JP2677616B2 - Condenser vacuum degree control device - Google Patents

Condenser vacuum degree control device

Info

Publication number
JP2677616B2
JP2677616B2 JP63165117A JP16511788A JP2677616B2 JP 2677616 B2 JP2677616 B2 JP 2677616B2 JP 63165117 A JP63165117 A JP 63165117A JP 16511788 A JP16511788 A JP 16511788A JP 2677616 B2 JP2677616 B2 JP 2677616B2
Authority
JP
Japan
Prior art keywords
condenser
vacuum degree
vacuum
optimum
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63165117A
Other languages
Japanese (ja)
Other versions
JPH0217386A (en
Inventor
汎甫 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63165117A priority Critical patent/JP2677616B2/en
Publication of JPH0217386A publication Critical patent/JPH0217386A/en
Application granted granted Critical
Publication of JP2677616B2 publication Critical patent/JP2677616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は蒸気タービン発電プラントに設けられる復水
器真空度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a condenser vacuum degree control device provided in a steam turbine power plant.

(従来の技術) 第2図に従来の復水器真空度制御装置の構成例を示し
ている。蒸気発生器から主蒸気管1を介して蒸気タービ
ン2に送られた蒸気は、発電機3の回転用仕事をなした
後、復水器4に導入されて冷却され、復水となって復水
ポンプ5により脱気器側に送られる。復水器4には冷却
水供給ライン6を介して冷却水が循環する。冷却水によ
る復水器4内の真空度は、冷却水ポンプ(以下、CWPと
いう)7による冷却水供給量によって制御される。な
お、8,9は冷却水供給ライン6に設けられた水室入出口
弁である。
(Prior Art) FIG. 2 shows a configuration example of a conventional condenser vacuum degree control device. The steam sent from the steam generator to the steam turbine 2 via the main steam pipe 1 performs the work of rotating the generator 3, and then is introduced into the condenser 4 to be cooled and condensed to be condensed. It is sent to the deaerator side by the water pump 5. Cooling water circulates in the condenser 4 via a cooling water supply line 6. The degree of vacuum in the condenser 4 by the cooling water is controlled by the amount of cooling water supplied by the cooling water pump (hereinafter, referred to as CWP) 7. Reference numerals 8 and 9 are water chamber inlet / outlet valves provided in the cooling water supply line 6.

CWP7の翼角度は調節可能とされており、その開度はCW
P翼角度演算器10からの指令に基づいて制御される。
The wing angle of CWP7 is adjustable, and its opening is CW.
It is controlled based on a command from the P blade angle calculator 10.

従来このような復水器真空度制御は一般に自動化パタ
ーン制御とされている。即ち、発電機3からの出力信号
と、冷却水供給ライン6に設けた冷却水温度検出発信器
11からの検出信号がCWP翼角度演算器10に入力される。
また、CWP翼角度演算器10には制御パターンプログラム1
2からの翼角度演算用条件データ信号も入力される。こ
れらの2系列の信号に基づいてCWP翼角度が演算され、C
WP翼角度演算器10から出力される制御信号に従ってCWP7
の翼角度が増減される。
Conventionally, such condenser vacuum control is generally regarded as an automated pattern control. That is, the output signal from the generator 3 and the cooling water temperature detection transmitter provided in the cooling water supply line 6
The detection signal from 11 is input to the CWP blade angle calculator 10.
In addition, the CWP blade angle calculator 10 has a control pattern program 1
The condition data signal for blade angle calculation from 2 is also input. The CWP blade angle is calculated based on these two series of signals, and C
CWP7 according to the control signal output from WP blade angle calculator 10
The wing angle of is increased or decreased.

ところで制御パターンプログラム12の内容は第3図に
示すように、縦軸に冷却水温度、横軸にタービン出力を
表し、それらの交点によってCWP7の必要翼角度を設定し
ている。但し、このプログラムの設定要素としては、冷
却水温度およびタービン出力のほか、復水器性能曲線、
設定目標真空度およびCWP翼角度流量特性曲線等があ
る。
By the way, as shown in FIG. 3, the contents of the control pattern program 12 represent the cooling water temperature on the vertical axis and the turbine output on the horizontal axis, and the required blade angle of the CWP 7 is set by the intersection thereof. However, as the setting elements of this program, in addition to the cooling water temperature and turbine output, the condenser performance curve,
Set target vacuum degree and CWP blade angle flow rate characteristic curve, etc.

(発明が解決しようとする課題) ところが、上述した制御パターンプログラム12は、特
定の目標真空度に対応してつくられているため任意の真
空度が得られず、このため真空度を変える場合には自動
条件から手動操作に切換えなければならない不便があ
る。また、真空度直接制御ではないため、得られる真空
度の上下誤差の幅が比較的大きくなり、例えば下限真空
度を満足すればよい等の運用となり、必ずしも高精度の
真空度が得られない場合がある。さらに、パターンプロ
グラム作成に際して非常に複雑な計算を要する。
(Problems to be Solved by the Invention) However, since the control pattern program 12 described above is created corresponding to a specific target degree of vacuum, an arbitrary degree of vacuum cannot be obtained. Therefore, when changing the degree of vacuum, Has the inconvenience of having to switch from automatic conditions to manual operation. Further, since the vacuum degree is not directly controlled, the range of the vertical error of the obtained vacuum degree becomes relatively large, and the operation is performed, for example, if the lower limit vacuum degree is satisfied, and it is not always possible to obtain a highly accurate vacuum degree. There is. Furthermore, very complicated calculations are required when creating the pattern program.

本発明はこのような事情に鑑みてなされたもので、自
動操作のみで制御できるとともに高精度の真空度が得ら
れ、しかも複雑な計算を要しない復水器真空度制御装置
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a condenser vacuum degree control device that can be controlled only by automatic operation, can obtain a highly accurate vacuum degree, and does not require complicated calculation. To aim.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、蒸気タービンプラントに設けられる復水器
の真空度を制御する装置において、復水器真空ラインに
設けられた真空度検出発信器と、この真空度検出発信器
からの出力信号を大気圧補正して実真空度を求める大気
圧補正器と、タービンに配設された低圧蒸気加減弁の開
度から求められるタービン排気量から予め定められたタ
ービン排気量と復水器の真空度の関数によって復水器の
最適真空度を求める最適真空度演算器と、この最適真空
度演算器からの最適真空度指示信号と前記大気圧補正器
からの復水器実真空度信号を要素として復水器への冷却
水流量制御値を演算する演算手段と、この演算手段から
出力される制御指令に基づいて目標とする復水器真空度
に対応する冷却水ラインでの流量を制御する冷却水流量
制御装置とを備えたことを特徴とする。
(Means for Solving the Problem) The present invention relates to a device for controlling the degree of vacuum of a condenser provided in a steam turbine plant, and a degree-of-vacuum detection transmitter provided in a condenser vacuum line and the degree of vacuum. An atmospheric pressure compensator that determines the actual degree of vacuum by correcting the output signal from the detection transmitter to the atmospheric pressure, and a turbine exhaust that is predetermined from the turbine exhaust volume that is obtained from the opening of the low-pressure steam control valve installed in the turbine. An optimum vacuum degree calculator for obtaining the optimum vacuum degree of the condenser by a function of the amount and the vacuum degree of the condenser, an optimum vacuum degree instruction signal from the optimum vacuum degree calculator, and a condenser water from the atmospheric pressure compensator. Calculating means for calculating the cooling water flow rate control value to the condenser using the actual vacuum degree signal as an element, and cooling water corresponding to the target condenser vacuum degree based on the control command output from this calculating means Control the flow rate in the line And a cooling water flow rate control device.

(作用) 演算手段では、最適真空度の指示信号と、大気圧補正
が行なわれた復水器真空度信号とに基づいて冷却水流量
制御値が演算される。最適真空度の指示値はタービン排
気量に対応して設定される。即ち、タービン運転状況に
応じた復水器真空度の最適点に沿い、実際の真空度が直
接的に追従制御される。したがって、従来のパターン制
御のような複雑な計算等を要しない。また、タービン排
気量に応じた自動操作が行なわれ、手動操作が不要であ
る。そして、真空度直接検出追従制御による高精度の真
空度が得られるようになる。
(Operation) In the calculating means, the cooling water flow rate control value is calculated based on the instruction signal of the optimum vacuum degree and the condenser vacuum degree signal subjected to the atmospheric pressure correction. The indicated value of the optimum vacuum degree is set corresponding to the turbine displacement. That is, the actual vacuum degree is directly controlled along the optimum point of the condenser vacuum degree according to the turbine operating condition. Therefore, a complicated calculation or the like unlike the conventional pattern control is not required. Further, automatic operation is performed according to the turbine displacement, and manual operation is not required. Then, a highly accurate vacuum degree can be obtained by the vacuum degree direct detection follow-up control.

(実施例) 以下、本発明の実施例を図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例を示している。 FIG. 1 shows a first embodiment of the present invention.

主蒸気管21を介して供給される蒸気が蒸気タービン22
内で段落膨張し、発電機23回転用の仕事に供された後、
復水器24に排出されて凝縮水となり、復水ポンプ25によ
り脱気器側に供給される。復水器24に冷却水を供給する
冷却水ライン26には、冷却水供給制御手段としてのCWP2
7が設けられている。なお、28,29は冷却水ライン26に設
けられた水室入出口弁である。
Steam supplied through the main steam pipe 21 is steam turbine 22.
After being inflated in the inside and subjected to the work for the generator 23 rotation,
The condensed water is discharged to the condenser 24 and becomes condensed water, which is supplied to the deaerator side by the condensate pump 25. The cooling water line 26 that supplies the cooling water to the condenser 24 has a CWP2 as a cooling water supply control means.
7 are provided. Reference numerals 28 and 29 are water chamber inlet / outlet valves provided in the cooling water line 26.

復水器真空度の一般的管理値は722mmHgで代表される
が、タービン形式、容量または運転負荷変化の状態等に
より復水器の最適真空度点は変化する。例えばタービン
排気量によってタービン排気損失値が変化するが、その
損失値を最小にする復水器真空度が要求される。即ち、
負荷変化の大きい発電設備、またはタービン抽気量変化
の激しいタービンでは最適真空度点の変化が大きい。
The general control value of the condenser vacuum level is 722 mmHg, but the optimum vacuum point of the condenser changes depending on the turbine type, capacity, or the state of changes in operating load. For example, the turbine exhaust loss value changes depending on the turbine displacement, but a condenser vacuum degree that minimizes the loss value is required. That is,
The optimum vacuum degree changes greatly in a power generation facility where the load changes greatly or in a turbine where the turbine extraction amount changes drastically.

そこでこの実施例では抽気管21aが設けられたタービ
ン22の低圧蒸気加減弁36に排気量演算器37を接続し、低
圧蒸気加減圧36から出力される開度信号に基づいてター
ビン排気量を求めるようにしている。排気量演算器37か
ら出力される排気量信号は最適真空度演算器38に入力さ
れ、この最適真空度演算器38では予め入力されている演
算データにより、タービン排出量に基づく最適真空度が
求められる。そして、復水器24の真空ライン30には真空
度検出発信器31が設けられ、その二次側には大気圧補正
器32が設けられている。
Therefore, in this embodiment, an exhaust amount calculator 37 is connected to the low pressure steam control valve 36 of the turbine 22 provided with the extraction pipe 21a, and the turbine displacement is obtained based on the opening signal output from the low pressure steam control pressure 36. I am trying. The exhaust amount signal output from the exhaust amount calculator 37 is input to the optimum vacuum degree calculator 38, and the optimum vacuum degree calculator 38 obtains the optimum vacuum degree based on the turbine discharge amount from the calculation data that has been input in advance. To be A vacuum degree detection transmitter 31 is provided in the vacuum line 30 of the condenser 24, and an atmospheric pressure compensator 32 is provided on the secondary side thereof.

また、流量制御値の演算手段として出口弁開度指示演
算器39が設けられている。この出口弁開度指示演算器39
には最適真空度演算器38からの出力信号と、大気圧補正
器32を経た復水器実真空度信号とが入力される。そし
て、これら2系列の信号に基づき、出口弁開度指示演算
器39において、予め入力されている弁開度算出データに
従い、最適真空度に対応する出口弁開度が求められる。
この出力信号が連続作動を回避するための整定リレー35
を介して水室出口弁29に入力され、最適開度に制御され
る。これにより、冷却水ライン26を介しての復水器24へ
の冷却水循環量が定められ、最適真空度が維持される。
An outlet valve opening degree instruction calculator 39 is provided as a means for calculating the flow rate control value. This outlet valve opening instruction calculator 39
The output signal from the optimum vacuum degree calculator 38 and the condenser actual vacuum degree signal that has passed through the atmospheric pressure compensator 32 are input to the. Then, based on these two series of signals, the outlet valve opening degree instruction calculator 39 obtains the outlet valve opening degree corresponding to the optimum degree of vacuum in accordance with the valve opening degree calculation data input in advance.
This output signal is a settling relay to avoid continuous operation 35
It is input to the water chamber outlet valve 29 via and is controlled to the optimum opening degree. As a result, the circulating amount of cooling water to the condenser 24 via the cooling water line 26 is determined, and the optimum vacuum degree is maintained.

このような第1実施例によると、負荷変化に見合う最
適点真空度が得られ、しかも復水器真空度直接検出制御
により目標値通りの真空度が得られる。したがって特に
DSS(デイリー・スタート・ストップ)運用を行なう発
電設備等に好適なものとなる。
According to the first embodiment as described above, the optimum vacuum degree corresponding to the load change can be obtained, and further, the vacuum degree according to the target value can be obtained by the direct detection control of the condenser vacuum degree. Therefore especially
It is suitable for power generation equipment that operates DSS (Daily Start Stop).

なお、上記第1実施例として冷却水流量の制御を水室
出口弁29の開度で行なう例で示したが、さらに第2実施
例としてCWP27の翼角度の増減によって制御してもよ
い。この場合は上記第1実施例の出口弁開度指示演算器
の代わりにCWP翼角度演算器を使用し、大気圧補正器か
らの実真空度信号と最適真空度演算器からの最適真空度
指示信号に基づいてCWP翼角度の増、減用演算が行なわ
れ、この演算信号によってCWPの翼角度の増減動作が成
される。よって、第1実施例と同様の冷却水流量の制御
を行なうことができる。
Although the cooling water flow rate is controlled by the opening of the water chamber outlet valve 29 in the first embodiment, it may be controlled by increasing or decreasing the blade angle of the CWP 27 in the second embodiment. In this case, the CWP blade angle calculator is used instead of the outlet valve opening instruction calculator of the first embodiment, and the actual vacuum degree signal from the atmospheric pressure compensator and the optimum vacuum degree instruction from the optimum vacuum degree calculator are used. Based on the signal, the CWP blade angle increase / decrease calculation is performed, and the operation signal increases / decreases the CWP blade angle. Therefore, the same control of the cooling water flow rate as in the first embodiment can be performed.

〔発明の効果〕 以上のように、本発明に係る復水器真空度制御装置に
よれば自動操作のみで負荷変化の大きい発電設備または
タービン抽気量変化の激しいタービンにおいても、負荷
変化に見合う最適真空度が目標値に沿って得られ、しか
も複雑な計算も要しないで運用が容易化できる等の効果
が奏される。
[Advantages of the Invention] As described above, according to the condenser vacuum degree control device according to the present invention, even in a power generation facility where the load change is large only by automatic operation or in a turbine where the turbine extraction amount changes drastically, it is optimal for the load change. The degree of vacuum can be obtained according to the target value, and the operation can be facilitated without requiring complicated calculation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る復水器真空度制御装置の第1実施
例を示す構成図、第2図は従来例を示す構成図、第3図
は従来例による作用を示すパターン制御図である。 22……タービン、24……復水器、26……冷却水ライン、
27……CWP(冷却水流量制御装置)、29……水室出口弁
(冷却水流量制御装置)、30……真空ライン、31……真
空度検出発信器、32……大気圧補正器、38……最適真空
度演算器、39……出口弁開度指示演算器(演算手段)。
FIG. 1 is a block diagram showing a first embodiment of a condenser vacuum degree control device according to the present invention, FIG. 2 is a block diagram showing a conventional example, and FIG. 3 is a pattern control diagram showing the operation of the conventional example. is there. 22 …… turbine, 24 …… condenser, 26 …… cooling water line,
27 …… CWP (cooling water flow controller), 29 …… water chamber outlet valve (cooling water flow controller), 30 …… vacuum line, 31 …… vacuum detection transmitter, 32 …… atmospheric pressure compensator, 38 ... Optimal vacuum degree calculator, 39 ... Outlet valve opening instruction calculator (calculation means).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸気タービンプラントに設けられる復水器
の真空度を制御する装置において、復水器真空ラインに
設けられた真空度検出発信器と、この真空度検出発信器
からの出力信号を大気圧補正して実真空度を求める大気
圧補正器と、タービンに配設された低圧蒸気加減弁の開
度から求められるタービン排気量から予め定められたタ
ービン排気量と復水器の真空度の関数によって復水器の
最適真空度を求める最適真空度演算器と、この最適真空
度演算器からの最適真空度指示信号と前記大気圧補正器
からの復水器実真空度信号を要素として復水器への冷却
水流量制御値を演算する演算手段と、この演算手段から
出力される制御指令に基づいて目標とする復水器真空度
に対応する冷却水ラインでの流量を制御する冷却水流量
制御装置とを備えたことを特徴とする復水器真空度制御
装置。
1. An apparatus for controlling the degree of vacuum of a condenser provided in a steam turbine plant, wherein a vacuum degree detection transmitter provided in a condenser vacuum line and an output signal from the vacuum degree detection transmitter are provided. An atmospheric pressure compensator that determines the actual vacuum level by correcting the atmospheric pressure, and a turbine exhaust volume and the vacuum level of the condenser that are predetermined from the turbine exhaust volume that is obtained from the opening of the low-pressure steam control valve installed in the turbine. The optimum vacuum degree calculator for obtaining the optimum vacuum degree of the condenser by the function of, and the optimum vacuum degree instruction signal from the optimum vacuum degree calculator and the condenser actual vacuum degree signal from the atmospheric pressure compensator are used as elements. Calculation means for calculating the control value of the cooling water flow rate to the condenser, and cooling for controlling the flow rate in the cooling water line corresponding to the target condenser vacuum degree based on the control command output from this calculation means With water flow controller Condenser vacuum control device, characterized in that.
JP63165117A 1988-07-04 1988-07-04 Condenser vacuum degree control device Expired - Lifetime JP2677616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63165117A JP2677616B2 (en) 1988-07-04 1988-07-04 Condenser vacuum degree control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63165117A JP2677616B2 (en) 1988-07-04 1988-07-04 Condenser vacuum degree control device

Publications (2)

Publication Number Publication Date
JPH0217386A JPH0217386A (en) 1990-01-22
JP2677616B2 true JP2677616B2 (en) 1997-11-17

Family

ID=15806235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165117A Expired - Lifetime JP2677616B2 (en) 1988-07-04 1988-07-04 Condenser vacuum degree control device

Country Status (1)

Country Link
JP (1) JP2677616B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076662A (en) * 2017-12-22 2019-07-02 포스코에너지 주식회사 apparatus and method for managing performance of a condenser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015276A (en) * 2011-07-05 2013-01-24 Toshiba Corp Device and method for controlling circulating water pump
CN111852590B (en) * 2019-04-26 2023-04-25 川崎重工业株式会社 Power generation equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112469U (en) * 1980-01-22 1981-08-31

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076662A (en) * 2017-12-22 2019-07-02 포스코에너지 주식회사 apparatus and method for managing performance of a condenser
KR102006886B1 (en) 2017-12-22 2019-08-02 포스코에너지 주식회사 apparatus and method for managing performance of a condenser

Also Published As

Publication number Publication date
JPH0217386A (en) 1990-01-22

Similar Documents

Publication Publication Date Title
KR101183505B1 (en) Control device for waste heat recovery system
JPS6124601B2 (en)
JPH0333495A (en) Control device for condensate pump
JP2677616B2 (en) Condenser vacuum degree control device
EP0155706B1 (en) Method and apparatus for controlling an operation of plant
JP2007262916A (en) Condenser vacuum control method of condensate steam turbine
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JP2619066B2 (en) Deaerator water level control device
JPH0743226B2 (en) Condenser cooling water flow controller
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPH0742509A (en) Movable blade control device for ciculating water pump
JPS6154927B2 (en)
JPH0979508A (en) Feed water controller for steam generating plant
JPS6149519B2 (en)
SU1726952A1 (en) Device for receiving and discharging condensate
JPH0229922B2 (en)
JPS58561B2 (en) electro-hydraulic governor
JPS6346387A (en) Condenser cooling water supplier
JP2000097403A (en) Controller for turbine-drive water supply pump
JPS6356441B2 (en)
JPS5959284A (en) Apparatus for automatically controlling means for lowering temp. in arrangements for desalination of sea water
JPH06257711A (en) Steam temperature control device
JPS6269090A (en) Method of controlling operation of movable vane pump
JPS6260603B2 (en)
SU1134740A1 (en) Control system of steam extraction turbine plant