JPH0229922B2 - - Google Patents

Info

Publication number
JPH0229922B2
JPH0229922B2 JP57156696A JP15669682A JPH0229922B2 JP H0229922 B2 JPH0229922 B2 JP H0229922B2 JP 57156696 A JP57156696 A JP 57156696A JP 15669682 A JP15669682 A JP 15669682A JP H0229922 B2 JPH0229922 B2 JP H0229922B2
Authority
JP
Japan
Prior art keywords
water supply
outlet valve
flow rate
pump
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57156696A
Other languages
Japanese (ja)
Other versions
JPS5946404A (en
Inventor
Takashi Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15669682A priority Critical patent/JPS5946404A/en
Publication of JPS5946404A publication Critical patent/JPS5946404A/en
Publication of JPH0229922B2 publication Critical patent/JPH0229922B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は発電プラントの給水制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a water supply control device for a power plant.

〔発明の技術的背景〕[Technical background of the invention]

例えば、火力発電プラントにおいては、第1図
に示すように、ボイラ1で発生した過熱蒸気を主
タービン2に導き、膨張した蒸気をボイラ1に戻
し、再熱器3で適切な温度に再熱し、再び主ター
ビン2に導き膨張させ、復水器4で冷却して飽和
水としている。この火力発電プラントにおける給
水系統は蒸気タービン駆動ポンプ(T−BFP−
A)5、蒸気タービン駆動ポンプ(T−BFP−
B)6、電動機駆動ポンプ(M−BFP)7と各
ポンプ吐出側に設けられる給水ポンプ出口弁8よ
り成り、これら給水ポンプの1台あるいは2台を
運転して上記飽和水を昇圧しボイラ1に給水して
いる。
For example, in a thermal power plant, as shown in Figure 1, superheated steam generated in a boiler 1 is guided to the main turbine 2, the expanded steam is returned to the boiler 1, and is reheated to an appropriate temperature in a reheater 3. The water is then introduced into the main turbine 2 again, expanded, and cooled in the condenser 4 to become saturated water. The water supply system in this thermal power plant is a steam turbine driven pump (T-BFP-
A) 5. Steam turbine driven pump (T-BFP-
B) 6. Consists of an electric motor-driven pump (M-BFP) 7 and a feed water pump outlet valve 8 provided on the discharge side of each pump, and operates one or two of these water pumps to boost the pressure of the saturated water to the boiler 1. Water is being supplied to

近年、火力発電プラントでは、負荷に応じてボ
イラ圧力を変える変圧運転が多く採用されている
が、変圧運転における給水ポンプの給水流量は主
として、第2図に示す曲線9に沿つて制御する必
要がある。
In recent years, many thermal power plants have adopted variable pressure operation in which the boiler pressure is changed according to the load. However, in variable pressure operation, the feed water flow rate of the feed water pump needs to be controlled primarily along curve 9 shown in Figure 2. be.

即ち、第2図において、N0〜N5は回転数を
パラメータとしたポンプの流量Qと揚程(給水圧
力)Hとの関係を表わす曲線で、ポンプ回転数を
一定としたとき、ポンプ流量Qと給水圧力Hはこ
の曲線上任意の値を取り得る。曲線10はプラン
トの負荷上昇計画に基づき必要とするボイラ出口
主蒸気流量と圧力との関係を示す曲線である。こ
のボイラ出口主蒸気曲線10からボイラ入口の給
水流量と圧力は曲線9で示すように決定される。
この曲線9をシステムヘツド曲線と言い、ボイラ
変圧運転時、給水ポンプはこのシステムヘツド曲
線9に沿つて上昇させる必要がある。
That is, in Fig. 2, N0 to N5 are curves representing the relationship between the pump flow rate Q and head (water supply pressure) H, with the rotation speed as a parameter; when the pump rotation speed is constant, the pump flow rate Q and the water supply pressure are The pressure H can take any value on this curve. Curve 10 is a curve showing the relationship between the boiler outlet main steam flow rate and pressure required based on the plant load increase plan. From this boiler outlet main steam curve 10, the feed water flow rate and pressure at the boiler inlet are determined as shown by a curve 9.
This curve 9 is called a system head curve, and the feed water pump must be raised along this system head curve 9 during boiler pressure change operation.

ところで、この給水系で考慮すべきこととし
て、給水ポンプ駆動タービンには危険回転数域が
あつて、所定回転数以上での給水流量制御が要求
される。一方、低負荷帯即ちシステムヘツド曲線
9の低域においては、給水ポンプ回転数を高くし
て運転することは低流量制御のため、給水ポンプ
出口弁を絞り弁前後に高差圧をかけることになる
ため、できるだけ低回転数で運転したいという要
求がある。
By the way, what should be considered in this water supply system is that the water supply pump driving turbine has a critical rotational speed range, and water supply flow rate control is required above a predetermined rotational speed. On the other hand, in the low load range, that is, in the low range of the system head curve 9, operating the water supply pump at a high rotation speed is for low flow control, so it is necessary to apply a high differential pressure across the water pump outlet valve before and after the throttle valve. Therefore, there is a demand for operation at as low a rotation speed as possible.

そこで従来は、低負荷帯では定回転数に制御し
ながら、給水流量制御は給水ポンプ出口弁の開度
を調節して行ない、高負荷帯に入れば給水ポンプ
出口弁を全開にしながら、回転数を調節して給水
流量を制御する方法をとつていた。
Conventionally, in the low load zone, the feed water flow rate was controlled by adjusting the opening of the water pump outlet valve while controlling the rotation speed to a constant value.When the load entered the high load zone, the feed water pump outlet valve was fully opened and the rotation speed was controlled. A method was used to control the water supply flow rate by adjusting the water flow rate.

即ち、第2図におけるN1を低負荷帯で回転数
制御を行なう際の目標回転数とすれば、低負荷帯
では定回転数N1に制御しつつ、給水流量要求に
応じて出口弁の調節をすることにより、C点から
D点まで移動して給水流量Qを増加させる。C点
では給水ポンプ出口弁全閉であり、D点では全開
である。C点とD点の間は出口弁中間開度にあつ
て、開度の大きさによつて給水流量Qが決まる領
域である。D点以降は出口弁全開のまま回転数を
N1からN5まで連続的に増加させることによ
り、システムヘツド曲線9に沿つて給水流量Qが
増加する領域であり、回転数の大きさによつて給
水流量Qが決まる領域である。
In other words, if N1 in Fig. 2 is the target rotational speed when controlling the rotational speed in a low load zone, then in the low load zone, while controlling the rotational speed to a constant N1, the outlet valve is adjusted according to the water supply flow rate request. By doing so, the water supply flow rate Q is increased by moving from point C to point D. At point C, the water supply pump outlet valve is fully closed, and at point D, it is fully open. The area between point C and point D is a region where the outlet valve has an intermediate opening degree, and the water supply flow rate Q is determined by the magnitude of the opening degree. After point D, the water supply flow rate Q increases along the system head curve 9 by continuously increasing the rotation speed from N1 to N5 with the outlet valve fully open. This is the area where the flow rate Q is determined.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上記従来方法によると、給水流
量Qの流量制御において、給水ポンプ出口弁を全
開にして回転数調節による流量制御に移行する切
換点が存在するため、制御動作上の連続性が損わ
れ、切換点で給水流量、圧力の変動を来たし、ポ
ンプや弁に悪影響を及ぼす。また、給水ポンプ運
動の手動操作による運転に際しては、プラント状
態がシステムヘツド曲線上のどの点にあるか、即
ち給水ポンプ出口弁の開度調節により給水流量Q
の流量制御を行なう領域にあるか、それとも給水
ポンプ出口弁全開にして回転数調節により給水流
量Qの流量制御を行なう領域にあるかを判断し、
出口弁開度と回転数のいずれを調節するか決定し
た上で手動操作を行なわなければならず、操作が
非常に複雑になる等の問題点があつた。
However, according to the above-mentioned conventional method, in the flow rate control of the feed water flow rate Q, there is a switching point where the feed water pump outlet valve is fully opened and flow control is shifted to the flow rate control by adjusting the rotation speed, so the continuity of the control operation is impaired. Fluctuations in water supply flow rate and pressure occur at the switching point, which adversely affects pumps and valves. In addition, when operating the feedwater pump movement manually, it is possible to determine at which point on the system head curve the plant condition is, that is, by adjusting the opening degree of the feedwater pump outlet valve, the feedwater flow rate Q.
Determine whether the water supply pump is in the range where the flow rate control is performed, or whether it is in the range where the water supply pump outlet valve is fully opened and the water supply flow rate Q is controlled by adjusting the rotation speed,
This poses a problem in that manual operation must be performed after determining whether to adjust the outlet valve opening degree or the rotation speed, making the operation extremely complicated.

〔発明の目的〕[Purpose of the invention]

本発明は、制御動作の連続性を保つと共に、手
動操作を容易にする給水制御装置を提供すること
を目的とする。
An object of the present invention is to provide a water supply control device that maintains continuity of control operations and facilitates manual operation.

〔発明の概要〕[Summary of the invention]

このため、本発明はポンプ回転数が危険回転数
域以上を取るようにした上、給水流量を目標値と
して給水ポンプ回転数を制御すると同時に、その
ポンプ回転数が低帯域にある間は給水ポンプ出口
弁を全閉から全開までその入口圧力が一定となる
ように開度制御するようにしたことを特徴とす
る。
Therefore, in the present invention, the pump rotation speed is set to be above the critical rotation speed range, and at the same time, the water supply pump rotation speed is controlled by setting the water supply flow rate as a target value, and at the same time, while the pump rotation speed is in the low band, the water supply pump The opening of the outlet valve is controlled so that the inlet pressure remains constant from fully closed to fully open.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例を示す給水制御装置
の構成図で、11は給水制御装置、12はプラン
ト側給水設備である。この給水制御装置11は給
水ポンプ出口弁開度制御系と、給水ポンプ回転数
制御系の2つの制御系から成る。更に、その給水
ポンプ出口弁開度制御系は、給水ポンプ出口弁入
口圧力の目標値PRと、プラント側より得られた
給水ポンプ出口弁入口圧力Pとの偏差を演算し、
その偏差を比例積分制御要素からなる第1の演算
器13に入力し、その出力として得られる給水ポ
ンプ出口弁開度指令をサーボ増幅器14に与え
る。サーボ増幅器14は与えられた出口弁開度指
令に従つてアクチユエータ15を駆動し、給水ポ
ンプ出口弁開度を調節するように構成される。一
方、給水ポンプ回転数制御系は給水ポンプ給水流
量の目標値QRと、プラント側から得られた給水
流量Qとの偏差を演算し、その偏差を比例制御要
素からなる第2の演算器16に入力し、その出力
として得られる給水ポンプ回転数指令をサーボ増
幅器17に与える。サーボ増幅器17は与えられ
た給水ポンプ回転数指令に従つてアクチユエータ
18を駆動し、給水ポンプ回転数を調節するよう
に構成されている。
FIG. 3 is a configuration diagram of a water supply control device showing an embodiment of the present invention, in which 11 is the water supply control device and 12 is plant side water supply equipment. This water supply control device 11 consists of two control systems: a water supply pump outlet valve opening control system and a water supply pump rotation speed control system. Furthermore, the water supply pump outlet valve opening control system calculates the deviation between the target value PR of the water supply pump outlet valve inlet pressure and the water supply pump outlet valve inlet pressure P obtained from the plant side,
The deviation is inputted to a first computing unit 13 consisting of a proportional-integral control element, and a water supply pump outlet valve opening command obtained as an output thereof is given to a servo amplifier 14. The servo amplifier 14 is configured to drive the actuator 15 in accordance with a given outlet valve opening command to adjust the water pump outlet valve opening. On the other hand, the water supply pump rotation speed control system calculates the deviation between the target value Q R of the water supply pump water supply flow rate and the water supply flow rate Q obtained from the plant side, and calculates the deviation by a second calculator 16 consisting of a proportional control element. The water supply pump rotation speed command obtained as the output is given to the servo amplifier 17. The servo amplifier 17 is configured to drive the actuator 18 in accordance with a given water pump rotation speed command to adjust the water pump rotation speed.

上記構成で、給水ポンプ出口弁入口圧力目標値
PRは給水ポンプ駆動用蒸気タービン回転数が常
に危険回転数域以上となるように、また、そのう
ちでもできるだけ低い一定値を選択して予め設定
される。一方、給水流量目標値QRは図示せぬ
APC(自動プラント制御装置)でボイラマスタ指
令と総給水流量との偏差を補償演算することによ
り得られる。従つて、プラント負荷上昇計画に基
づき、上記APCより給水制御装置11に加わる
給水流量目標値QRが増加を開始すると、給水制
御装置11は増加する目標値QRに追従するよう
に給水ポンプ回転数指令を増加し、給水流量Qを
増加させる。給水ポンプ回転数が増加すると、給
水ポンプ出口圧力即ち給水ポンプ出口弁入口圧力
が増加するため、最初零だつた目標値PRとの偏
差が増加して給水ポンプ出口弁を開き、その開度
を増加させて入口圧力を一定の目標値PRに保持
しようとする。更に、給水流量の目標値QRが増
加すると、同様の動作が繰返されて、第2図にお
ける給水ポンプ出口弁全閉時のE点から全開時の
D点に向つて鎖線に沿い、給水ポンプ回転数が増
加しつつ出口弁入口圧力は所定値PRに保持され
ながら給水流量Qが増加する。D点において、出
口弁全開となり、これより先、更に負荷上昇要求
があつてシステムヘツド曲線9上を増加する必要
に迫られると、給水流量目標値QRは図示しない
演算の後更に増加し、給水制御装置11は給水ポ
ンプ回転数指令を増加して給水流量Qの増加を行
なう。給水ポンプ回転数が増加すると、給水ポン
プ出口弁入口圧力が増加するため、給水ポンプ出
口弁開度指令は開度の増加を要求する。しかし、
出口弁はすでに全開であるため、この先の負荷上
昇に対しては全開のままとなる。
With the above configuration, the water pump outlet valve inlet pressure target value
P R is set in advance by selecting a constant value as low as possible so that the feed water pump driving steam turbine rotation speed is always above the critical rotation speed range. On the other hand, the water supply flow rate target value Q R is not shown.
It is obtained by compensating the deviation between the boiler master command and the total water supply flow rate using the APC (automatic plant control device). Therefore, when the target water flow rate Q R applied to the water supply control device 11 by the APC starts increasing based on the plant load increase plan, the water supply control device 11 rotates the water supply pump to follow the increasing target value Q R. increase the number command and increase the water supply flow rate Q. As the water pump rotation speed increases, the water pump outlet pressure, that is, the water pump outlet valve inlet pressure increases, so the deviation from the target value P R , which was initially zero, increases, and the water pump outlet valve opens and its opening degree increases. The inlet pressure is increased to try to maintain it at a constant target value PR . Furthermore, when the target value Q R of the water supply flow rate increases, the same operation is repeated, and the water supply pump outlet valve moves along the chain line from point E when the water supply pump outlet valve is fully closed to point D when it is fully open in Fig. 2. As the rotational speed increases, the water supply flow rate Q increases while the outlet valve inlet pressure is maintained at a predetermined value PR . At point D, the outlet valve is fully opened, and from this point onwards, if there is a further request to increase the load and it is necessary to increase on the system head curve 9, the target water supply flow rate Q R will further increase after calculation (not shown). The water supply control device 11 increases the water supply pump rotation speed command to increase the water supply flow rate Q. When the water supply pump rotation speed increases, the water supply pump outlet valve inlet pressure increases, so the water supply pump outlet valve opening degree command requests an increase in the opening degree. but,
Since the outlet valve is already fully open, it will remain fully open against any future load increase.

このようにして、給水流量Qの低流量から高流
量にわたる全ての範囲で給水流量の制御は出口弁
開度の調節によらず、もつぱら給水ポンプ回転数
の調節により行なわれる。
In this way, the feed water flow rate is controlled over the entire range of the feed water flow rate Q from low flow rate to high flow rate, not by adjusting the opening degree of the outlet valve, but solely by adjusting the rotation speed of the water feed pump.

従つて、本実施例による場合には、前述従来例
で説明した給水流量制御動作の切換点は存在せ
ず、低負荷帯から高負荷帯まで全ての領域で連続
的にスムーズな制御が行なえる。
Therefore, in the case of this embodiment, there is no switching point for water supply flow rate control operation as explained in the conventional example, and smooth control can be performed continuously in all regions from low load zone to high load zone. .

また、給水ポンプ運転の手動操作による運転に
際しても、プラント状態がシステムヘツド曲線上
のどの点にあるか判断しなくとも、例えば給水流
量目標値QRあるいは給水ポンプ回転数指令等を
直接手動操作して給水ポンプ回転数を調節するこ
とにより、給水流量の制御を行なうことができ
る。
Furthermore, when manually operating the feedwater pump, you can directly manually operate the feedwater flow rate target value Q R or the feedwater pump rotation speed command, etc., without having to judge which point on the system head curve the plant status is. The water supply flow rate can be controlled by adjusting the rotation speed of the water supply pump.

更に、給水ポンプ出口弁入口圧力の目標値は給
水ポンプ駆動用蒸気タービンの危険回転数域以上
の設定値とし、その値をその条件内でできるだけ
低い値に選定することにより、給水ポンプ出口弁
にかかる弁前後差圧も小さくして、出口弁本体に
与える悪影響も排除できる。
Furthermore, the target value of the feed water pump outlet valve inlet pressure is set to a value that is above the critical rotation speed range of the steam turbine that drives the feed water pump, and by selecting this value as low as possible within those conditions, the water pump outlet valve By reducing the differential pressure across the valve, it is possible to eliminate any adverse effects on the outlet valve body.

尚、上記実施例では火力発電プラントの給水制
御装置を例にとつて説明したが、本発明はこれに
限らず、原子力発電プラント等他のプラントの給
水系統にも適用可能なことは勿論である。
In addition, although the above embodiment has been explained by taking the water supply control device of a thermal power plant as an example, the present invention is not limited to this, and is of course applicable to the water supply system of other plants such as a nuclear power plant. .

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、低負荷帯から高
負荷帯まで回転数調節のみによつてスムーズな給
水制御を行なうことができ、手動運転を容易にす
ると同時に、自動的,手動的を問わず機器に与え
る圧力変動の悪影響を排除して常に良好な制御動
作を保証する給水制御装置が得られる。
As described above, according to the present invention, it is possible to perform smooth water supply control only by adjusting the rotation speed from a low load zone to a high load zone. A water supply control device that eliminates the adverse effects of pressure fluctuations on equipment and always guarantees good control operation can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一適用例を示す一般的な火力
発電プラントの給水系統図、第2図は給水ポンプ
のQ−H曲線図、第3図は本発明の一実施例を示
す給水制御装置の構成図である。 1……ボイラ、2……主タービン、3……再熱
器、4……復水器、5,6……蒸気タービン駆動
ポンプ、7……電動機駆動ポンプ、8……給水ポ
ンプ出口弁、9……システムヘツド曲線、10…
…ボイラ出口主蒸気曲線、11……給水制御装
置、12……プラント側給水設備、13……第1
の演算器、16……第2の演算器、14,17…
…サーボ増幅器、15,18……アクチユエー
タ。
Fig. 1 is a water supply system diagram of a general thermal power plant showing an application example of the present invention, Fig. 2 is a Q-H curve diagram of a water supply pump, and Fig. 3 is a water supply control showing an embodiment of the present invention. It is a block diagram of a device. 1... Boiler, 2... Main turbine, 3... Reheater, 4... Condenser, 5, 6... Steam turbine driven pump, 7... Electric motor driven pump, 8... Water pump outlet valve, 9...System head curve, 10...
... Boiler outlet main steam curve, 11 ... Water supply control device, 12 ... Plant side water supply equipment, 13 ... First
arithmetic units, 16... second arithmetic units, 14, 17...
... Servo amplifier, 15, 18... Actuator.

Claims (1)

【特許請求の範囲】 1 給水ポンプの吐出口に給水ポンプ出口弁を備
えた給水系の給水制御装置において、 給水ポンプ出口弁入口圧力の目標値と実際値と
の偏差を比例積分制御要素からなる第1の演算器
に入力し、その出力をサーボ増幅器を介して前記
給水ポンプ出口弁開度を調節するアクチユエータ
に入力する第1の制御系と、 給水流量の目標値と実際値との偏差を比例積分
制御要素からなる第2の演算器に入力し、その出
力をサーボ増幅器を介して前記給水ポンプ回転数
を調節するアクチユエータに入力する第2の制御
系とを備えて成ることを特徴とする給水制御装
置。
[Claims] 1. A water supply control device for a water supply system equipped with a water supply pump outlet valve at the discharge port of the water supply pump, comprising a proportional-integral control element for controlling the deviation between a target value and an actual value of the water supply pump outlet valve inlet pressure. a first control system that inputs an input to a first computing unit and inputs its output via a servo amplifier to an actuator that adjusts the opening degree of the water supply pump outlet valve; and a deviation between the target value and the actual value of the water supply flow rate. A second control system that inputs input to a second arithmetic unit consisting of a proportional-integral control element, and inputs its output to an actuator that adjusts the rotation speed of the water supply pump via a servo amplifier. Water supply control device.
JP15669682A 1982-09-10 1982-09-10 Feedwater controller Granted JPS5946404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15669682A JPS5946404A (en) 1982-09-10 1982-09-10 Feedwater controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15669682A JPS5946404A (en) 1982-09-10 1982-09-10 Feedwater controller

Publications (2)

Publication Number Publication Date
JPS5946404A JPS5946404A (en) 1984-03-15
JPH0229922B2 true JPH0229922B2 (en) 1990-07-03

Family

ID=15633336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15669682A Granted JPS5946404A (en) 1982-09-10 1982-09-10 Feedwater controller

Country Status (1)

Country Link
JP (1) JPS5946404A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732610A (en) * 1980-08-05 1982-02-22 Oki Electric Ind Co Ltd Drive control method for magnet
KR101187765B1 (en) 2010-12-24 2012-10-04 한국남부발전 주식회사 Feeding water device for generating system
KR101187764B1 (en) 2010-12-24 2012-10-04 한국남부발전 주식회사 Feeding water device for generating system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130703A (en) * 1978-03-31 1979-10-11 Toshiba Corp Feed-water controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130703A (en) * 1978-03-31 1979-10-11 Toshiba Corp Feed-water controller

Also Published As

Publication number Publication date
JPS5946404A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
CN110469926B (en) Water circulation system for air conditioning system and control method thereof
US4472345A (en) Load control system for nuclear power plant
JPH0229922B2 (en)
JPH11117894A (en) Gas compression facility and its operating method
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JP2677616B2 (en) Condenser vacuum degree control device
JPS5929704A (en) Controller of turbine driving feed water pump
JPH0339202B2 (en)
JPS58561B2 (en) electro-hydraulic governor
JPS6032084B2 (en) Turbine speed control device for driving water pump
JP2999884B2 (en) Method and apparatus for controlling turbine for feeding water pump
JP3670780B2 (en) Pump flow control method
JPS6239657B2 (en)
JPH0553922B2 (en)
JP2790932B2 (en) Rake pipe type variable speed fluid coupling
JPS6086307A (en) Feedwater controller
JPH0230404B2 (en)
JPS59122708A (en) Speed control device for steam turbine
JPS6337241B2 (en)
JPS58178105A (en) Control system of feedwater
JPS61231308A (en) Method of controlling feed pump for nuclear reactor
JPH0127243B2 (en)
JPS5941003B2 (en) Turbine control device for driving water pump
JPH03172597A (en) Flow controller for pump