御するものである。
That is, in FIG. 2, the difference between the outlet temperature and the inlet temperature of the cooling water is calculated by subtractors 72, 74.76 and input to function generators 73, 75.77. This function generator 73°7
5 and 77 output a signal for additively correcting the required flow rate of cooling water according to the temperature difference between the entrance and exit of the cooling water, and adders 40 and 5
Send to 0.60. In particular, when the temperature difference between the inlet and outlet of the cooling water exceeds 7°C, the function generators 73, 75, and 77 output a large value, increasing the required flow rate of the cooling water and increasing the flow rate of the cooling water, resulting in cooling. This controls the temperature difference between the water inlet and outlet to within 7°C.

このほかの冷却水流量調節弁9.12.15およびCw
p可動翼3,5に対する開度制御系の動作およびその効
果は、第1図の一実施例と同様であるからその説明を省
略する。
Other cooling water flow control valves 9.12.15 and Cw
The operation and effect of the opening degree control system for the p movable blades 3 and 5 are the same as those in the embodiment shown in FIG. 1, and therefore the explanation thereof will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明においては、複数台のCWPで共通
冷却水母管を用いて複数台の復水器に冷却水を供給する
設備において、各蒸気タービンの運転状態に応じた最適
な冷却水流量を各復水器に供給するよう構成したことに
より、CWPの動力削減および蒸気タービンの高効率運
用を図ることができる。
As described above, in the present invention, in a facility that supplies cooling water to a plurality of condensers using a common cooling water main pipe in a plurality of CWPs, the optimum cooling water flow rate according to the operating state of each steam turbine can be determined. By configuring this to supply each condenser, it is possible to reduce the power of the CWP and operate the steam turbine with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による蒸気タービンプラントの復水器冷
却水供給装置の一実施例を示す制御系統図、第2図は本
発明の他の実施例を示す制御系統図、第3図は従来の復
水器の冷却水供給設備を示す系統図、第4図は従来の冷
却水流量制御装置を示す制御系統図である。 2.4・・・可動翼形CWP 3.5・−CWP(7)可a1 6・・・共通冷却水母管    7,10.13・・・
復水器8.11.14・・・蒸気タービン 9.12.15・・・復水器冷却水調整弁17・・・冷
却水入口温度検出器 18.21,24・・・冷却水流量検出器19.22,
25・・・真空度検出器 20.23.26・・・発電機 38.48,58・・・不感帯回路 66・・・高値選択器 42.52,62,69・・・変化率制限器43.53
,63,70・・・上下限制限器代理人 弁理士 則 
近 豫 佑 同  三俣弘文
Fig. 1 is a control system diagram showing one embodiment of a condenser cooling water supply system for a steam turbine plant according to the present invention, Fig. 2 is a control system diagram showing another embodiment of the present invention, and Fig. 3 is a conventional control system diagram. FIG. 4 is a system diagram showing a cooling water supply facility for a condenser, and FIG. 4 is a control system diagram showing a conventional cooling water flow rate control device. 2.4...Movable airfoil CWP 3.5-CWP(7) Possible a1 6...Common cooling water main pipe 7,10.13...
Condenser 8.11.14...Steam turbine 9.12.15...Condenser cooling water adjustment valve 17...Cooling water inlet temperature detector 18.21, 24...Cooling water flow rate detection Vessel 19.22,
25... Vacuum level detector 20.23.26... Generator 38.48, 58... Dead band circuit 66... High value selector 42.52, 62, 69... Change rate limiter 43 .53
, 63, 70... Upper and lower limit limiter agent patent attorney rules
Yudo Chika Hirofumi Mitsumata

Claims (2)

【特許請求の範囲】[Claims] (1)複数台の可動翼形循環水ポンプにより共通冷却水
母管を用いて複数台の復水器へ冷却水を供給する蒸気タ
ービンプラントにおいて、各復水器の真空度、各復水器
への冷却水流量、各発電機の出力および共通冷却水母管
の冷却水温度を用いて、各復水器に必要とする最適冷却
水流量を供給するよう可動翼形循環水ポンプの可動翼お
よび各復水器の冷却水流量調節弁の開度を制御するよう
構成したことを特徴とする復水器冷却水供給装置。
(1) In a steam turbine plant where multiple movable vane circulating water pumps supply cooling water to multiple condensers using a common cooling water main pipe, the degree of vacuum of each condenser, The movable blades of the movable vane circulating water pump and each A condenser cooling water supply device characterized in that it is configured to control the opening degree of a cooling water flow rate control valve of a condenser.
(2)複数台の可動翼形循環水ポンプにより共通冷却水
母管を用いて複数台の復水器へ冷却水を供給する蒸気タ
ービンプラントにおいて、各復水器の必要とする冷却水
流量の内、最大の冷却水流量を用いて、可動翼形循環水
ポンプの必要ヘッドを決定し、可動翼形循環水ポンプの
可動翼開度を制御するように構成したことを特徴とする
復水器冷却水供給装置。
(2) In a steam turbine plant that supplies cooling water to multiple condensers using a common cooling water main pipe using multiple movable vane circulating water pumps, the cooling water flow rate required by each condenser is A condenser cooling system characterized in that the required head of the movable vane circulating water pump is determined using the maximum cooling water flow rate, and the movable vane opening of the movable vane circulating water pump is controlled. Water supply device.
JP18773286A 1986-08-12 1986-08-12 Condenser cooling water supplier Pending JPS6346387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18773286A JPS6346387A (en) 1986-08-12 1986-08-12 Condenser cooling water supplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18773286A JPS6346387A (en) 1986-08-12 1986-08-12 Condenser cooling water supplier

Publications (1)

Publication Number Publication Date
JPS6346387A true JPS6346387A (en) 1988-02-27

Family

ID=16211215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18773286A Pending JPS6346387A (en) 1986-08-12 1986-08-12 Condenser cooling water supplier

Country Status (1)

Country Link
JP (1) JPS6346387A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126282A (en) * 1984-11-26 1986-06-13 中央発條株式会社 Window opening and closing operation apparatus
JP2008232578A (en) * 2007-03-22 2008-10-02 Chugoku Electric Power Co Inc:The Device and method for coping with jellyfish attack in power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126282A (en) * 1984-11-26 1986-06-13 中央発條株式会社 Window opening and closing operation apparatus
JPH0420473B2 (en) * 1984-11-26 1992-04-02 Chuo Hatsujo Kk
JP2008232578A (en) * 2007-03-22 2008-10-02 Chugoku Electric Power Co Inc:The Device and method for coping with jellyfish attack in power plant

Similar Documents

Publication Publication Date Title
KR101183505B1 (en) Control device for waste heat recovery system
US6198786B1 (en) Methods of reactor system pressure control by reactor core power modulation
JPS6346387A (en) Condenser cooling water supplier
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JP2001295607A (en) Method and device for controlling load of thermal power plant
JPS60198309A (en) Cooling water feeder for condenser of steam turbine plant
GB2176248A (en) Turbine control
JP3649454B2 (en) Power plant control method
JPS6112195B2 (en)
JP2677616B2 (en) Condenser vacuum degree control device
JP2619066B2 (en) Deaerator water level control device
JP2001317305A (en) Method and device for controlling turbine generator
JP4003630B2 (en) Reactor recirculation flow controller
JPH01281303A (en) Recirculation control device of water feed pump in variable pressure operated thermal power plant
JPH0633704A (en) Method of improving operating efficiency of steam-turbine generating plant
JP2000097403A (en) Controller for turbine-drive water supply pump
JPS6269090A (en) Method of controlling operation of movable vane pump
JPS62103497A (en) Variable vane controller of condenser cooling water system
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPS62197601A (en) Steam turbine controller
JPH01127805A (en) Controller for boiller and turbine plant
JPS61279703A (en) Controller of steam turbine
JPH01116205A (en) Output control device for compound power plant
JPH04143405A (en) Auxiliary steam supplying method in combined cycle power plant
JPS639602A (en) Inlet steam pressure control method for geothermal turbine