JPH0979508A - Feed water controller for steam generating plant - Google Patents

Feed water controller for steam generating plant

Info

Publication number
JPH0979508A
JPH0979508A JP25815995A JP25815995A JPH0979508A JP H0979508 A JPH0979508 A JP H0979508A JP 25815995 A JP25815995 A JP 25815995A JP 25815995 A JP25815995 A JP 25815995A JP H0979508 A JPH0979508 A JP H0979508A
Authority
JP
Japan
Prior art keywords
water supply
flow rate
water
pump
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25815995A
Other languages
Japanese (ja)
Inventor
Katsuyuki Suzuki
勝幸 鈴木
Mitsugi Nakahara
中原  貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25815995A priority Critical patent/JPH0979508A/en
Publication of JPH0979508A publication Critical patent/JPH0979508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the change of water level as much as possible at the time of opening/closing of a feed water pump recirculation valve to become the disturbance of a feed water flow rate in the control of the water level of a steam generating plant. SOLUTION: The feed water controller for a steam generating plant comprises a main control system 22 for controlling the feed water flow rate of a feed water pump based on the water level detected value of a steam generator 1, and a correction control system for opening a switch 30 at the time of starting to switch the pump, storing the feed water flow signal S2 at this time in a memory 31 as a target feed water flow S7, comparing the flow S2 with the flow S7 during switching of the pump to obtain a feed water flow change and inputting the change to a feed water flow correcting circuit 33 to obtain a feed water flow correction amount S7 by control calculation. The correction amount of the control system is added to the feed water flow of the correction control system, and the water level change of the plant is suppressed prior to the control by the main control system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、給水ポンプ再循環弁を
設けた蒸気発生プラントにおける蒸気発生プラントの給
水制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply control device for a steam generating plant in a steam generating plant provided with a water supply pump recirculation valve.

【0002】[0002]

【従来の技術】原子力プラントや火力プラントをはじめ
とする蒸気発生プラントは、複数の給水ポンプからなる
給水設備を有する。給水ポンプには、例えば、タービン
駆動ポンプやモータ駆動ポンプを使用し、給水制御装置
によりタービン駆動ポンプはポンプ回転数、モータ駆動
ポンプは給水調節弁開度を制御する。給水制御装置は、
蒸気発生器である原子炉圧力容器やボイラ内の水位や給
水流量、主蒸気流量をプラントより取り込み、蒸気発生
器内の水位が一定になるような給水ポンプ制御信号を出
力する。これらの給水ポンプは、その容量や給水能力が
異なるので、プラントの出力に対応した給水性能を得る
ために、複数の給水ポンプを順次切替えて使用してい
る。一般に、モータ駆動ポンプは低出力時、タービン駆
動ポンプは高出力時および定格運転中に使用される。プ
ラントの起動時には、出力上昇に対応してモータ駆動ポ
ンプ1台からタービン駆動ポンプ1台に切替え、さらに
タービン駆動ポンプをもう1台追加する。定格運転中は
タービン駆動ポンプ2台で給水を行なう。プラントの停
止時には、出力低下に対応して、まずタービン駆動ポン
プを1台停止し、さらにタービン駆動ポンプ1台からモ
ータ駆動ポンプ1台に切替える。
2. Description of the Related Art A steam generating plant such as a nuclear power plant or a thermal power plant has a water supply facility including a plurality of water supply pumps. For the water supply pump, for example, a turbine drive pump or a motor drive pump is used, and the turbine drive pump controls the pump rotation speed and the motor drive pump controls the water supply control valve opening by the water supply control device. The water supply controller is
It takes in the water level, feed water flow rate, and main steam flow rate in the reactor pressure vessel or boiler, which is a steam generator, from the plant, and outputs a feed water pump control signal that keeps the water level in the steam generator constant. Since these water supply pumps have different capacities and water supply capacities, a plurality of water supply pumps are sequentially switched and used in order to obtain water supply performance corresponding to the output of the plant. Generally, motor driven pumps are used at low power, turbine driven pumps are used at high power and during rated operation. When the plant starts up, one motor-driven pump is switched to one turbine-driven pump in response to the increase in output, and another turbine-driven pump is added. Water is supplied by two turbine driven pumps during rated operation. When the plant is stopped, one turbine drive pump is stopped first, and then one turbine drive pump is switched to one motor drive pump in response to the output reduction.

【0003】ここで、従来の給水制御装置による給水ポ
ンプ切替について、プラントの起動時に、プラント出力
の上昇に伴い、タービン駆動ポンプを起動し、モータ駆
動ポンプを停止する場合を例として、以下に説明する。
まず、給水制御装置において、タービン駆動ポンプ操作
器を手動モードとし、給水制御装置より増指令を出力
し、タービン回転数を増加する。タービン回転数の増加
により、給水ポンプ回転数が増加し、これにより給水流
量が増加する。給水流量の増加に伴い、蒸気発生器内の
水位が上昇する。一方、モータ駆動ポンプは自動モード
であり、蒸気発生器内の水位と目標水位設定値との偏差
を抑えるよう、主水位制御器の制御演算によりポンプ流
量を制御する。この場合、水位が上昇しているので、モ
ータ駆動ポンプでは、給水流量の減少操作を行う。ター
ビン駆動ポンプへの増指令は、主水位制御器の出力信号
と等しくなるまで行う。その後、モータ駆動ポンプ操作
器を手動モードとし、給水制御装置より減指令を出力
し、制御信号が0となることで、モータ駆動ポンプから
タービン駆動ポンプへの切替が終了する。次に、従来の
給水制御装置による給水ポンプ切替について、プラント
の停止時に、プラント出力の低下に伴い、モータ駆動ポ
ンプを起動し、タービン駆動ポンプを停止する場合を例
として、以下に説明する。まず、給水制御装置におい
て、モータ駆動ポンプ操作器を手動モードとし、給水制
御装置より増指令を出力し、給水調節弁開度を増加す
る。これにより給水流量が増加する。給水流量の増加に
伴い、蒸気発生器内の水位が上昇する。一方、タービン
駆動ポンプは自動モードであり、蒸気発生器内の水位と
目標水位設定値との偏差を抑えるよう、主水位制御器の
制御演算によりポンプ流量を制御する。この場合、水位
が上昇しているので、タービン駆動ポンプでは、給水流
量の減少操作を行う。モータ駆動ポンプへの増指令は、
主水位制御器の出力信号と等しくなるまで行う。その
後、タービン駆動ポンプ操作器を手動モードとし、給水
制御装置より減指令を出力し、制御信号が0となること
で、タービン駆動ポンプからモータ駆動ポンプへの切替
が終了する。
Here, the switching of the water supply pump by the conventional water supply control device will be described below by taking the case where the turbine drive pump is started and the motor drive pump is stopped as the plant output rises when the plant starts. To do.
First, in the water supply control device, the turbine drive pump operating device is set to the manual mode, the increase command is output from the water supply control device, and the turbine speed is increased. The increase in turbine rotation speed increases the feedwater pump rotation speed, which increases the feedwater flow rate. The water level in the steam generator rises as the water supply flow rate increases. On the other hand, the motor driven pump is in the automatic mode, and the pump flow rate is controlled by the control calculation of the main water level controller so as to suppress the deviation between the water level in the steam generator and the target water level set value. In this case, since the water level has risen, the motor-driven pump performs an operation of reducing the water supply flow rate. The increase command to the turbine drive pump is issued until it becomes equal to the output signal of the main water level controller. After that, the motor-driven pump operating device is set to the manual mode, the water supply control device outputs a decrease command, and the control signal becomes 0, whereby the switching from the motor-driven pump to the turbine-driven pump is completed. Next, switching of the water supply pumps by the conventional water supply control device will be described below by taking as an example a case where the motor driven pump is started and the turbine driven pump is stopped when the plant output is reduced and the plant output is reduced. First, in the water supply control device, the motor-driven pump operating device is set to the manual mode, an increase command is output from the water supply control device, and the water supply control valve opening is increased. This increases the water supply flow rate. The water level in the steam generator rises as the water supply flow rate increases. On the other hand, the turbine driven pump is in the automatic mode, and the pump flow rate is controlled by the control calculation of the main water level controller so as to suppress the deviation between the water level in the steam generator and the target water level set value. In this case, since the water level is rising, the turbine drive pump performs the operation of reducing the feed water flow rate. The increase command to the motor driven pump is
Repeat until the output signal of the main water level controller becomes equal. After that, the turbine drive pump operating device is set to the manual mode, the water supply control device outputs a decrease command, and the control signal becomes 0, whereby the switching from the turbine drive pump to the motor drive pump is completed.

【0004】ところで、給水ポンプ切替のようにポンプ
通過流量が少なくなると、ポンプの締切運転に対するポ
ンプ流体の温度上昇やポンプ軸振動が発生しやすくな
る。そのため給水ポンプには、ポンプ機器保護を目的と
して、給水ポンプ最低流量(ミニマムフロー)を確保す
るための再循環弁(ミニマムフロー弁)が各々設けられ
ている。各再循環弁は、各給水ポンプの吸込流量が最低
流量設定値以下となると、手動または自動にて開く。逆
に吸込流量が最低流量設定値以上となると、各再循環弁
は閉じる。このようにして各ポンプの最低流量を常に確
保できるよう考慮している。給水ポンプ切替において、
前述の例の一つでは、モータ駆動ポンプの流量を減少操
作する。モータ駆動ポンプの吸込流量が最低流量設定値
以下となると、モータ駆動ポンプの吐出側に設けた再循
環弁が開くことになる。同様に、前述の例のもう一つで
は、モータ駆動ポンプの流量を増加操作する場合は、モ
ータ駆動ポンプの吸込流量が最低流量設定値以上になる
と、モータ駆動ポンプの吐出側に設けた再循環弁が閉じ
ることになる。従来の蒸気発生プラントでは、給水ポン
プ最低流量が比較的少なくてよいこともあり、前述の再
循環弁の開閉制御方式には、いわゆるオン−オフ制御方
式(全開−全閉制御方式)が採用されている場合が多
い。しかし、最近の蒸気発生プラントの大規模化に伴
い、前述の給水ポンプ最低流量が給水ポンプ保護上の条
件より、比較的大きな値が必要となっており、前述のオ
ン−オフ制御方式では、給水流量の大幅変化を伴い、蒸
気発生器の水位に与える影響が大きい。再循環弁の開閉
動作による水位の変動は、他にも給水ポンプ2台目の追
加、あるいは停止においても発生する事象である。その
ため、蒸気発生器の水位への影響をできる限り小さくす
るための制御方式として、一定レートで再循環弁の開閉
動作を行うようにしたプログラム制御方式や、比例積分
制御制御方式などが提案されている。また、再循環弁の
開閉動作による水位の変動を抑制する方法として、例え
ば、特開平4−75478号公報や特開平4−1945
03号公報に記載のように、各再循環弁に弁開度発信器
を設置し、再循環弁の開閉時の弁開度信号を取り込み、
これから給水流量の補正信号を生成し、水位変動を抑制
する方法が知られている。
By the way, when the flow rate through the pump is reduced as in the case of switching the water supply pump, the temperature rise of the pump fluid and the pump shaft vibration easily occur due to the shutoff operation of the pump. Therefore, each water supply pump is provided with a recirculation valve (minimum flow valve) for ensuring a minimum flow rate (minimum flow) of the water supply pump for the purpose of protecting pump equipment. Each recirculation valve is opened manually or automatically when the suction flow rate of each water supply pump becomes equal to or lower than the minimum flow rate set value. Conversely, when the suction flow rate exceeds the minimum flow rate setting value, each recirculation valve closes. In this way, consideration is given to always ensuring the minimum flow rate of each pump. When switching the water supply pump,
In one of the aforementioned examples, the flow rate of the motor driven pump is reduced. When the suction flow rate of the motor-driven pump falls below the minimum flow rate set value, the recirculation valve provided on the discharge side of the motor-driven pump opens. Similarly, in another example of the above, when increasing the flow rate of the motor-driven pump, when the suction flow rate of the motor-driven pump exceeds the minimum flow rate setting value, the recirculation provided on the discharge side of the motor-driven pump is performed. The valve will close. In the conventional steam generating plant, the minimum flow rate of the water supply pump may be relatively small, so the so-called on-off control method (fully open-fully closed control method) is adopted as the opening / closing control method of the recirculation valve. There are many cases. However, with the recent increase in the scale of steam generation plants, the minimum flow rate of the water supply pump is required to be relatively large compared to the conditions for protecting the water supply pump. Along with the large change in flow rate, it greatly affects the water level of the steam generator. The fluctuation of the water level due to the opening / closing operation of the recirculation valve is another phenomenon that occurs when the second water supply pump is added or stopped. Therefore, as a control method for minimizing the influence on the water level of the steam generator, a program control method for opening and closing the recirculation valve at a constant rate, a proportional-integral control control method, etc. have been proposed. There is. Further, as a method of suppressing the fluctuation of the water level due to the opening / closing operation of the recirculation valve, for example, JP-A-4-75478 and JP-A-4-1945 are available.
As described in Japanese Patent Publication No. 03-2003, a valve opening transmitter is installed in each recirculation valve, and a valve opening signal when opening and closing the recirculation valve is taken in.
There is known a method of generating a correction signal of the water supply flow rate from this to suppress the water level fluctuation.

【0005】[0005]

【発明が解決しようとする課題】上記の従来技術は、再
循環弁の弁開度信号から給水流量変動、あるいは再循環
弁通過流量を推定し、主水位制御器出力をバイアス補正
する構成となっている。しかし、特に、給水ポンプ切替
中の再循環弁の開閉による給水流量変動は、プラント給
復水系全体の配管流量干渉を伴い、再循環弁の弁開度信
号から一意に決まらないため、前述のバイアス補正で
は、適切な給水流量補正とならず、そのため水位変動の
抑制効果が少ないばかりか、変動を助長する可能性もあ
る。
The above-mentioned prior art has a structure in which the feed water flow rate fluctuation or the recirculation valve passing flow rate is estimated from the valve opening signal of the recirculation valve, and the main water level controller output is bias-corrected. ing. However, in particular, fluctuations in the feedwater flow due to opening and closing of the recirculation valve during switching of the feedwater pump are accompanied by pipe flow interference of the entire plant supply / condensation system and cannot be uniquely determined from the valve opening signal of the recirculation valve. The correction does not provide an appropriate correction of the water supply flow rate, so that not only the effect of suppressing the fluctuation of the water level is small, but also the fluctuation may be promoted.

【0006】本発明の目的は、蒸気発生プラントの水位
制御に関して、給水流量の外乱となる給水ポンプ再循環
弁の開閉動作時に、水位の変動を極力抑制するようにし
た蒸気発生プラントの給水制御装置を提供することにあ
る。
It is an object of the present invention to control the water level of a steam generating plant, in which the fluctuation of the water level is suppressed as much as possible during the opening / closing operation of the water supply pump recirculation valve which causes disturbance of the feed water flow rate. To provide.

【0007】[0007]

【課題を解決するための手段】上記目的は、蒸気発生器
の水位検出値に基づいて給水ポンプの給水流量を制御す
る主制御系と、給水ポンプの切替開始時に設定する目標
給水流量と再循環弁の開閉により変動する給水流量を比
較して給水流量変化量を求め、この給水流量変化量に基
づいて補正量を演算する補正制御系を有し、この補正制
御系の補正量を前記主制御系による給水流量に加算する
ことによって、達成される。
[Means for Solving the Problems] The above object is to provide a main control system for controlling the feed water flow rate of a water feed pump based on the detected water level of a steam generator, and a target water feed flow rate and recirculation set at the start of switching of the water feed pump. There is a correction control system that calculates the amount of water supply flow rate change by comparing the amount of water supply flow that fluctuates due to opening and closing of the valve, and calculates a correction amount based on this amount of water supply flow rate change. It is achieved by adding to the water supply flow rate by the system.

【0008】[0008]

【作用】本発明は、蒸気発生器の水位検出値に基づいて
実水位を目標水位に制御する制御系の給水流量制御指令
を、給水ポンプの切替開始時にその吐出側に設けられた
再循環弁の開閉動作に伴う給水流量の変化を受けて先行
的に補正するので、蒸気発生器の水位変化を大幅に抑制
することが可能となり、特に、給水ポンプ切替中の再循
環弁の開閉による蒸気発生器の水位変動を抑制し、プラ
ントの安定性を維持することが可能となる。
According to the present invention, the recirculation valve provided on the discharge side of the feed water flow rate control command for the control system for controlling the actual water level to the target water level based on the detected water level of the steam generator. Since it compensates in advance according to the change in the water supply flow rate due to the opening / closing operation of the steam generator, it is possible to greatly suppress the change in the water level of the steam generator. It is possible to suppress the fluctuation of the water level in the reactor and maintain the stability of the plant.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。図1は、
本発明の一実施例を示す蒸気発生プラントの給水制御装
置であり、蒸気発生プラントの一つであるBWR発電プ
ラントに適用した場合を示す。本実施例において、原子
炉圧力容器が蒸気発生器に相当する。BWR発電プラン
トは、給水ポンプとしてタービン駆動ポンプ9Aおよび
9B(以下、TD−RFP)2台とモータ駆動ポンプ1
1Aおよび11B(以下、MD−RFP)2台を有す
る。通常運転時、原子炉圧力容器1で発生した蒸気は、
主蒸気配管2を通り、主蒸気加減弁3により調節されて
タービン4へ送られる。タービン4により発電機5が仕
事をして発電を行なう。タービン4から排気された蒸気
は、復水器6で凝縮される。凝縮した水は、原子炉1の
冷却水として再び用いられる。まず、給水配管7を通
り、復水ポンプ8に供給される。さらに、通常運転時に
は、2台のTD−RFP9Aおよび9Bで昇圧され、原
子炉圧力容器1へ供給される。ここで、TD−RFP9
Aおよび9Bは、タービン4から抽気した蒸気を駆動源
とするポンプ駆動タービン10Aおよび10Bにより、
ポンプの回転数を制御し、ポンプ流量を調節する。一
方、2台のMD−RF11Aおよび11Bは、通常運転
中は、TD−RFPのバックアップに用いるため、待機
状態にあり、原子炉1を起動および停止する場合に給水
制御に用いる。MD−RFPの流量制御は、給水調節弁
12Aおよび12Bで行なう。給水配管7には、分岐管
13A、13B、13Cおよび13Dが設けられ、これ
らの分岐管に取り付けられた再循環弁14A、14B、
14Cおよび14Dは、TD−RFPおよびMD−RF
Pの起動、停止時に開閉動作を実施し、各給水ポンプの
最小流量を確保する。各再循環弁を通過する水は、再び
復水器6に戻る。TD−RFPおよびMD−RFPによ
る給水流量の制御は、原子炉圧力容器1の水位計15、
給水配管7に設けられた給水流量計16および主蒸気配
管2に設けられた主蒸気流量計17の検出値を入力する
給水制御装置20において実行する。
Embodiments of the present invention will be described below. FIG.
1 is a water supply control device for a steam generating plant according to an embodiment of the present invention, showing a case where the present invention is applied to a BWR power generation plant which is one of the steam generating plants. In this embodiment, the reactor pressure vessel corresponds to the steam generator. The BWR power generation plant includes two turbine drive pumps 9A and 9B (hereinafter, TD-RFP) as water supply pumps and a motor drive pump 1.
It has two 1A and 11B (hereinafter, MD-RFP) units. During normal operation, the steam generated in the reactor pressure vessel 1
It passes through the main steam pipe 2, is adjusted by the main steam control valve 3, and is sent to the turbine 4. The turbine 4 causes the generator 5 to work and generate electricity. The steam exhausted from the turbine 4 is condensed in the condenser 6. The condensed water is reused as cooling water for the nuclear reactor 1. First, it is supplied to the condensate pump 8 through the water supply pipe 7. Further, during normal operation, the pressure is increased by the two TD-RFPs 9A and 9B and supplied to the reactor pressure vessel 1. Here, TD-RFP9
A and 9B are pump drive turbines 10A and 10B that use steam extracted from the turbine 4 as a drive source.
Control the pump speed and adjust the pump flow rate. On the other hand, since the two MD-RFs 11A and 11B are used for backup of the TD-RFP during normal operation, they are in a standby state and used for water supply control when starting and stopping the reactor 1. The flow rate control of MD-RFP is performed by the water supply control valves 12A and 12B. The water supply pipe 7 is provided with branch pipes 13A, 13B, 13C and 13D, and recirculation valves 14A, 14B attached to these branch pipes,
14C and 14D are TD-RFP and MD-RF
Opening and closing operations are performed when P is started and stopped to ensure the minimum flow rate of each water supply pump. The water passing through each recirculation valve returns to the condenser 6 again. The control of the feed water flow rate by TD-RFP and MD-RFP is performed by the water gauge 15 of the reactor pressure vessel 1,
This is performed by the water supply control device 20 that inputs the detection values of the water supply flow meter 16 provided in the water supply pipe 7 and the main steam flow meter 17 provided in the main steam pipe 2.

【0010】給水制御装置20は、ゲイン要素24、主
水位制御器27、自動/手動モードのタービン駆動ポン
プ操作器28A,28B、自動/手動モードのモータ駆
動ポンプ操作器29A,29B、記憶回路31、給水流
量補正回路33、比較器22,23,32、加算器2
5,34、信号切替器26、スイッチ30を有する。給
水制御装置20の動作を説明する。プラントの高出力時
(例えば、30パーセント以上)には、信号切替器26
が加算器25に切り替わり、スイッチ30がオンにな
る。この状態で水位計15の原子炉水位信号S1は、比
較器22において水位設定値21と比較され、水位偏差
が求められる。また、給水流量計16の給水流量信号S
2と主蒸気流量計17の主蒸気流量信号S3との偏差信
号が比較器23から出力され、偏差信号にゲインK24
を乗算し、加算器25において原子炉水位偏差信号に加
算し、信号切替器26を通って主水位制御器27へ入力
する。主水位制御器27では、比例積分演算などにより
給水流量制御指令S4を出力する。給水流量制御指令S
4は、タービン駆動ポンプ操作器28A,28Bに入力
され、ポンプ駆動タービン10Aおよび10Bを制御
し、また、モータ駆動ポンプ操作器29A,29Bに入
力され、給水調節弁12Aおよび12Bを制御する。一
方、プラントが低出力時(例えば、30パーセント以
下)では、信号切替器26が比較器22に切り替わり、
比較器22から出力される原子炉水位偏差のみが主水位
制御器27への入力となる。ここで、プラントの通常運
転中、タービン駆動ポンプ操作器28Aおよび28B、
モータ駆動ポンプ操作器29Aおよび29Bは、自動モ
ードとなっている。一方、給水ポンプ切替時には、起動
あるいは停止するポンプの操作器を手動モードに設定
し、ポンプ流量の増減操作を実施する。
The water supply controller 20 includes a gain element 24, a main water level controller 27, turbine drive pump operators 28A and 28B in automatic / manual mode, motor drive pump operators 29A and 29B in automatic / manual mode, and a storage circuit 31. , Feed water flow rate correction circuit 33, comparators 22, 23, 32, adder 2
5, 34, a signal switch 26, and a switch 30. The operation of the water supply control device 20 will be described. At the time of high output of the plant (for example, 30% or more), the signal switch 26
Is switched to the adder 25, and the switch 30 is turned on. In this state, the reactor water level signal S1 of the water level gauge 15 is compared with the water level set value 21 in the comparator 22 to obtain the water level deviation. In addition, the water supply flow rate signal S of the water supply flow meter 16
2 and the deviation signal between the main steam flow signal S3 of the main steam flow meter 17 are output from the comparator 23, and the deviation signal has a gain K24.
Is added to the reactor water level deviation signal in the adder 25, and is input to the main water level controller 27 through the signal switch 26. The main water level controller 27 outputs the feed water flow rate control command S4 by a proportional integral calculation or the like. Water supply flow rate control command S
4 is input to turbine drive pump operators 28A and 28B to control pump drive turbines 10A and 10B, and is also input to motor drive pump operators 29A and 29B to control water supply control valves 12A and 12B. On the other hand, when the plant has a low output (for example, 30% or less), the signal switch 26 switches to the comparator 22,
Only the reactor water level deviation output from the comparator 22 is input to the main water level controller 27. Here, during normal operation of the plant, turbine driven pump operators 28A and 28B,
The motor driven pump operators 29A and 29B are in the automatic mode. On the other hand, when switching the water supply pump, the operating device of the pump to be started or stopped is set to the manual mode and the pump flow rate is increased or decreased.

【0011】以下では、給水ポンプ切替時における給水
制御装置20の制御動作について説明する。図1におい
て、給水ポンプ切替時に、給水ポンプ再循環弁を開閉す
ると、給水配管7から原子炉圧力容器1に供給される給
水流量が変動し、原子炉圧力容器1の水位が変動する。
そこで、まず、給水ポンプ切替を開始するにあたり、信
号切替器26を比較器22に切り替え、スイッチ30を
オフにする。信号切替器26の切り替えにより、主水位
制御器27に原子炉水位偏差が入力され、給水流量制御
指令S4を出力する。また、スイッチ30がオフしたと
き、給水ポンプ切替開始時の給水流量信号S2を記憶回
路31に記憶する。この記憶した値を以下では目標給水
流量S7とする。つぎに、給水ポンプ切替中、給水流量
信号S2は、比較器32において目標給水流量S7と比
較され、給水流量変化量が求められる。給水流量変化量
は、給水流量補正回路33に入力され、制御演算により
給水流量補正信号S8となり、加算器34において主水
位制御器27の給水流量制御指令S4に加算される。こ
の補正された給水流量制御指令S4をポンプ操作器に入
力し、給水流量を補正制御する。このようにして、給水
制御装置20は、給水ポンプ切替時に、給水ポンプ再循
環弁を開閉することにより変動する給水流量変化量に基
づいて給水流量を補正する。
The control operation of the water supply controller 20 when switching the water supply pump will be described below. In FIG. 1, when the feed water pump recirculation valve is opened / closed when the feed water pump is switched, the feed water flow rate supplied from the feed water pipe 7 to the reactor pressure vessel 1 changes, and the water level of the reactor pressure vessel 1 changes.
Therefore, first, when starting the switching of the water supply pump, the signal switch 26 is switched to the comparator 22 and the switch 30 is turned off. By switching the signal switch 26, the reactor water level deviation is input to the main water level controller 27, and the feed water flow rate control command S4 is output. Further, when the switch 30 is turned off, the water supply flow rate signal S2 at the start of switching the water supply pump is stored in the storage circuit 31. The stored value will be hereinafter referred to as the target water supply flow rate S7. Next, during switching of the water supply pump, the water supply flow rate signal S2 is compared with the target water supply flow rate S7 in the comparator 32 to obtain the water supply flow rate change amount. The water supply flow rate change amount is input to the water supply flow rate correction circuit 33, becomes a water supply flow rate correction signal S8 by control calculation, and is added to the water supply flow rate control command S4 of the main water level controller 27 by the adder 34. The corrected water supply flow rate control command S4 is input to the pump operator to correct and control the water supply flow rate. In this way, the water supply control device 20 corrects the water supply flow rate based on the amount of change in the water supply flow rate that fluctuates by opening and closing the water supply pump recirculation valve when switching the water supply pump.

【0012】ここで、図2に給水ポンプ再循環弁が開動
作したとき、図3に給水ポンプ再循環弁が閉動作したと
きの給水流量補正回路33のそれぞれの動作を示す。図
2において、給水ポンプ切替開始時に、上述したよう
に、スイッチ30をオフにして給水流量信号S2を記憶
回路31に記憶する。この記憶した値を目標給水流量S
7とする。給水ポンプ切替中、給水ポンプ再循環弁が開
くため、原子炉1への給水流量が減少し、給水流量計1
6の給水流量信号S2は、図示のように低下する。この
低下した給水流量信号S2は目標給水流量S7と比較さ
れ、この偏差が給水流量変化量として求められる。この
給水流量変化量は給水流量補正回路33に入力され、給
水流量補正回路33において制御演算して給水流量補正
信号S8を出力する。給水流量補正信号S8は、図示の
ように、給水ポンプの再循環弁が開くことによる給水流
量の減少に対して、正の値をとり、給水流量を増加させ
る補正信号として機能する。図3において、給水ポンプ
切替開始時に、同様に、スイッチ30をオフして給水流
量信号S2を記憶回路31に記憶する。この記憶した値
を目標給水流量S7とする。給水ポンプ切替中、給水ポ
ンプ再循環弁が閉じるため、原子炉1への給水流量が増
加し、給水流量計16の給水流量信号S2は、図示のよ
うに上昇する。この上昇した給水流量信号S2は目標給
水流量S7と比較され、この偏差が給水流量変化量とし
て求められる。この給水流量変化量は給水流量補正回路
33に入力され、給水流量補正回路33において制御演
算して給水流量補正信号S8を出力する。給水流量補正
信号S8は、給水ポンプの再循環弁が閉じることによる
給水流量の増加に対して、負の値をとり、給水流量を減
少させる補正信号として機能する。
Here, FIG. 2 shows respective operations of the feed water flow rate correction circuit 33 when the feed water pump recirculation valve is opened, and FIG. 3 is shown when the feed water pump recirculation valve is closed. In FIG. 2, at the start of switching of the water supply pump, as described above, the switch 30 is turned off and the water supply flow rate signal S2 is stored in the storage circuit 31. This stored value is used as the target water supply flow rate S
7 is assumed. During the switching of the water supply pump, the water supply pump recirculation valve opens, so the water supply flow rate to the reactor 1 decreases, and the water supply flow meter 1
The water supply flow rate signal S2 of 6 decreases as shown. This lowered feed water flow rate signal S2 is compared with the target feed water flow rate S7, and this deviation is obtained as the feed water flow rate change amount. This feed water flow rate change amount is input to the feed water flow rate correction circuit 33, and the feed water flow rate correction circuit 33 performs control calculation and outputs a feed water flow rate correction signal S8. As shown in the figure, the feed water flow rate correction signal S8 takes a positive value with respect to the decrease in the feed water flow rate due to the opening of the recirculation valve of the water feed pump, and functions as a correction signal for increasing the feed water flow rate. In FIG. 3, when the switching of the water supply pump is started, similarly, the switch 30 is turned off and the water supply flow rate signal S2 is stored in the storage circuit 31. The stored value is set as the target water supply flow rate S7. Since the water supply pump recirculation valve is closed during switching of the water supply pump, the water supply flow rate to the reactor 1 increases, and the water supply flow rate signal S2 of the water supply flow meter 16 rises as illustrated. The increased feed water flow rate signal S2 is compared with the target feed water flow rate S7, and this deviation is obtained as the feed water flow rate change amount. This feed water flow rate change amount is input to the feed water flow rate correction circuit 33, and the feed water flow rate correction circuit 33 performs control calculation and outputs a feed water flow rate correction signal S8. The feed water flow rate correction signal S8 takes a negative value with respect to an increase in the feed water flow rate due to the closing of the recirculation valve of the water feed pump, and functions as a correction signal that reduces the feed water flow rate.

【0013】図4に、給水流量補正回路33の内部構成
を示す。ゲイン要素331は、給水流量変動を入力し、
積分器332への入力信号を出力する。ゲイン要素33
1は、定数あるいは給水流量変動に対する可変機能をも
つ。積分器332は、給水流量変動に応じて給水流量補
正信号S8を出力する。積分時定数は、プラントの給水
制御特性にもよるが、主水位制御器27の積分時定数よ
り短く設定することが可能である(例えば、10秒前
後)。
FIG. 4 shows the internal structure of the feed water flow rate correction circuit 33. The gain element 331 inputs the fluctuation of the water supply flow rate,
The input signal to the integrator 332 is output. Gain element 33
1 has a constant or variable function with respect to fluctuations in the water supply flow rate. The integrator 332 outputs the feed water flow rate correction signal S8 according to the change in the feed water flow rate. The integration time constant can be set shorter than the integration time constant of the main water level controller 27 (for example, around 10 seconds), although it depends on the water supply control characteristic of the plant.

【0014】次に、本実施例の給水制御装置をBWR発
電プラントの起動、停止における給水ポンプ切替時に適
用した場合の動作を説明する。BWR発電プラントにお
いては、プラントの起動から出力が約25パーセントま
では、MD−RFP1台で給水流量を制御し、その後、
TD−RFP1台を起動し、MD−RFPとの切替を行
なう。図1において、MD−RFP11AからTD−R
FP9Aに切替えるとき、まず、TD−RFP9Aの操
作器28Aを手動モードとし、図5(a)に示すよう
に、TD−RFP制御信号S5Aを増加させる。これに
伴い、MD−RFP11Aの制御信号S6Aが徐々に低
下する。MD−RFP11Aの吸込流量が再循環弁14
Cの開設定値(例えば、流量700t/h)を下回る
と、再循環弁14Cが(1)の時点で開く。これに伴
い、(1)の時点では、給水配管の分岐管13Cには約
500t/hの給水流量が流れ込み、図5(b)に示す
ように、給水流量S2が急に減少する。このときの給水
流量S2は、図2で説明したように、目標給水流量S7
と比較され、この偏差が給水流量変化量として求めら
れ、給水流量補正回路33に入力される。給水流量補正
回路33において制御演算して正の給水流量補正信号S
8を出力し、直ちに主水位制御器27の給水流量制御指
令S4に加算し、この補正した給水流量制御指令S4を
モータ駆動ポンプ操作器29Aに入力する。これによ
り、MD−RFP制御信号S6Aが一旦増加することに
なる。その結果、図5(c)に示すように、原子炉水位
S1の低下が抑制され、ほぼ一定に制御されることとな
る。このようにして、MD−RFP11AからTD−R
FP9Aに切替えるとき、給水ポンプ再循環弁14Cの
開動作により変動する給水流量変化量に基づいて給水流
量を補正するので、主水位制御器27による制御に先行
して原子炉水位の変動を抑制することができる。
Next, the operation when the water supply control apparatus of the present embodiment is applied at the time of switching the water supply pumps when starting and stopping the BWR power plant will be described. In the BWR power generation plant, the feed water flow rate is controlled by one MD-RFP from the start of the plant to the output of about 25%, and then,
One TD-RFP is activated, and switching to MD-RFP is performed. In FIG. 1, MD-RFP11A to TD-R
When switching to the FP9A, first, the operator 28A of the TD-RFP 9A is set to the manual mode, and the TD-RFP control signal S5A is increased as shown in FIG. 5 (a). Along with this, the control signal S6A of the MD-RFP 11A gradually decreases. MD-RFP11A suction flow rate is recirculation valve 14
When the open setting value of C (for example, the flow rate of 700 t / h) is dropped, the recirculation valve 14C opens at the time point (1). Along with this, at the time of (1), the feed water flow rate of about 500 t / h flows into the branch pipe 13C of the water feed pipe, and the feed water flow rate S2 suddenly decreases as shown in FIG. 5 (b). The water supply flow rate S2 at this time is, as described in FIG. 2, the target water supply flow rate S7.
And the deviation is obtained as the feed water flow rate change amount and is input to the feed water flow rate correction circuit 33. A positive feed water flow rate correction signal S is calculated by control calculation in the feed water flow rate correction circuit 33.
8 is output and immediately added to the feed water flow rate control command S4 of the main water level controller 27, and the corrected feed water flow rate control command S4 is input to the motor-driven pump operator 29A. As a result, the MD-RFP control signal S6A once increases. As a result, as shown in FIG. 5 (c), the decrease in the reactor water level S1 is suppressed, and the reactor water level S1 is controlled to be substantially constant. In this way, MD-RFP11A to TD-R
When switching to FP9A, the feed water flow rate is corrected based on the feed water flow rate change amount that fluctuates due to the opening operation of the feed water pump recirculation valve 14C, so that fluctuations in the reactor water level are suppressed prior to control by the main water level controller 27. be able to.

【0015】また、BWR発電プラントにおいては、プ
ラントの停止において出力が約25パーセントまで低下
すると、MD−RFPを起動し、給水流量制御に用いて
いるTD−RFP1台を停止し、MD−RFPとの切替
を行なう。図1において、TD−RFP9AからMD−
RFP11Aに切替えるとき、まず、MD−RFP11
Aの操作器29Aを手動モードとし、図6(a)に示す
ように、MD−RFP制御信号S6Aを増加させる。こ
れに伴い、TD−RFP9Aの制御信号S5Aが徐々に
低下する。TD−RFP9Aの制御信号S5Aと、MD
−RFP制御信号S6Aがバランスした後で、今度はM
D−RFP11Aの操作器29Aを自動モードとし、一
方、TD−RFP9Aの操作器28Aを手動モードと
て、TD−RFP制御信号S5Aを減少させる。やが
て、MD−RFP11Aの吸込流量が再循環弁14Cの
閉設定値(例えば、流量1200t/h)を上回ると、
再循環弁14Cが(2)の時点で閉じる。これに伴い、
(2)の時点では、給水配管の分岐管13Cを通過して
いた流量が給水配管7に流れ込み、図6(b)に示すよ
うに、給水流量S2が急に増加する。このときの給水流
量S2は、図3で説明したように、目標給水流量S7と
比較され、この偏差が給水流量変化量として求められ、
給水流量補正回路33に入力される。給水流量補正回路
33において制御演算して負の給水流量補正信号S8を
出力し、直ちに主水位制御器27の給水流量制御指令S
4に加算し、この補正した給水流量制御指令S4をモー
タ駆動ポンプ操作器29Aに入力する。これにより、M
D−RFP制御信号S6Aが一旦減少することになる。
その結果、図6(c)に示すように、原子炉水位S1の
上昇が抑制され、ほぼ一定に制御されることとなる。こ
のようにして、TD−RFP9AからMD−RFP11
Aに切替えるとき、給水ポンプ再循環弁14Cの閉動作
により変動する給水流量変化量に基づいて給水流量を補
正するので、主水位制御器27による制御に先行して原
子炉水位の変動を抑制することができる。
Further, in the BWR power generation plant, when the output drops to about 25% when the plant is stopped, the MD-RFP is started, one TD-RFP used for controlling the feed water flow rate is stopped, and the MD-RFP is set. Switch. In FIG. 1, TD-RFP9A to MD-
When switching to RFP11A, first, MD-RFP11
The operation device 29A of A is set to the manual mode, and the MD-RFP control signal S6A is increased as shown in FIG. Along with this, the control signal S5A of the TD-RFP 9A gradually decreases. Control signal S5A of TD-RFP9A and MD
-After RFP control signal S6A is balanced, this time M
The controller 29A of the D-RFP 11A is set to the automatic mode, while the controller 28A of the TD-RFP 9A is set to the manual mode to decrease the TD-RFP control signal S5A. Eventually, when the suction flow rate of the MD-RFP 11A exceeds the closed setting value of the recirculation valve 14C (for example, the flow rate 1200 t / h),
The recirculation valve 14C is closed at the time of (2). Along with this,
At the time of (2), the flow rate that has passed through the branch pipe 13C of the water supply pipe flows into the water supply pipe 7, and the water supply flow rate S2 suddenly increases as shown in FIG. 6 (b). The water supply flow rate S2 at this time is compared with the target water supply flow rate S7 as described in FIG. 3, and this deviation is obtained as the water supply flow rate change amount,
It is input to the water supply flow rate correction circuit 33. The feed water flow rate correction circuit 33 performs a control operation to output a negative feed water flow rate correction signal S8, and immediately supplies the feed water flow rate control command S of the main water level controller 27.
4, and the corrected feed water flow rate control command S4 is input to the motor-driven pump operator 29A. This gives M
The D-RFP control signal S6A will once decrease.
As a result, as shown in FIG. 6 (c), the rise of the reactor water level S1 is suppressed and the reactor water level S1 is controlled to be substantially constant. In this way, TD-RFP9A to MD-RFP11
When switching to A, since the feed water flow rate is corrected based on the feed water flow rate change amount that fluctuates due to the closing operation of the feed water pump recirculation valve 14C, the fluctuation of the reactor water level is suppressed prior to the control by the main water level controller 27. be able to.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
給水ポンプの切替開始時に、給水ポンプ再循環弁の開閉
により変動する給水流量変化量に基づいて給水流量を補
正するので、蒸気発生器の水位変化を大幅に抑制するこ
とが可能となり、極めて安定性の高いプラントの運転を
実現することができる。また、本発明によれば、給水ポ
ンプの切替開始時に、給水流量の変化に応じた補正信号
を用いて、主水位制御器による制御指令より先行的に給
水ポンプの流量を制御するので、特に、給水ポンプ切替
中の給水ポンプ再循環弁の開閉による蒸気発生器の水位
変動を抑制し、プラントの安定性を維持することが可能
となる。また、本発明によれば、従来のように給水ポン
プの再循環弁開度信号を必要としないので、弁開度発信
器の新設や、給水制御装置のハード改造の必要がなく、
装置として簡素化およびコスト安とすることができる。
As described above, according to the present invention,
When the switching of the water supply pump is started, the water supply flow rate is corrected based on the amount of change in the water supply flow rate that fluctuates due to the opening / closing of the water supply pump recirculation valve, so it is possible to significantly suppress the water level change of the steam generator, and it is extremely stable. The operation of a high plant can be realized. Further, according to the present invention, when the switching of the water supply pump is started, the correction signal according to the change of the water supply flow rate is used to control the flow rate of the water supply pump in advance of the control command by the main water level controller. It is possible to maintain the stability of the plant by suppressing the fluctuation of the water level of the steam generator due to the opening and closing of the water supply pump recirculation valve during the switching of the water supply pump. Further, according to the present invention, since the recirculation valve opening signal of the water supply pump is not required as in the conventional case, there is no need to newly install a valve opening transmitter or remodel the hardware of the water supply control device.
The device can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す蒸気発生プラントの給
水制御装置とBWR発電プラントの系統図
FIG. 1 is a system diagram of a water supply control device of a steam generation plant and a BWR power generation plant showing an embodiment of the present invention.

【図2】本発明による給水ポンプ再循環弁開時の給水流
量補正動作の説明図
FIG. 2 is an explanatory view of a feed water flow rate correction operation when the feed pump recirculation valve according to the present invention is opened.

【図3】本発明による給水ポンプ再循環弁閉時の給水流
量補正動作の説明図
FIG. 3 is an explanatory diagram of a feed water flow rate correction operation when the feed pump recirculation valve is closed according to the present invention.

【図4】本発明の給水流量補正回路の構成図FIG. 4 is a configuration diagram of a feed water flow rate correction circuit of the present invention.

【図5】本発明による給水ポンプ再循環弁開時のプラン
トの挙動の説明図
FIG. 5 is an explanatory view of the behavior of the plant when the water supply pump recirculation valve according to the present invention is opened.

【図6】本発明による給水ポンプ再循環弁閉時のプラン
トの挙動の説明図
FIG. 6 is an explanatory diagram of the behavior of the plant when the water supply pump recirculation valve is closed according to the present invention.

【符号の説明】[Explanation of symbols]

1 原子炉圧力容器 2 主蒸気配管 3 主蒸気加減弁 4 タービン 5 発電機 6 復水器 7 給水配管 8 復水ポンプ 9A,9B タービン駆動ポンプ 10A,10B ポンプ駆動タービン 11A,11B モータ駆動ポンプ 12A,12B 給水調節弁 13A,13B,13C,13D 給水ポンプ再循環流
量配管 14A,14B,14C,14D 給水ポンプ再循環弁 15 原子炉水位計 16 給水流量計 17 主蒸気流量計 20 給水制御装置 24 ゲイン要素 27 主水位制御器 28A,28B タービン駆動ポンプ操作器 29A,29B モータ駆動ポンプ操作器 31 記憶回路 33 給水流量補正回路 34 加算器 331 ゲイン要素 332 積分器
1 Reactor Pressure Vessel 2 Main Steam Pipe 3 Main Steam Control Valve 4 Turbine 5 Generator 6 Condenser 7 Water Supply Pipe 8 Condensate Pump 9A, 9B Turbine Drive Pump 10A, 10B Pump Drive Turbine 11A, 11B Motor Drive Pump 12A, 12B Water supply control valve 13A, 13B, 13C, 13D Water supply pump recirculation flow pipe 14A, 14B, 14C, 14D Water supply pump recirculation valve 15 Reactor water level meter 16 Water supply flow meter 17 Main steam flow meter 20 Water supply control device 24 Gain element 27 Main Water Level Controller 28A, 28B Turbine Drive Pump Operator 29A, 29B Motor Drive Pump Operator 31 Memory Circuit 33 Water Supply Flow Rate Correction Circuit 34 Adder 331 Gain Element 332 Integrator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸気発生器と、この蒸気発生器に給水す
る複数の給水ポンプと、これらの給水ポンプに設けられ
た再循環弁を有する蒸気発生プラントの水位を目標値に
制御する給水制御装置において、前記蒸気発生器の水位
検出値に基づいて前記給水ポンプの給水流量を制御する
主制御系と、前記給水ポンプの切替開始時に設定する目
標給水流量と前記再循環弁の開閉により変動する給水流
量を比較して給水流量変化量を求め、この給水流量変化
量に基づいて補正量を演算する補正制御系を有し、この
補正制御系の補正量を前記主制御系による給水流量に加
算することを特徴とする蒸気発生プラントの給水制御装
置。
1. A water supply controller for controlling the water level of a steam generating plant to a target value, which has a steam generator, a plurality of water supply pumps for supplying water to the steam generator, and a recirculation valve provided in these water supply pumps. In the main control system for controlling the water supply flow rate of the water supply pump based on the water level detection value of the steam generator, the target water supply flow rate set at the start of switching of the water supply pump, and the water supply that fluctuates by opening and closing the recirculation valve. There is a correction control system that calculates the amount of change in the water supply flow rate by comparing the flow rates and calculates a correction amount based on this amount of change in the water supply flow rate, and adds the correction amount of this correction control system to the amount of water supply by the main control system. A water supply control device for a steam generating plant, characterized in that
【請求項2】 請求項1において、補正制御系は、給水
流量を検出する手段と、給水ポンプの切替開始時に目標
給水流量を設定する手段と、再循環弁の開閉により変動
する給水流量と前記目標給水流量を比較する手段と、前
記比較して求めた給水流量変化量に基づいて給水流量補
正量を演算する手段と、前記給水流量補正量を加算する
手段を備えることを特徴とする蒸気発生プラントの給水
制御装置。
2. A correction control system according to claim 1, wherein the correction control system detects a feed water flow rate, a means for setting a target water feed flow rate at the start of switching of the water feed pump, a feed water flow rate which fluctuates by opening and closing a recirculation valve, and Steam generation comprising means for comparing target water supply flow rates, means for calculating a water supply flow rate correction amount based on the water supply flow rate change amount obtained by the comparison, and means for adding the water supply flow rate correction amount Water supply control device for plant.
【請求項3】 請求項2において、給水流量の検出値を
記憶する手段を設け、給水ポンプ切替開始時の給水流量
検出値を目標給水流量とすることを特徴とする蒸気発生
プラントの給水制御装置。
3. The water supply control apparatus for a steam generating plant according to claim 2, further comprising means for storing the detected value of the water supply flow rate, wherein the detected value of the water supply flow rate at the start of switching the water supply pump is set as the target water supply flow rate. .
【請求項4】 請求項2において、給水流量補正量を演
算する手段は、定数あるいは給水流量変動に対する可変
機能を有するゲイン要素と、積分時定数を設定する積分
要素からなることを特徴とする蒸気発生プラントの給水
制御装置。
4. The steam according to claim 2, wherein the means for calculating the feed water flow rate correction amount comprises a constant or a gain element having a variable function for fluctuations in the feed water flow rate, and an integration element for setting an integration time constant. Water supply control device for generating plant.
【請求項5】 蒸気発生器と、この蒸気発生器に給水す
る複数の給水ポンプと、これらの給水ポンプに設けられ
た再循環弁を有する蒸気発生プラントの水位を目標値に
制御する給水制御装置において、前記蒸気発生器の水位
検出値に基づいて前記給水ポンプの給水流量を制御する
主制御系と、給水ポンプの切替開始時、スイッチ手段を
オフにし、この時の給水流量信号を記憶回路に記憶し、
目標給水流量とすると共に、給水ポンプ切替中、前記目
標給水流量と前記再循環弁の開閉により変動する給水流
量信号を比較し、給水流量変化量を求め、この給水流量
変化量を給水流量補正回路に入力して給水流量補正信号
を演算により求める補正制御系を設け、この補正制御系
の給水流量補正信号を前記主制御系の給水流量制御指令
に加算することを特徴とする蒸気発生プラントの給水制
御装置。
5. A water supply controller for controlling the water level of a steam generating plant to a target value, which has a steam generator, a plurality of water supply pumps for supplying water to the steam generator, and a recirculation valve provided in these water supply pumps. In the main control system for controlling the feed water flow rate of the water feed pump based on the water level detection value of the steam generator, the switch means is turned off at the start of switching of the water feed pump, and the feed water flow rate signal at this time is stored in the memory circuit. Remember
While setting the target water supply flow rate, while the water supply pump is being switched, the target water supply flow rate and the water supply flow rate signal that fluctuates due to opening and closing of the recirculation valve are compared to obtain the water supply flow rate change amount, and this water supply flow rate change amount is used as the water supply flow rate correction circuit. A correction control system for calculating the feed water flow rate correction signal by inputting to the water supply flow rate control signal of the main control system is added to the feed water flow rate correction signal of the correction control system. Control device.
JP25815995A 1995-09-11 1995-09-11 Feed water controller for steam generating plant Pending JPH0979508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25815995A JPH0979508A (en) 1995-09-11 1995-09-11 Feed water controller for steam generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25815995A JPH0979508A (en) 1995-09-11 1995-09-11 Feed water controller for steam generating plant

Publications (1)

Publication Number Publication Date
JPH0979508A true JPH0979508A (en) 1997-03-28

Family

ID=17316360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25815995A Pending JPH0979508A (en) 1995-09-11 1995-09-11 Feed water controller for steam generating plant

Country Status (1)

Country Link
JP (1) JPH0979508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696945A (en) * 2014-12-30 2015-06-10 广东电网有限责任公司电力科学研究院 Feed water control method realizing rapid adaptation to feed water temperature change
CN104864385A (en) * 2014-02-24 2015-08-26 北京国电智深控制技术有限公司 Method and device for calculating feed water flow instruction of supercritical unit
JP2022167557A (en) * 2021-04-23 2022-11-04 株式会社本間組 Water injection control device for caisson

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864385A (en) * 2014-02-24 2015-08-26 北京国电智深控制技术有限公司 Method and device for calculating feed water flow instruction of supercritical unit
CN104864385B (en) * 2014-02-24 2017-05-24 北京国电智深控制技术有限公司 Method and device for calculating feed water flow instruction of supercritical unit
CN104696945A (en) * 2014-12-30 2015-06-10 广东电网有限责任公司电力科学研究院 Feed water control method realizing rapid adaptation to feed water temperature change
CN104696945B (en) * 2014-12-30 2016-07-06 广东电网有限责任公司电力科学研究院 Rapidly adapt to the water supply control method of feed temperature change
JP2022167557A (en) * 2021-04-23 2022-11-04 株式会社本間組 Water injection control device for caisson

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
JPS6124601B2 (en)
US4651530A (en) Method and apparatus for feed-water control in a steam generating plant
JP4982507B2 (en) Turbine ground seal steam temperature reduction control device and plant control method in steam turbine power generation facility
JP4734184B2 (en) Steam turbine control device and steam turbine control method
JPH0979508A (en) Feed water controller for steam generating plant
JP2918743B2 (en) Steam cycle controller
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JP3469685B2 (en) Control method and control device for feed water pump turbine
JP2677616B2 (en) Condenser vacuum degree control device
WO2022118854A1 (en) Power generation system, control method for same, and program
JP2549195B2 (en) Auxiliary steam supply method for combined cycle power plant
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JP2585204B2 (en) Feed water pump recirculation valve controller
JPH11336509A (en) Governing valve control system in introducing cooled steam of steam turbine
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPH06281106A (en) Water supplying control device of steam generating plant
JP2023032523A (en) Start-up control device and start-up control method for combined cycle power generation plant
JPS60200004A (en) Method of controlling feed pump
JPH01266403A (en) Controlling dry-up system for supply water heater and its control device
JPH03123909A (en) Abnormality diagnostic controller
JP2001004790A (en) Water level controller of steam generating plant
JPH10111392A (en) Controller for drain pump-up system
JPS6148879B2 (en)
JPS6356441B2 (en)