JPH03123909A - Abnormality diagnostic controller - Google Patents

Abnormality diagnostic controller

Info

Publication number
JPH03123909A
JPH03123909A JP1260053A JP26005389A JPH03123909A JP H03123909 A JPH03123909 A JP H03123909A JP 1260053 A JP1260053 A JP 1260053A JP 26005389 A JP26005389 A JP 26005389A JP H03123909 A JPH03123909 A JP H03123909A
Authority
JP
Japan
Prior art keywords
water supply
control system
flow rate
amplitude
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1260053A
Other languages
Japanese (ja)
Other versions
JP2539514B2 (en
Inventor
Kazumichi Inahashi
稲橋 和通
Eiichi Kaminaga
神永 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP1260053A priority Critical patent/JP2539514B2/en
Publication of JPH03123909A publication Critical patent/JPH03123909A/en
Application granted granted Critical
Publication of JP2539514B2 publication Critical patent/JP2539514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

PURPOSE:To previously prevent a unit trip by continuously supervising the change of amplitude in the hunting state of a feedback signal in a feedback control system, judging it to be a divergent hunting state when amplitude is in an increase direction by more than a specified value, giving an alarm and saving the control system to a safe direction such as a manual mode. CONSTITUTION:A turbine at the time of loading, the switching of motor driving/ water supply pumps 7 and 8 and fluctuation of water supply when recirculation pumps 26-28 are closed influence the control, for example. Namely, the sudden change of a sawtooth water supply quantity 20 when the valves are opened comes to the disturbance of the feedback control system but it is normally arranged at once. If a plus error occurs owing to the other cause and if the correction of an opening command 21 and the actual mechanical operation timing of the valves are shifted when the valves 26-28 are opened, the water supply quantity 20 becomes divergent hunting state, and the unit may trip. Thus, an abnormality diagnostic circuit 29 where the water supply quantity 20 being the feedback signal of the control system is set to be input is added and the alarm is generated at an initial stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は帰環制御系からなる自動制御装置の異常診断装
置に係り、特に火力発電所等における蒸気発生器に用い
る給水制御装置の最適な異常診断装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an abnormality diagnosis device for an automatic control device consisting of a return control system, and in particular to an optimal system for water supply control devices used in steam generators in thermal power plants, etc. The present invention relates to an abnormality diagnosis device.

〔従来の技術〕[Conventional technology]

従来の装置は特許公報昭63−685号に記載のように
蒸気発生装置(例えばボイラ)の給水ポンプはタービン
駆動及びモータ駆動のごとく異なる駆動方式の複数のポ
ンプで構成されている。蒸気発生装置の出力が少ないと
きには、主にモータ駆動給水ポンプ(M−RFP)が使
用され、出力上昇過程でタービン駆動給水ポンプ(T−
BFP)に切替える。従来、この切替操作は運転員の手
動操作によりなされていた。タービン駆動給水ポンプは
、タービン回転数によって給水ポンプ流量を制御する。
In a conventional system, as described in Japanese Patent Publication No. 63-685, a water supply pump for a steam generator (for example, a boiler) is comprised of a plurality of pumps with different drive systems, such as turbine drive and motor drive. When the output of the steam generator is low, the motor-driven feed water pump (M-RFP) is mainly used, and in the process of increasing the output, the turbine-driven feed water pump (T-RFP) is used.
BFP). Conventionally, this switching operation was performed manually by an operator. A turbine-driven water pump controls the water pump flow rate based on the turbine rotation speed.

このタービン回転数の上昇率を大きくすると、急激に流
量が増加して、ボイラ給水流量が増加する。ボイラでは
、ボイラ・タービン主機保護上の要求から給水の変動が
厳しく制限されており、偏差が規定値以上になるとボイ
ラ・タービンがトリップするインターロックが働く。ま
た、給水低下に対してもボイラの空焚き保護上の要求か
らボイラトリップのインターロックが働く、シたかって
、給水ポンプの切替操作は、経験をつんだ運転員によっ
て注意深く、長時間をかけておこなわれていた。
When the rate of increase in the turbine rotational speed is increased, the flow rate increases rapidly and the boiler feed water flow rate increases. Fluctuations in water supply to boilers are strictly limited due to requirements for protecting the main engine of the boiler and turbine, and an interlock is activated that trips the boiler and turbine when the deviation exceeds a specified value. In addition, the boiler trip interlock is activated to protect the boiler from running dry when the water supply drops.However, the switching operation of the water supply pump must be performed carefully and over a long period of time by an experienced operator. It was being done.

これに対して、近年、給水ポンプを入手によらが自動的
に切替える装置が提案されており、例えば第2図に示す
方式がある。
In response to this, in recent years, devices have been proposed that automatically switch the water supply pump depending on availability, such as the system shown in FIG. 2.

ボイラ1で発生した蒸気は主蒸気配管2を通りタービン
3に導入され、図示しない発電機を駆動したのち、復水
器4に送られ水に戻される。この復水は、低圧復水ポン
プ5、高圧復水ポンプ6により昇圧され、タービン駆動
給水ポンプ(T−BFP)7およびモータ駆動給水ポン
プ(M−BFP)8により更に高圧され、給水管10を
介してボイラ1に給水される。通常、給水ポンプには、
タービン駆動給水ポンプ2台とモータ駆動給水ポンプ1
台の計3台が用いられる。タービン始動時においては、
モータ駆動給水ポンプ8が運転され、タービンが20%
出力出力上なった時点でタービン駆動給水ポンプ7が運
転される。加算器12では、ボイラの給水流量が設定値
から減算される。この出力は、主制御器13の制御信号
となる。始動開始時には、制御器16をオンに制御して
いるので、主制御器13による制御は、給水調整弁9の
みとなる。前述のように発電機出力が増大すると、給水
制御を給水調整弁9からタービン制御器に移してから、
制御器18をオフとする。
Steam generated in the boiler 1 is introduced into the turbine 3 through the main steam pipe 2, drives a generator (not shown), and is then sent to the condenser 4 and returned to water. The pressure of this condensate is increased by a low-pressure condensate pump 5 and a high-pressure condensate pump 6, and the pressure is further increased by a turbine-driven water pump (T-BFP) 7 and a motor-driven water pump (M-BFP) 8, and then the water supply pipe 10 is Water is supplied to the boiler 1 through the boiler. Typically, water pumps include
2 turbine-driven water pumps and 1 motor-driven water pump
A total of three machines will be used. When starting the turbine,
The motor-driven water pump 8 is operated and the turbine is at 20%
The turbine-driven water supply pump 7 is operated when the output power is increased. In the adder 12, the boiler feed water flow rate is subtracted from the set value. This output becomes a control signal for the main controller 13. At the start of startup, the controller 16 is turned on, so the main controller 13 only controls the water supply regulating valve 9. As mentioned above, when the generator output increases, the water supply control is transferred from the water supply regulating valve 9 to the turbine controller, and then
Turn off the controller 18.

そこで、主制御器13の出力はタービン制御に送られ、
タービン駆動給水ポンプ7用のタービン蒸気量を制御す
る。
Therefore, the output of the main controller 13 is sent to the turbine control,
Controls the amount of turbine steam for the turbine-driven water supply pump 7.

さらに、ボイラ給水制御系の詳細システム構成を第3図
に示す。タービン駆動給水ポンプ7、モータ駆動給水ポ
ンプ8には、ポンプ保護の目的から最低流量の給水を流
す必要があり、再循環弁26〜28がポンプ吐出側に取
付けられている。
Furthermore, the detailed system configuration of the boiler water supply control system is shown in FIG. The turbine-driven water pump 7 and the motor-driven water pump 8 must be supplied with a minimum flow rate of water for the purpose of protecting the pumps, and recirculation valves 26 to 28 are installed on the pump discharge side.

この再循環弁はオンオフ弁でポンプの吐出流量の増大に
伴い順次閉し、また減少に伴い順次閉するが、開閉時に
は、給水流量の変動となって現れる。
This recirculation valve is an on-off valve that closes sequentially as the discharge flow rate of the pump increases, and closes sequentially as the discharge flow rate decreases, but when it opens and closes, it appears as a fluctuation in the water supply flow rate.

従って給水制御系では変動を少なくするために、開閉指
令と同時に再循環弁の分流骨の開度分−Xa%だけ開度
指令21を補正している。
Therefore, in order to reduce fluctuations in the water supply control system, the opening command 21 is corrected by the opening of the recirculation valve branch bone - Xa% at the same time as the opening/closing command.

第4図に負荷上げ時のA−Cの給水ポンプの切替とその
時の再循環弁の開閉時の給水流量への影響を示す。この
開時の鋸状の給水流量の突変は帰環制御系の外乱となる
が1通常はすぐに整定する。
Figure 4 shows the switching of the A-C water supply pumps when the load is increased and the effect on the water supply flow rate when the recirculation valve is opened and closed at that time. This sawtooth sudden change in the water supply flow rate when the valve is opened becomes a disturbance to the return control system, but normally it settles down quickly.

しかし、開時に■偏差が出ていたり、開度指令21の補
正と実際の再循環弁の機械的な動作タイミングがずれた
りすると、給水流量の突変が発散形のハンチングになり
ユニットリップになる場合がある。
However, if there is a deviation when opening, or if there is a difference between the correction of the opening command 21 and the actual mechanical operation timing of the recirculation valve, the sudden change in the water supply flow rate will result in divergent hunting, resulting in a unit rip. There are cases.

第5図は、給水流量20が再循環弁の閉時T。FIG. 5 shows the water supply flow rate 20 at T when the recirculation valve is closed.

から突変して整定する通常の変動を示す。It shows a normal fluctuation that suddenly changes from then settles.

第6図は、給水流量20が再循環弁の閉時T。FIG. 6 shows the water supply flow rate 20 at T when the recirculation valve is closed.

から突変し1発散しながらハンチングを続け、Ttのタ
イミングでボイラの空焚き保護流量以下のユニットトリ
ップレベル以下になり、ユニットトリップする変動を示
す。
There is a sudden change from then on, and hunting continues with one divergence, and at the timing of Tt, the flow rate drops below the unit trip level, which is below the boiler's dry firing protection flow rate, indicating a unit trip change.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、帰環制御系の外乱に対して、系が発散
形のハンチング状態になった場合でも、この異常を早期
に検出し系を整定状態に戻し、ユニットトリップを未然
に防止する点についての配慮がされておらず、ユニット
トリップに至る問題があった。
The above conventional technology has the advantage that even if the system enters a divergent hunting state due to a disturbance in the return control system, this abnormality is detected early, the system is returned to a stable state, and unit trips are prevented. There was no consideration given to this, and there were problems that led to unit trips.

本発明は、帰環制御系の発散形のハンチング状態を早期
に検出し、異常診断することにより制御系を安全方向に
退避、ユニットトリップを未然に防止することを目的と
する。
An object of the present invention is to detect a divergent hunting state in a return control system at an early stage and diagnose the abnormality, thereby evacuating the control system in a safe direction and preventing unit tripping.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、帰環制御系の帰環信号のハ
ンチング状態における振幅の変化を連続監視し、振幅が
規定値以上に増加方向にあれが発散形のハンチング状態
にあると診断し、警報を発するとともに、制御系を安全
方向(手動モード等)に退避、ユニットトリップを未然
に防止するようにしたものである。
In order to achieve the above object, the changes in the amplitude of the return signal of the return control system in the hunting state are continuously monitored, and if the amplitude increases beyond a specified value, it is diagnosed as a divergent hunting state. In addition to issuing a warning, the control system is evacuated to a safe direction (manual mode, etc.) to prevent unit tripping.

〔作用〕[Effect]

帰環制御系の帰環信号のハンチング状態に波形の変化を
連続監視し、第1波の最大値ホールド回路のホールド値
と最少値ホールド回路から第一波振幅を求め、第2波の
最大値ホールド回路と最少値ホールド回路から第2波振
幅を求め、さらに第3波の振幅については第1波の振幅
検出回路のホールド値をリセツトシ検出するため、連続
的に前回の振幅と今回の振幅が分かり、振幅の変化が連
続監視できる。それによって、振幅の変化が通常の値以
上に大きくなって場合は、帰環信号が発散形のハンチン
グ状態にあることが診断できるので、警報を発し、制御
系を自動帰環制御モードから手動モード等安全方向へ退
避、ユニットトリップを未然に防止することができる。
Continuously monitor the waveform change in the hunting state of the return signal of the return control system, find the first wave amplitude from the hold value of the first wave maximum value hold circuit and the minimum value hold circuit, and calculate the maximum value of the second wave. The second wave amplitude is obtained from the hold circuit and the minimum value hold circuit, and as for the third wave amplitude, the hold value of the first wave amplitude detection circuit is reset and detected, so the previous amplitude and current amplitude are continuously detected. Understood, changes in amplitude can be continuously monitored. As a result, if the change in amplitude becomes larger than the normal value, it can be diagnosed that the return signal is in a divergent hunting state, so an alarm is issued and the control system is changed from automatic return control mode to manual mode. It is possible to evacuate in a safe direction and prevent unit tripping.

代案として、制御偏差が通常の値以上に大きくなった場
合でも制御ループに異常があり帰環信号が発散形のハン
チング状態等にあることは推定できるが、ハンチングの
初期状態における診断は難しく、検出が遅れるケースが
多い。
As an alternative, even if the control deviation becomes larger than the normal value, it can be assumed that there is an abnormality in the control loop and the return signal is in a divergent hunting state, but it is difficult to diagnose in the initial state of hunting, and detection is difficult. is often delayed.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明の異常診断回路の一例を示すブロック図
であり、第3図の本発明の一実施例である給水ポンプ自
動切換装置の異常診断回路19に相当する。第3図は従
来技術の項で説明した構成及び動作であるが、特に負荷
上げ時のA−Cのタービン及びモータ駆動給水ポンプ7
.8の切替えとその時の再循環弁26〜28の開閉時の
給水流量20の変動が制御上の課題となりその影響を第
4図に示す。この開時の鋸状の給水流量20の突変は帰
環制御系の外乱となるが、通常はすぐに整定する。しか
し、再循環弁26〜28の閉時に別の要因で■偏差が出
ていたり、開度指令21の補正17と実際の再循環弁2
6〜28の機械的な動作タイミングがずれたりすると、
給水流量20が発散型のハンチングになりユニット1−
リップになる場合がある。そこで制御系の帰環信号であ
る給水流量20を入力とする異常診断回路19を追加し
、発散形ハンチングの初期の段階で、異常を診断し警報
をし、制御系を自動帰環制御モードから手動モード等安
全方向へ退避、ユニットトリップを未然に防止するよう
にした。
FIG. 1 is a block diagram showing an example of the abnormality diagnosis circuit of the present invention, and corresponds to the abnormality diagnosis circuit 19 of the water supply pump automatic switching device which is an embodiment of the present invention shown in FIG. FIG. 3 shows the configuration and operation explained in the section of the prior art, especially the A-C turbine and motor-driven water supply pump 7 when the load is increased.
.. 8 and the fluctuations in the water supply flow rate 20 when the recirculation valves 26 to 28 are opened and closed pose a control problem, and the effects thereof are shown in FIG. This sudden change in the sawtooth water supply flow rate 20 at the time of opening causes a disturbance in the return control system, but normally it settles down quickly. However, when the recirculation valves 26 to 28 are closed, a deviation occurs due to another factor, and the correction 17 of the opening command 21 and the actual recirculation valve 2
If the mechanical operation timing of 6 to 28 is off,
The water supply flow rate 20 becomes divergent type hunting, and unit 1-
It may become a lip. Therefore, we added an abnormality diagnosis circuit 19 that inputs the water supply flow rate 20, which is the return signal of the control system, to diagnose the abnormality and issue an alarm at the initial stage of divergent hunting, and to switch the control system from automatic return control mode. Evacuation in a safe direction, such as manual mode, prevents unit tripping.

第1図の異常診断回路は、給水流量20を入力とし、第
7図の如く変動する給水流量20の第1(,3,5・・
・)波の最大値OA、最少値OAを高信号選択器52.
低信号選択器54で、第2(。
The abnormality diagnosis circuit shown in FIG. 1 receives the water supply flow rate 20 as an input, and the first (, 3, 5, . . .
・) The maximum value OA and minimum value OA of the wave are set by the high signal selector 52.
The low signal selector 54 selects the second (.

4.6・・・)波の最大値OB、最少値C)Bを高信号
選択器56、低信号選択器58で、ホールドし、第1 
(3,5,・・・)波の振幅H^、第2(4,6゜・)
波の振幅Haを演算器59.63で計算、時その値を記
憶器60.64に保持し、第1波→第2波への振幅の増
加を偏差モニター61で連続監視し1通常の変動範囲以
上であれば、異常で発散形のハンチングの状態にあると
判断し異常出力89を出力する。第2波→第3波への振
幅の増加は第1波の波高値を演算する回路を1次のステ
ップで使用することにより第3波の振幅Hcを計算し記
憶器60に保持することにより、その振幅の増加を偏差
モニター62で同様に連続監視する。
4.6...) The maximum value OB and minimum value C)B of the wave are held by the high signal selector 56 and the low signal selector 58, and the first
(3,5,...) wave amplitude H^, second (4,6°・)
The amplitude Ha of the wave is calculated by the calculator 59.63, the value is held in the memory 60.64, and the increase in amplitude from the first wave to the second wave is continuously monitored by the deviation monitor 61. If it is above the range, it is determined that there is an abnormal and divergent hunting state, and an abnormal output 89 is output. The increase in the amplitude from the second wave to the third wave is achieved by calculating the amplitude Hc of the third wave by using a circuit that calculates the peak value of the first wave in the first step and storing it in the memory 60. , the increase in the amplitude is similarly continuously monitored by the deviation monitor 62.

以上、第3波→第4波への振幅の増加等も同様に連続監
視できる。
As described above, it is possible to continuously monitor the increase in amplitude from the third wave to the fourth wave, etc. in the same way.

その結果、第7図に示すように給水流量20が再循環弁
の閉時Toから突変し、発散しながらハンチングを続け
、従来のように、本発明の異常診断回路19がない場合
はTTのタイミングでボイラの空焚き保護流量以下のユ
ニットトリップ以下になり、ユニットトリップするが、
本発明の異常診断回路19がある場合はT2のタイミン
グで、第1波→第2波への振幅の増加が通常の値以上に
なったことにより早期異常出力し、警報を発するととも
に、制御系を自動帰環制御モードから手動モード等安全
方向へ退避するため、ユニットトリップを未然に防止す
ることができる。
As a result, as shown in FIG. 7, the water supply flow rate 20 suddenly changes from the time To when the recirculation valve is closed and continues to hunt while diverging. At the timing of , the boiler's dry firing protection flow rate becomes lower than the unit trip, and the unit trips, but
If the abnormality diagnosis circuit 19 of the present invention is provided, at timing T2, when the increase in amplitude from the first wave to the second wave exceeds the normal value, an early abnormality is output, an alarm is issued, and the control system Since the unit is evacuated from the automatic return control mode to a safe direction such as manual mode, unit trip can be prevented.

以上の実施例は給水ポンプ自動切替装置のケースについ
ての説明であるが、本発明のキークレムにもあるように
、帰環制御系全般について、振幅の増加からループの異
常診断を早期にすることができ、同様の効果がある。
The above example is an explanation of the case of an automatic water pump switching device, but as stated in the key claim of the present invention, it is possible to diagnose loop abnormalities early from the increase in amplitude for the loop return control system in general. You can do it and have the same effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、帰環制御系に外乱が加わった時の発散
形のハンチング状態を早期に診断することができるので
、制御系を早期に安全方向に退避できる効果がある。
According to the present invention, since a divergent hunting state when a disturbance is applied to the return control system can be diagnosed at an early stage, there is an effect that the control system can be evacuated in a safe direction at an early stage.

また、給水ポンプ自動切替装置に適用した場合早期に異
常を検出し制御系を自動帰環制御モードから手動モード
等安全方向へ退避することができるため、ユニットトリ
ップを未然に防止することができる。
Furthermore, when applied to an automatic water pump switching device, it is possible to detect an abnormality early and move the control system from the automatic return control mode to a safe direction such as manual mode, thereby preventing unit tripping.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の異常診断回路のロジック図、第2図は
火力発電所の水蒸気系統と給水ポンプ自動切替装置のブ
ロック図、第3図は本発明の給水ポンプ切替詳細ブロッ
ク図、第4図は給水切替を示す図、第5図は通常の再循
環弁閉時の給水流量変動を示す図、第6図は異常時の再
循環弁閉時の給水流量変動を示す図、第7図は本発明の
異常時の再循環弁閉時の給水流量変動を示す図である。 19・・・異常診断回路、20・・・給水流量、52・
・・高信号選択器、54・・・低信号選択器、89・・
・異常出第 図 第 3 第4図 隣間を 昂 第 図
Fig. 1 is a logic diagram of the abnormality diagnosis circuit of the present invention, Fig. 2 is a block diagram of the steam system and feed water pump automatic switching device of a thermal power plant, Fig. 3 is a detailed block diagram of the water pump switching of the present invention, and Fig. 4 The figure shows water supply switching, Figure 5 shows the water supply flow rate fluctuation when the recirculation valve is normally closed, Figure 6 shows the water supply flow rate fluctuation when the recirculation valve is closed in an abnormal situation, and Figure 7 FIG. 2 is a diagram illustrating fluctuations in the water supply flow rate when the recirculation valve is closed during an abnormality according to the present invention. 19... Abnormality diagnosis circuit, 20... Water supply flow rate, 52...
...High signal selector, 54...Low signal selector, 89...
・Abnormal occurrence chart No. 3 No. 4 next door diagram

Claims (1)

【特許請求の範囲】 1、帰環制御系において、ループの外乱による制御系の
発散形ハンチング状態を、帰環信号のハンチング振幅の
増加により検出し異常を出力することを特徴とする異常
診断制御装置。 2、蒸気発生器に復水を供給するためのモータ駆動給水
ポンプA及びタービン駆動給水ポンプと、前記蒸気発生
器側の流量供給要求値と前記給水ポンプ吐出流量とによ
り給水流量を調節する制御装置において、請求項1記載
の異常診断制御装置を備えたことを特徴とするボイラ給
水制御装置。
[Claims] 1. Abnormality diagnostic control in a loop return control system, characterized in that a divergent hunting state of the control system due to loop disturbance is detected by an increase in the hunting amplitude of a loop return signal, and an abnormality is output. Device. 2. A motor-driven water supply pump A and a turbine-driven water supply pump for supplying condensate to the steam generator, and a control device that adjusts the water supply flow rate based on the flow rate supply request value on the steam generator side and the water supply pump discharge flow rate. A boiler feed water control device comprising the abnormality diagnosis control device according to claim 1.
JP1260053A 1989-10-06 1989-10-06 Boiler water supply control device Expired - Lifetime JP2539514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260053A JP2539514B2 (en) 1989-10-06 1989-10-06 Boiler water supply control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260053A JP2539514B2 (en) 1989-10-06 1989-10-06 Boiler water supply control device

Publications (2)

Publication Number Publication Date
JPH03123909A true JPH03123909A (en) 1991-05-27
JP2539514B2 JP2539514B2 (en) 1996-10-02

Family

ID=17342652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260053A Expired - Lifetime JP2539514B2 (en) 1989-10-06 1989-10-06 Boiler water supply control device

Country Status (1)

Country Link
JP (1) JP2539514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027907A (en) * 1999-05-18 2001-01-30 General Electric Co <Ge> Method for predicting abnormal state via intelligent electronic device
JP2014005955A (en) * 2012-06-21 2014-01-16 Toshiba Corp Condensate feed water control apparatus and condensate feed cycle system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168106A (en) * 1982-03-30 1983-10-04 Fuji Electric Co Ltd System for discriminating instability of process control
JPS61150013A (en) * 1984-12-25 1986-07-08 Toshiba Corp Hunting detector
JPH0164013U (en) * 1987-10-16 1989-04-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168106A (en) * 1982-03-30 1983-10-04 Fuji Electric Co Ltd System for discriminating instability of process control
JPS61150013A (en) * 1984-12-25 1986-07-08 Toshiba Corp Hunting detector
JPH0164013U (en) * 1987-10-16 1989-04-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027907A (en) * 1999-05-18 2001-01-30 General Electric Co <Ge> Method for predicting abnormal state via intelligent electronic device
JP2014005955A (en) * 2012-06-21 2014-01-16 Toshiba Corp Condensate feed water control apparatus and condensate feed cycle system

Also Published As

Publication number Publication date
JP2539514B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
RU2168044C2 (en) Method of and device for preventing deviation of gas turbine parameters (versions)
JP3658415B2 (en) Gas turbine equipment
CA1101104A (en) System for multi-mode control of a boiler feedpump turbine
JPH03123909A (en) Abnormality diagnostic controller
JP2509612B2 (en) Bypass controller
JP2680481B2 (en) Combined cycle controller
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPS59208106A (en) Exhaust chamber temperature control device of steam turbine
JP2585204B2 (en) Feed water pump recirculation valve controller
JPS6139046Y2 (en)
JP3548644B2 (en) Turbine-driven feedwater pump controller
JP2509631B2 (en) Pump controller
JP2613225B2 (en) Turbine protection device
JPH09145894A (en) Reactor feed water control device for boiling water nuclear power plant
JP2519267B2 (en) Load runback control method for boiler plant
JPH05312303A (en) Water supply control device
JPH0979508A (en) Feed water controller for steam generating plant
JPH05195713A (en) Turbine starting device
JPS63117106A (en) Stoppage controlling method and device for turbine plant
JPH06337103A (en) Controller for water supply flow rate in water supply pump
JPH0331962B2 (en)
JPH06341607A (en) Water supply control device
JPH07293807A (en) Method for controlling water feeding in boiler of multi-shaft type combined facility and water feeding control device
JPH0416601B2 (en)
JPS6119833B2 (en)