JPH05312303A - Water supply control device - Google Patents

Water supply control device

Info

Publication number
JPH05312303A
JPH05312303A JP11761792A JP11761792A JPH05312303A JP H05312303 A JPH05312303 A JP H05312303A JP 11761792 A JP11761792 A JP 11761792A JP 11761792 A JP11761792 A JP 11761792A JP H05312303 A JPH05312303 A JP H05312303A
Authority
JP
Japan
Prior art keywords
water supply
supply pump
failure
signal
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11761792A
Other languages
Japanese (ja)
Other versions
JP2811254B2 (en
Inventor
Akira Akita
彰 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4117617A priority Critical patent/JP2811254B2/en
Publication of JPH05312303A publication Critical patent/JPH05312303A/en
Application granted granted Critical
Publication of JP2811254B2 publication Critical patent/JP2811254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a water supply control device having means capable of performing an automatic energization of a preliminary water supplying pump and capable of positively preventing a trip of a plant even in the case that a part of an internal circuit of the water supply control device itself such as a water supplying pump control signal generating circuit and the like CONSTITUTION:A trouble discriminating means 23A automatically energizes water supplying pumps 16c and 16d driven by an electrical motor as a trouble signal 22a of a water supplying pump control signal generating circuit 12a is outputted, thereafter closes a steam stop valve 24a corresponding to the troubled water supplying pump control signal generating circuit 12a and causes a water supplying pump 16a driven by a turbine to be stopped. With such an arrangement, even in the case of trouble of the water supplying control device, the operation can be continued without stopping the plant or reducing its output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電プラントや原
子力発電プラント等の水を用いるプラントにおける給水
制御装置に係り、特に、給水ポンプを制御する給水制御
装置内の制御信号発生回路等が故障した場合でも、プラ
ントの停止を招くことの無いように、給水ポンプを切換
え運用するに好適な給水制御手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply control device in a plant using water such as a thermal power plant or a nuclear power plant, and particularly to a control signal generating circuit or the like in the water supply control device for controlling a water supply pump. Even if it does, it relates to a water supply control means suitable for switching and operating the water supply pump so as not to stop the plant.

【0002】[0002]

【従来の技術】従来は、例えば特開昭62−84204
号において、プラントのタービン駆動給水ポンプの駆動
用タービンの回転数信号に異常がある場合、タービン駆
動給水ポンプをトリップさせる制御手段を備えていた。
2. Description of the Related Art Conventionally, for example, JP-A-62-84204
In the No. 1, the control means for tripping the turbine-driven water supply pump is provided when the rotation speed signal of the drive turbine of the turbine-driven water supply pump of the plant is abnormal.

【0003】しかし、トリップさせた後の回復作業の煩
雑さや、設備の稼働率の低下等を考えると、トリップを
回避し、安全を確保しつつ運転を継続できる方が望まし
い。
However, considering the complexity of the recovery work after the trip and the reduction of the operating rate of the facility, it is desirable that the trip be avoided and the operation be continued while ensuring the safety.

【0004】[0004]

【発明が解決しようとする課題】そこで、例えば特開昭
62−98102号は、タービン駆動給水ポンプが故障
した時のみ、予備の電動機駆動給水ポンプを自動的に起
動させ、プラントの運転を継続する方式を提案してい
る。
Therefore, for example, in Japanese Unexamined Patent Publication No. 62-98102, only when a turbine driven feed water pump fails, a backup electric motor driven feed water pump is automatically started to continue the plant operation. Proposing a method.

【0005】しかし、特開昭62−98102号の給水
制御装置は、タービン駆動給水ポンプが故障した時の
み、予備の電動機駆動給水ポンプを自動的に起動させる
が、給水ポンプ駆動用タービンの蒸気加減弁駆動装置ま
たは給水ポンプ吐出側に配置された給水調整弁への指令
信号を作り出している給水制御装置内の給水ポンプ制御
信号発生回路自体が故障した時は、予備の電動機駆動給
水ポンプを自動的には起動できないため、給水流量が減
少し、例えば原子炉の水位が低下し、プラントが停止す
る問題があった。
However, the water supply control device of Japanese Patent Laid-Open No. 62-98102 automatically activates the backup electric motor driven water supply pump only when the turbine driven water supply pump fails. When the water supply pump control signal generation circuit in the water supply control device that generates the command signal to the water supply control valve located on the discharge side of the valve drive device or the water supply pump fails, the backup motor drive water supply pump is automatically activated. Since there is no start-up, there is a problem that the feed water flow rate decreases, for example, the water level of the reactor drops and the plant shuts down.

【0006】一方、特開昭57−179505号は、水
位を制御する主ループ制御系と流量を制御するマイナー
ループ制御系とからなる2ループ制御系において、主ル
ープ制御系のみの待機系を設け、通常使用されている2
ループ制御系が異常になったときは、待機系に切換える
方式を提案している。
On the other hand, Japanese Patent Laid-Open No. 57-179505 discloses a two-loop control system consisting of a main loop control system for controlling the water level and a minor loop control system for controlling the flow rate, with a standby system for the main loop control system only. , Usually used 2
When the loop control system becomes abnormal, we propose a method to switch to the standby system.

【0007】この場合も、給水ポンプ制御信号発生回路
自体が故障した時は、自動的には待機系に切換えできな
いため、給水流量が減少し、例えば原子炉の水位が低下
し、プラントが停止する問題があった。
Also in this case, when the feed water pump control signal generating circuit itself fails, the standby system cannot be automatically switched, so that the feed water flow rate decreases, for example, the water level of the reactor decreases, and the plant stops. There was a problem.

【0008】本発明の目的は、給水ポンプ制御信号発生
回路等の給水制御装置自体の内部回路の一部が故障して
も、予備の給水ポンプを自動的に起動させ、プラントの
トリップを確実に防止できる手段を備えた給水制御装置
を提供することである。
An object of the present invention is to automatically start a backup water supply pump even if a part of an internal circuit of the water supply control device itself, such as a water supply pump control signal generation circuit, fails to ensure a trip of a plant. An object of the present invention is to provide a water supply control device provided with a preventable means.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、プラントの水位信号,給水流量信号,主
蒸気流量信号等を取り込み必要な給水量等を演算する手
段と、演算手段の出力に基づいて各給水ポンプの駆動手
段の制御量を演算しそれぞれの制御信号を出力する複数
の給水ポンプ制御信号発生手段とを含み、一部の給水ポ
ンプを待機系とし残りの給水ポンプを常用系として運転
する給水制御装置において、給水ポンプ制御信号発生手
段のいずれかの故障を検出する手段と、故障検出手段か
らの給水ポンプ制御信号発生手段の故障信号に基づいて
待機系の給水ポンプを起動させる手段とを備えた給水制
御装置を提案するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention incorporates a water level signal, a feed water flow rate signal, a main steam flow rate signal, etc. of a plant to calculate a necessary feed water quantity and the like, and a calculating means. And a plurality of water supply pump control signal generation means for calculating the control amount of the drive means of each water supply pump based on the output of each of the water supply pumps and outputting the respective control signals. In a water supply control device operating as a regular system, a means for detecting any failure of the water supply pump control signal generating means, and a water supply pump of the standby system based on the failure signal of the water supply pump control signal generating means from the failure detecting means. The present invention proposes a water supply control device provided with means for activating.

【0010】本発明は、また、上記目的を達成するため
に、プラントの水位信号,給水流量信号,主蒸気流量信
号等を取り込み必要な給水量等を演算する手段と、演算
手段の出力に基づいて各給水ポンプの駆動手段の制御量
を演算しそれぞれの制御信号を出力する複数の給水ポン
プ制御信号発生手段とを含み、一部の給水ポンプを待機
系とし残りの給水ポンプを常用系として運転する給水制
御装置において、給水ポンプ制御信号発生手段のいずれ
かの故障を検出する手段と、故障検出手段からの給水ポ
ンプ制御信号発生手段の故障信号に基づいて対応する常
用系内の給水ポンプを停止させるとともに、待機系の給
水ポンプを起動させる手段とを備えた給水制御装置を提
案するものである。
In order to achieve the above object, the present invention is based on a means for taking in a water level signal, a feed water flow rate signal, a main steam flow rate signal, etc. of a plant and computing a necessary feed water quantity, etc., and an output of the computing means. And a plurality of water supply pump control signal generating means for calculating the control amount of the drive means of each water supply pump and outputting respective control signals, and operating some water supply pumps as a standby system and the remaining water supply pumps as a regular system In the water supply control device, the means for detecting a failure of one of the water supply pump control signal generating means and the corresponding water supply pump in the service system are stopped based on the failure signal of the water supply pump control signal generating means from the failure detecting means. The present invention proposes a water supply control device including means for starting a water supply pump of a standby system.

【0011】待機系の給水ポンプを起動させる場合、故
障検出手段からの給水ポンプ制御信号発生手段の故障信
号に基づいて対応する常用系内の給水ポンプを停止さ
せ、前記故障信号およびこの停止を条件として、待機系
の給水ポンプを起動させることができる。これとは逆
に、故障検出手段からの給水ポンプ制御信号発生手段の
故障信号に基づいて待機系の給水ポンプを起動させ、前
記故障信号およびこの起動を条件として、故障した給水
ポンプ制御信号発生手段に対応する給水ポンプを停止さ
せるようにしてもよい。
When starting the water supply pump of the standby system, the corresponding water supply pump in the service system is stopped based on the failure signal of the water supply pump control signal generation means from the failure detection means, and the failure signal and this stop condition are set. As a result, the standby water supply pump can be activated. On the contrary, the standby water pump is started based on the failure signal of the water pump control signal generation means from the failure detection means, and the failed water pump control signal generation means is conditioned on the failure signal and this start. You may make it stop the water supply pump corresponding to.

【0012】いずれの場合も、給水ポンプ制御信号発生
手段の故障検出手段は、給水ポンプ制御信号発生手段の
入力および/または出力信号の変化率の大きさが所定値
を越えたとき、または、給水ポンプ制御信号発生手段の
入力信号と出力信号との偏差の大きさが所定値を越えた
とき、または、給水ポンプ制御信号発生手段の出力信号
間のそれぞれの偏差の大きさが所定値を越えたとき、故
障検出信号を出力するような手段とする。
In any case, the failure detecting means of the water supply pump control signal generating means is provided when the rate of change of the input and / or output signals of the water supply pump control signal generating means exceeds a predetermined value, or When the magnitude of the deviation between the input signal and the output signal of the pump control signal generating means exceeds a predetermined value, or the magnitude of each deviation between the output signals of the water supply pump control signal generating means exceeds the predetermined value. At this time, a means for outputting a failure detection signal is used.

【0013】[0013]

【作用】本発明において、給水制御装置は、この給水制
御装置内の各給水ポンプ制御信号発生回路の入力信号お
よび/または出力信号の変化率,前記給水制御装置を構
成する入/出力インタフェースの入口側と出口側信号と
の偏差,各給水ポンプ制御信号発生回路の出力信号間の
偏差等を監視し、有為の変化があった時に、故障信号を
出力する。
In the present invention, the water supply control device is provided with a rate of change of the input signal and / or the output signal of each water supply pump control signal generation circuit in the water supply control device, the inlet / outlet of the input / output interface constituting the water supply control device. The deviation between the output side signal and the outlet side signal, the deviation between the output signals of the feed water pump control signal generating circuits, and the like are monitored, and when there is a significant change, a failure signal is output.

【0014】故障判定手段は、それらの故障信号を取り
込み、故障した給水ポンプ制御信号発生回路に対応する
給水ポンプを自動的に停止させるとともに、予備の給水
ポンプを自動的に起動させる。
The failure determination means fetches those failure signals, automatically stops the water supply pump corresponding to the failed water supply pump control signal generating circuit, and automatically starts the backup water supply pump.

【0015】故障判定手段は、それらの故障信号を取り
込み、故障した給水ポンプ制御信号発生回路に対応する
給水ポンプを自動的に停止させ、その給水ポンプの停止
を確認した後、予備の給水ポンプを自動的に起動させ
る。
The failure determination means fetches those failure signals, automatically stops the water supply pump corresponding to the failed water supply pump control signal generating circuit, confirms the stop of the water supply pump, and then confirms the standby water supply pump. Start automatically.

【0016】それとは逆に、故障判定手段は、それらの
故障信号を取り込み、予備の給水ポンプを自動的に起動
させ、予備の給水ポンプの起動を確認した後、故障した
給水ポンプ制御信号発生回路に対応する給水ポンプを自
動的に停止させる。
On the contrary, the failure determining means fetches those failure signals, automatically activates the auxiliary water supply pump, confirms the activation of the auxiliary water supply pump, and then determines the defective water supply pump control signal generating circuit. Automatically stop the water supply pump corresponding to.

【0017】したがって、いずれの場合も、給水ポンプ
制御信号発生回路等の給水制御装置自体の内部回路の一
部が故障しても、予備の給水ポンプを自動的に起動さ
せ、プラントのトリップを確実に防止できることにな
る。
Therefore, in any case, even if a part of the internal circuit of the water supply control device itself such as the water supply pump control signal generating circuit fails, the backup water supply pump is automatically started to ensure the trip of the plant. Can be prevented.

【0018】[0018]

【実施例】次に、図面を参照して、本発明による給水制
御装置の実施例を説明する。図1は、本発明による給水
制御装置の第1実施例の系統構成を示すブロック図であ
る。給水制御装置1は、大まかに分けると、主制御回路
11と給水ポンプ制御信号発生回路12a〜12dとか
らなる。
Embodiments of the water supply control device according to the present invention will now be described with reference to the drawings. FIG. 1 is a block diagram showing a system configuration of a first embodiment of a water supply control device according to the present invention. The water supply control device 1 roughly includes a main control circuit 11 and water supply pump control signal generation circuits 12a to 12d.

【0019】給水制御装置1は、入力インタフェース5
a〜5cを通して、原子炉水位信号2,給水流量信号
3,主蒸気流量信号4をそれぞれ取り込む。給水制御装
置1の加算器7aは、原子炉水位信号2と原子炉水位設
定器46の設定信号とを比較し、その偏差を出力する。
一方、加算器7bは、給水流量信号3と主蒸気流量信号
4とを比較し、その偏差を出力する。加算器7cは、加
算器7aから出力された偏差と7bから出力された偏差
とを加算し、制御演算器8に出力する。制御演算器8
は、加算器7cの出力信号に基づき、必要な給水量等を
演算し、給水ポンプ制御信号発生回路12a〜12dに
出力する。
The water supply controller 1 has an input interface 5
The reactor water level signal 2, the feed water flow rate signal 3, and the main steam flow rate signal 4 are taken in through a to 5c, respectively. The adder 7a of the water supply control device 1 compares the reactor water level signal 2 with the setting signal of the reactor water level setting device 46, and outputs the deviation thereof.
On the other hand, the adder 7b compares the feed water flow rate signal 3 with the main steam flow rate signal 4 and outputs the deviation. The adder 7c adds the deviation output from the adder 7a and the deviation output from 7b, and outputs the result to the control calculator 8. Control calculator 8
Calculates the required amount of water supply based on the output signal of the adder 7c and outputs it to the water supply pump control signal generation circuits 12a to 12d.

【0020】給水ポンプ制御信号発生回路12a〜12
dは、手動の増/減操作器10a〜10dからの信号に
基づいて、手動/自動モードのモード切換器9a〜9d
を操作する。制御演算器8からの出力信号は、モード切
換器9a〜9dが、a側に切換えられている間のみ、給
水ポンプ制御信号発生回路12a〜12dに取り込まれ
る。加算器7d〜7gは、モード切換器9a〜9dの出
力と入力インタフェース5d〜5gを介して取り込まれ
るポンプ流量信号17a〜17dとをそれぞれ取り込
み、偏差を演算し、制御器11d〜11gに偏差信号を
出力する。
Water supply pump control signal generation circuits 12a-12
d is the mode switch 9a-9d for the manual / automatic mode based on the signal from the manual increase / decrease controller 10a-10d.
To operate. The output signal from the control calculator 8 is taken into the feed water pump control signal generation circuits 12a to 12d only while the mode changers 9a to 9d are switched to the a side. The adders 7d to 7g take in the outputs of the mode changers 9a to 9d and the pump flow rate signals 17a to 17d taken in via the input interfaces 5d to 5g, respectively, calculate the deviations, and give the deviation signals to the controllers 11d to 11g. Is output.

【0021】制御器11d〜11gは、加算器7d〜7
gからの偏差信号に基づいて、給水ポンプ16a〜16
dの制御信号を作成する。制御器11d,11eは、出
力インタフェース13d,13eおよび入力インタフェ
ース5h,5iを介して、蒸気加減弁駆動装置6a,6
bに制御信号を出力する。蒸気加減弁駆動装置6a,6
bは、タービン駆動給水ポンプ16a,16bを駆動す
るタービン15a,15bに供給する蒸気量を制御する
蒸気加減弁14a,14bの開度を決める信号を作成
し、インタフェース13h,13iを介して、蒸気加減
弁14a,14bを制御する。制御器11f,11g
は、電動機駆動給水ポンプ16c,16dの出口側に設
置された給水調整弁19c,19dに制御信号を出力す
る。
The controllers 11d to 11g are adders 7d to 7d.
Based on the deviation signal from g, the water supply pumps 16a to 16a
Create a control signal of d. The controllers 11d and 11e are provided with the steam control valve drive devices 6a and 6 via the output interfaces 13d and 13e and the input interfaces 5h and 5i.
The control signal is output to b. Steam control valve drive device 6a, 6
b creates a signal that determines the opening degree of the steam control valves 14a and 14b that control the amount of steam supplied to the turbines 15a and 15b that drive the turbine-driven feed water pumps 16a and 16b. The control valves 14a and 14b are controlled. Controller 11f, 11g
Outputs a control signal to the water supply adjusting valves 19c and 19d installed on the outlet side of the electric motor driven water supply pumps 16c and 16d.

【0022】給水ポンプ16a〜16dのうちで、ター
ビン駆動給水ポンプ16a,16bは、1台で定格容量
の50%の容量を持ち、タービン15a,15bにより
それぞれ駆動される。タービン15a,15bに供給さ
れる蒸気量は、蒸気加減弁14a,14bにより調節さ
れる。蒸気量を調節しポンプ駆動用タービン15a,1
5bの回転数を変えると、タービン駆動給水ポンプ16
a,16bの吐出流量を制御できる。
Of the water supply pumps 16a to 16d, the turbine drive water supply pumps 16a and 16b each have a capacity of 50% of the rated capacity, and are driven by the turbines 15a and 15b, respectively. The amount of steam supplied to the turbines 15a and 15b is adjusted by the steam control valves 14a and 14b. Pump drive turbines 15a, 1 for adjusting the amount of steam
When the rotation speed of 5b is changed, the turbine driven feed pump 16
The discharge flow rates of a and 16b can be controlled.

【0023】一方、電動機駆動給水ポンプ16c,16
dは、1台で定格容量の25%の容量を持つ。電動機2
0c,20dの遮断器21c,21dを投入し、給水制
御装置1からの制御信号に基づき、給水調整弁19c,
19dの開度を調節すると、電動機駆動給水ポンプ16
c,16dの吐出流量を制御できる。給水ポンプ16a
〜16dから送る出される水は、逆止弁18a〜18d
を通して、例えば、原子炉に給水される。
On the other hand, the electric motor driven water supply pumps 16c, 16
One d has a capacity of 25% of the rated capacity. Electric motor 2
The circuit breakers 21c and 21d of 0c and 20d are turned on, and based on the control signal from the water supply controller 1, the water supply adjusting valve 19c,
If the opening of 19d is adjusted, the electric motor driven water supply pump 16
The discharge flow rates of c and 16d can be controlled. Water supply pump 16a
The water sent from ~ 16d is the check valves 18a-18d.
Through, for example, water is supplied to the reactor.

【0024】次に、このように構成された図1の給水制
御装置の動作を説明する。プラント起動から負荷が25
%になるまでは、電動機駆動給水ポンプが1台運転さ
れ、負荷が25から50%までは、電動給水ポンプに代
ってタービン駆動給水ポンプが1台運転され、負荷が5
0から100%までは、タービン駆動給水ポンプ2台が
運転される。
Next, the operation of the water supply control device of FIG. 1 thus constructed will be described. 25 load from plant start
Up to 25%, one electric motor driven water supply pump is operated, and up to 25 to 50% load, one turbine driven water supply pump is operated instead of the electric water supply pump, and load is 5%.
From 0 to 100%, two turbine driven feed water pumps are operated.

【0025】(1)《プラント起動から負荷25%ま
で》 この状態では、電動機駆動給水ポンプ例えば16cが台
だけ運転される。電動機駆動給水ポンプ16c用のモー
ド切換器9cは、自動側すなわちa−c側にあり、制御
器8の出力と同じ値が、モード切換器9cから出力され
る。
(1) << From Plant Start-up to 25% Load >> In this state, only the motor-driven water supply pump, for example 16c, is operated. The mode switch 9c for the electric motor drive water supply pump 16c is on the automatic side, that is, the ac side, and the same value as the output of the controller 8 is output from the mode switch 9c.

【0026】一方、他の電動機駆動給水ポンプ16d
は、停止しているものの、待機状態にあるので、モード
切換器9dは、自動側すなわちa−c側になっており、
制御器8の出力と同じ値が、モード切換器9dから出力
されている。したがって、待機状態にある電動給水ポン
プの給水調節弁19dは、常に制御されていることにな
る。
On the other hand, another electric motor driven water supply pump 16d
Is in a standby state although it is stopped, the mode switch 9d is on the automatic side, that is, the ac side,
The same value as the output of the controller 8 is output from the mode switch 9d. Therefore, the water supply control valve 19d of the electric water supply pump in the standby state is always controlled.

【0027】このような状態で、運転中の電動機駆動給
水ポンプ16cの流量を調節している給水ポンプ制御信
号発生回路12c自体に故障が発生すると、故障信号2
2cが出力される。故障信号22cに応じて、待機中の
電動機駆動給水ポンプ16dの駆動用電動機20dの遮
断器21dが投入され、駆動用電動機20dが自動的に
起動し、電動機駆動給水ポンプ16dが給水を肩代わり
する。
In such a state, if a failure occurs in the water supply pump control signal generating circuit 12c itself which regulates the flow rate of the electric motor drive water supply pump 16c in operation, the failure signal 2
2c is output. In response to the failure signal 22c, the circuit breaker 21d of the driving electric motor 20d of the electric motor driving water supply pump 16d in the standby state is turned on, the driving electric motor 20d is automatically activated, and the electric motor driving water supply pump 16d takes over the water supply.

【0028】このとき、タービン駆動給水ポンプ16a
および16bは停止しており、モード切換器9a,9b
は手動側すなわちb−c側にあり、モード切換器9a,
9bの出力信号は、“0”となっている。
At this time, the turbine driven water supply pump 16a
And 16b are stopped, and the mode selectors 9a, 9b
Is on the manual side, that is, on the bc side, and the mode switch 9a,
The output signal of 9b is "0".

【0029】(2)《プラント負荷25%から50%ま
で》 この状態では、タービン駆動給水ポンプ例えば16aが
1台運転されているので、モード切換器9aは、自動側
すなわちa−c側にあり、制御器8の出力と同じ値が、
モード切換器9aから出力される。停止しているタービ
ン駆動給水ポンプ16bのモード切換器9bは、手動側
すなわちb−c側となっており、この出力信号は“0”
となっている。
(2) << Plant load 25% to 50% >> In this state, one turbine drive feed water pump, for example, 16a, is operating, so the mode switch 9a is on the automatic side, that is, the ac side. , The same value as the output of the controller 8
It is output from the mode switch 9a. The mode switch 9b of the turbine-driven feed water pump 16b which is stopped is on the manual side, that is, the bc side, and this output signal is "0".
Has become.

【0030】一方、待機状態にある電動機駆動給水ポン
プ16cおよび16dの給水調節弁19cおよび19d
は、常に制御されている。
On the other hand, the water supply control valves 19c and 19d of the electric motor driven water supply pumps 16c and 16d in the standby state.
Is always under control.

【0031】このような状態で、運転中のタービン駆動
給水ポンプ16aの給水ポンプ制御信号発生回路12a
が故障すると、故障信号22aが出力され、待機中の電
動機駆動給水ポンプ16cおよび16dの駆動用電動機
20cおよび20dの遮断器が投入され、駆動用電動機
20cおよび20dが自動的に起動し、電動機駆動給水
ポンプ16cおよび16dが給水を肩代わりする。
In this state, the feed water pump control signal generating circuit 12a of the turbine driven feed water pump 16a in operation.
When a failure occurs, the failure signal 22a is output, the breakers of the driving electric motors 20c and 20d of the electric motor driven water feed pumps 16c and 16d in the standby state are turned on, and the electric motors 20c and 20d for driving are automatically activated to drive the electric motor. The water supply pumps 16c and 16d take over the water supply.

【0032】(3)《プラント負荷50〜100%ま
で》 この状態では、タービン駆動給水ポンプ16aおよび1
6bが2台運転されているので、モード切換器9aおよ
び9bは自動側すなわちa−c側にあり、制御器8の出
力と同じ値が、モード切換器9aおよび9bから出力さ
れる。
(3) << Plant load 50 to 100% >> In this state, the turbine drive water feed pumps 16a and 1
Since the two 6b are in operation, the mode selectors 9a and 9b are on the automatic side, that is, the ac side, and the same value as the output of the controller 8 is output from the mode selectors 9a and 9b.

【0033】一方、待機状態にある電動機駆動給水ポン
プ16cおよび16dのモード切換器9cおよび9d
も、自動側すなわちa−c側となっており、制御器8の
出力と同じ値が、モード切換器9cおよび9dから出力
されているので、給水調節弁19cおよび19dは、常
に制御されている。
On the other hand, the mode changers 9c and 9d of the electric motor driven water supply pumps 16c and 16d in the standby state.
Is also on the automatic side, that is, the ac side, and the same value as the output of the controller 8 is output from the mode switching devices 9c and 9d, so that the water supply control valves 19c and 19d are always controlled. ..

【0034】このような状態で、運転中のタービン駆動
給水ポンプ16aまたは16bの給水ポンプ制御信号発
生回路12aまたは12bが故障すると、故障信号22
aまたは22bが出力され、待機中の電動機駆動給水ポ
ンプ16cおよび16dの駆動用電動機20cおよび2
0dの遮断器が投入され、自動的に起動する。
In such a state, when the feedwater pump control signal generating circuit 12a or 12b of the turbine driven feedwater pump 16a or 16b in operation fails, the failure signal 22
a or 22b is output and the electric motors 20c and 2 for driving the electric motor drive water supply pumps 16c and 16d in the standby state are output.
The 0d circuit breaker is turned on and it automatically starts.

【0035】なお、タービン駆動給水ポンプ16aおよ
び16bの他に、タービン駆動給水ポンプ16a(16
b)の故障信号22c(22d)により、待機中の電動
機駆動給水ポンプ16d(16c)の駆動用電動機20
d(20c)の遮断器21d(21c)が投入され、駆
動用電動機20d(20c)が自動的に起動し、電動機
駆動給水ポンプ16d(16c)が給水を肩代わりする
ようにしてもよいことは勿論である。
In addition to the turbine driven water supply pumps 16a and 16b, the turbine driven water supply pump 16a (16
The failure signal 22c (22d) in (b) causes the electric motor 20 for driving the electric motor drive water supply pump 16d (16c) in standby.
Of course, the circuit breaker 21d (21c) of d (20c) may be turned on, the driving electric motor 20d (20c) may be automatically started, and the electric motor driven water supply pump 16d (16c) may be used to supply water. Is.

【0036】図1の給水制御装置によれば、給水ポンプ
制御信号発生回路12a〜12d自体のいずれかが故障
しても、給水ポンプおよびその駆動手段の機械系が健全
であるかぎり、故障した信号発生回路に制御されていた
給水ポンプによる給水を他の給水ポンプで肩代わりし、
給水ポンプ制御信号発生回路12a〜12d自体の故障
によるトリップを防止できる。
According to the water supply control device of FIG. 1, even if any of the water supply pump control signal generating circuits 12a to 12d itself fails, as long as the mechanical system of the water supply pump and its driving means is sound, the failed signal is generated. Water supply by the water supply pump controlled by the generation circuit is replaced by another water supply pump,
It is possible to prevent a trip due to a failure of the water supply pump control signal generation circuits 12a to 12d themselves.

【0037】図2は、本発明による給水制御装置の第2
実施例の系統構成を示すブロック図であり、図3は、給
水ポンプ制御信号発生回路等の故障判定手段23A内の
判断論理の一例を示すロジック図である。
FIG. 2 shows a second embodiment of the water supply control device according to the present invention.
FIG. 3 is a block diagram showing the system configuration of the embodiment, and FIG. 3 is a logic diagram showing an example of the judgment logic in the failure judgment means 23A such as the feed water pump control signal generation circuit.

【0038】図2の実施例は、図1の実施例に給水ポン
プ制御信号発生回路等の故障判定手段23Aを増設する
とともに、蒸気加減弁14a,14bに直列に給水ポン
プ駆動用タービン蒸気止弁24a,24bをそれぞれ設
置した例である。給水ポンプ制御信号発生回路等の故障
判定手段23Aには、各給水ポンプ制御信号発生回路1
2a〜12dからの故障信号22a〜22dとタービン
駆動給水ポンプからの停止信号26a,26bとが入力
されている。所定の故障発生条件が満たされた場合、
a,b系統の給水ポンプ駆動用タービン蒸気止弁24
a,24bには、全閉指令信号25a,25b信号が出
力され、遮断器21c,21dには、投入指令信号27
c,27dが出力される。
In the embodiment shown in FIG. 2, a failure determining means 23A such as a water supply pump control signal generating circuit is added to the embodiment shown in FIG. 1, and a turbine steam stop valve for driving a water supply pump is provided in series with the steam control valves 14a and 14b. In this example, 24a and 24b are installed respectively. Each water supply pump control signal generation circuit 1 is provided in the failure determination means 23A such as the water supply pump control signal generation circuit.
The failure signals 22a to 22d from 2a to 12d and the stop signals 26a and 26b from the turbine driven water feed pump are input. If the specified failure condition is met,
Turbine steam stop valve 24 for driving water feed pumps of a and b systems
The fully closed command signals 25a and 25b are output to a and 24b, and the closing command signal 27 is output to the circuit breakers 21c and 21d.
c and 27d are output.

【0039】図3の給水ポンプ制御信号発生回路等の故
障判定手段23Aは、AND回路29a,29bとOR
回路30a〜30cとからなる。例えば、a系統の給水
ポンプ制御信号発生回路12aが故障し、故障信号22
aが出力されると、給水ポンプ駆動用タービン蒸気止弁
24aに全閉指令25aが出力される。この全閉指令2
5aに応じて、タービン駆動給水ポンプ16aが停止す
ると、停止信号26aが取り込まれる。その結果、AN
D回路29aの出力が“1”となり、OR回路30a〜
30cの出力も“1”となる。したがって、故障判定手
段23Aは、c,d系統すなわち電動給水ポンプ電動機
遮断器21c,21dの投入指令27c,27dを同時
に出力し、電動給水ポンプ16c,16dの2台を自動
的に起動させることができる。
The failure determining means 23A such as the feed water pump control signal generating circuit in FIG. 3 is ORed with the AND circuits 29a and 29b.
It is composed of circuits 30a to 30c. For example, the water supply pump control signal generation circuit 12a of the system a fails and the failure signal 22
When "a" is output, the fully closed command 25a is output to the feedwater pump driving turbine steam stop valve 24a. This fully closed command 2
When the turbine drive water supply pump 16a is stopped according to 5a, the stop signal 26a is fetched. As a result, AN
The output of the D circuit 29a becomes "1", and the OR circuit 30a ...
The output of 30c also becomes "1". Therefore, the failure determination unit 23A can simultaneously output the closing commands 27c and 27d for the c and d systems, that is, the electric water supply pump motor circuit breakers 21c and 21d, and automatically start the two electric water supply pumps 16c and 16d. it can.

【0040】本実施例の場合は、故障した給水ポンプ制
御信号発生回路に対応する給水ポンプを停止させてか
ら、待機している給水ポンプを起動させることになる。
In the case of this embodiment, the water supply pump corresponding to the faulty water supply pump control signal generating circuit is stopped and then the water supply pump on standby is started.

【0041】図4は、本発明による給水制御装置の第3
実施例の系統構成を示すブロック図であり、図5は、給
水ポンプ制御信号発生回路等の故障判定手段23B内の
判断論理の一例を示すロジック図である。
FIG. 4 shows a third embodiment of the water supply control device according to the present invention.
FIG. 5 is a block diagram showing a system configuration of the embodiment, and FIG. 5 is a logic diagram showing an example of judgment logic in the failure judgment means 23B such as the feed water pump control signal generation circuit.

【0042】図4の実施例も、図2の実施例と同様に、
図1の実施例に給水ポンプ制御信号発生回路等の故障判
定手段23Bを増設するとともに、蒸気加減弁14a,
14bに直列に給水ポンプ駆動用タービン蒸気止弁24
a,24bをそれぞれ設置した例である。給水ポンプ制
御信号発生回路等の故障判定手段23Bには、各給水ポ
ンプ制御信号発生回路12a〜12dからの故障信号2
2a〜22dと、c,d系統すなわち電動機駆動給水ポ
ンプ16c,16dの遮断器21c,21dの閉信号2
8c,28dとが入力されている。所定の故障発生条件
が満たされた場合、遮断器21c,21dには投入指令
信号27c,27dが出力され、給水ポンプ駆動用ター
ビン蒸気止弁24a,24bには全閉指令信号が出力さ
れる。
The embodiment of FIG. 4 is also similar to the embodiment of FIG.
A fault determining means 23B such as a feed water pump control signal generating circuit is added to the embodiment of FIG. 1, and the steam control valve 14a,
Turbine steam stop valve 24 for driving a water supply pump in series with 14b
In this example, a and 24b are installed. The failure determination means 23B such as the water supply pump control signal generation circuit has a failure signal 2 from each of the water supply pump control signal generation circuits 12a to 12d.
2a to 22d and the closed signal 2 of the circuit breakers 21c and 21d of the c and d systems, that is, the electric motor driven water supply pumps 16c and 16d.
8c and 28d are input. When the predetermined failure occurrence condition is satisfied, the closing command signals 27c and 27d are output to the circuit breakers 21c and 21d, and the fully closed command signal is output to the feedwater pump driving turbine steam stop valves 24a and 24b.

【0043】図5の給水ポンプ制御信号発生回路等の故
障判定手段23Bは、AND回路29c〜29dとOR
回路30d,30eとからなる。例えば、a系統の給水
ポンプ制御信号発生回路12aが故障し、故障信号22
aが出力されると、OR回路30d,30eの出力が
“1”となり、c,d系統の電動機駆動給水ポンプの遮
断器21c,21dの投入指令27c,27dが同時に
出力され、電動機駆動給水ポンプ16c,16dの2台
を自動的に起動させることができる。その結果、遮断器
21c,21dが投入されると、c,d系統の電動機駆
動給水ポンプ起動信号28c,28dが入力され、AN
D回路29cの出力が“1”となり、続いてAND回路
29dの出力も“1”となる。したがって、a系統の給
水ポンプ駆動用タービンの蒸気止弁24aに全閉指令信
号25aが出力され、故障した給水ポンプ制御信号発生
回路12aに対応する給水ポンプ16aが停止すること
になる。
The failure determining means 23B such as the feed water pump control signal generating circuit of FIG. 5 is ORed with the AND circuits 29c to 29d.
It is composed of circuits 30d and 30e. For example, the water supply pump control signal generation circuit 12a of the system a fails and the failure signal 22
When "a" is output, the outputs of the OR circuits 30d and 30e become "1", and the closing commands 27c and 27d for the circuit breakers 21c and 21d of the electric motor drive water supply pumps of the c and d systems are simultaneously output, and the electric motor drive water supply pump is output. It is possible to automatically activate the two units 16c and 16d. As a result, when the circuit breakers 21c and 21d are turned on, the motor drive water feed pump activation signals 28c and 28d of the c and d systems are input, and AN
The output of the D circuit 29c becomes "1", and subsequently the output of the AND circuit 29d also becomes "1". Therefore, the fully closed command signal 25a is output to the steam stop valve 24a of the water supply pump driving turbine of the system a, and the water supply pump 16a corresponding to the failed water supply pump control signal generation circuit 12a is stopped.

【0044】本実施例の場合は、待機している給水ポン
プを起動させてから、故障した給水ポンプ制御信号発生
回路に対応する給水ポンプを停止させることになる。
In the case of the present embodiment, the stand-by water supply pump is started and then the water supply pump corresponding to the faulty water supply pump control signal generating circuit is stopped.

【0045】図6〜図8は、給水制御装置1内におい
て、故障を検出し故障判定手段23に故障信号を出力す
る手段に関する実施例を示している。図6は、本発明に
よる給水制御装置の第4実施例の系統構成を示すブロッ
ク図である。本実施例は、出力信号の変化率を演算し故
障を検出する手段の一例を示している。
6 to 8 show an embodiment relating to means for detecting a failure and outputting a failure signal to the failure determination means 23 in the water supply control device 1. FIG. 6 is a block diagram showing a system configuration of a fourth embodiment of the water supply control device according to the present invention. The present embodiment shows an example of means for calculating a change rate of an output signal and detecting a failure.

【0046】図6の実施例においては、手動/自動モー
ド切換器9a(9b〜9d)の出力信号,加算器7d
(7e〜7g)の出力信号,制御演算器11d(11e
〜11g)の出力信号,入力インタフェース5d(5e
〜5g)の出力信号をそれぞれの変化率演算器31a〜
34aに取り込み、変化率を求める。それぞれの変化率
が所定値を越えると、a(b〜d)給水ポンプ制御信号
発生回路12a(12b〜)の故障信号22a(22b
〜22d)として、警報設定器35a〜38aに出力さ
れ、故障警報に利用される。また、OR回路39aにも
出力され、故障信号22a(22b〜22d)として、
給水ポンプ制御信号発生回路等の故障判定手段23に取
り込まれる。
In the embodiment of FIG. 6, the output signal of the manual / automatic mode switch 9a (9b-9d) and the adder 7d.
(7e to 7g) output signal, control calculator 11d (11e
~ 11g) output signal, input interface 5d (5e
.About.5 g) output signal of each change rate calculator 31a.
It is taken into 34a and the rate of change is calculated. When the rate of change of each exceeds a predetermined value, the failure signal 22a (22b) of the a (b to d) feed water pump control signal generation circuit 12a (12b to) is generated.
22d) is output to the alarm setters 35a to 38a and is used for a failure alarm. Further, it is also output to the OR circuit 39a, and as the failure signal 22a (22b to 22d),
It is taken into the failure determination means 23 such as the water supply pump control signal generation circuit.

【0047】図7は、本発明による給水制御装置の第5
実施例の系統構成を示すブロック図である。本実施例
は、各段階の入力信号と出力信号との偏差を演算し故障
を検出する手段の一例を示している。
FIG. 7 shows a fifth embodiment of the water supply controller according to the present invention.
It is a block diagram which shows the system configuration of an Example. The present embodiment shows an example of means for calculating a deviation between an input signal and an output signal at each stage to detect a failure.

【0048】入力インタフェース5d(5e〜5g)の
入力信号および出力インタフェース13d(13e〜1
3g)の出力信号は、加算器40a,41aに入力され
る。加算器40a,41aはそれぞれの入力信号と出力
信号との偏差を演算する。それぞれの偏差が所定値を越
えると、a(b〜d)給水ポンプ制御信号発生回路12
a(12b〜)の故障信号22a(22b〜22d)と
して、警報設定器42a,43aに出力され、故障警報
に利用される。また、OR回路44aにも出力され、故
障信号22a(22b〜22d)として、給水ポンプ制
御信号発生回路等の故障判定手段23に取り込まれる。
Input signal of the input interface 5d (5e-5g) and output interface 13d (13e-1)
The output signal of 3g) is input to the adders 40a and 41a. The adders 40a and 41a calculate the deviation between each input signal and output signal. When each deviation exceeds a predetermined value, a (b to d) feed water pump control signal generation circuit 12
The failure signal 22a (22b to 22d) of a (12b to) is output to the alarm setters 42a and 43a and is used for the failure alarm. Further, it is also output to the OR circuit 44a, and is taken in as a failure signal 22a (22b to 22d) by the failure determination means 23 such as the feed water pump control signal generation circuit.

【0049】図8は、本発明による給水制御装置の第6
実施例の系統構成を示すブロック図である。本実施例
は、出力信号同士の偏差を演算し故障を検出する手段の
一例を示している。
FIG. 8 shows a sixth embodiment of the water supply control device according to the present invention.
It is a block diagram which shows the system configuration of an Example. This embodiment shows an example of means for calculating a deviation between output signals and detecting a failure.

【0050】出力インタフェース13d〜13gの出力
信号は、信号比較器45に入力される。出力信号間の偏
差が大きいとき、信号比較器45の出力は、“1”とな
る。それぞれの偏差が所定値を越えると、a(b〜d)
給水ポンプ制御信号発生回路12a(12b〜)の故障
信号22a(22b〜22d)として、給水ポンプ制御
信号発生回路等の故障判定手段23に取り込まれる。
The output signals of the output interfaces 13d to 13g are input to the signal comparator 45. When the deviation between the output signals is large, the output of the signal comparator 45 is "1". When each deviation exceeds a predetermined value, a (b to d)
The failure signal 22a (22b to 22d) of the water supply pump control signal generation circuit 12a (12b to) is taken in by the failure determination means 23 such as the water supply pump control signal generation circuit.

【0051】[0051]

【発明の効果】本発明によれば、火力発電プラントや原
子力発電プラント等の水を用いるプラントの給水制御装
置において、給水ポンプ制御信号発生回路等の給水制御
装置自体の内部回路の一部が故障しても、待機側の給水
ポンプを自動的に起動させる手段を備えているので、プ
ラントのトリップや出力の減少を確実に回避して、プラ
ントの稼働効率を高めることが可能である。
According to the present invention, in a water supply control device of a plant using water such as a thermal power plant or a nuclear power plant, a part of an internal circuit of the water supply control device itself such as a water supply pump control signal generating circuit fails. Even so, since the means for automatically starting the water supply pump on the standby side is provided, it is possible to reliably avoid a trip and a decrease in output of the plant, and it is possible to improve the operating efficiency of the plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による給水制御装置の第1実施例の系統
構成を示すブロック図である。
FIG. 1 is a block diagram showing a system configuration of a first embodiment of a water supply control device according to the present invention.

【図2】本発明による給水制御装置の第2実施例の系統
構成を示すブロック図である。
FIG. 2 is a block diagram showing a system configuration of a second embodiment of the water supply control device according to the present invention.

【図3】図2の給水制御装置内の給水ポンプ制御信号発
生回路等の故障判定手段23A内の判断論理の一例を示
すロジック図である。
FIG. 3 is a logic diagram showing an example of judgment logic in a failure judgment means 23A such as a water supply pump control signal generation circuit in the water supply control device of FIG.

【図4】本発明による給水制御装置の第3実施例の系統
構成を示すブロック図である。
FIG. 4 is a block diagram showing a system configuration of a third embodiment of the water supply control device according to the present invention.

【図5】図4の給水制御装置内の給水ポンプ制御信号発
生回路等の故障判定手段23B内の判断論理の一例を示
すロジック図である。
5 is a logic diagram showing an example of judgment logic in a failure judgment means 23B such as a water supply pump control signal generation circuit in the water supply control device of FIG.

【図6】本発明による給水制御装置の出力信号の変化率
を演算し故障を検出する手段の一例を示すブロック図で
ある。
FIG. 6 is a block diagram showing an example of means for calculating a change rate of an output signal of the water supply control device according to the present invention to detect a failure.

【図7】本発明による給水制御装置の各段階の入力信号
と出力信号との偏差を演算し故障を検出する手段の一例
を示すブロック図である。
FIG. 7 is a block diagram showing an example of means for detecting a failure by calculating a deviation between an input signal and an output signal at each stage of the water supply control device according to the present invention.

【図8】本発明による給水制御装置の出力信号同士の偏
差を演算し故障を検出する手段の一例を示すブロック図
である。
FIG. 8 is a block diagram showing an example of means for calculating a deviation between output signals of the water supply control device according to the present invention and detecting a failure.

【符号の説明】[Explanation of symbols]

1 給水制御装置 2 原子炉水位信号 3 給水流量信号 4 主蒸気流量信号 5a〜5g 入力インタフェース 6a,6b 蒸気加減弁駆動装置 7a〜7g 加算器 8 制御演算器 9a〜9d モード切換器 10a〜10d 増減操作器 11 主制御回路 12a〜12d 給水ポンプ制御信号発生回路 13d〜13i 出力インタフェース 14a,14b 蒸気加減弁 15a,15b ポンプ駆動用タービン 16a〜16d タービン駆動給水ポンプ 17a〜17d 流量信号 18a〜18d 逆止弁 19c,19d 給水調整弁 20c,20d 電動機 21c,21d 遮断器 22a〜22d 給水ポンプ制御信号発生回路の故障信
号 23A,23B 給水ポンプ制御信号発生回路の故障判
定手段 24a,24b 給水ポンプ駆動用タービン蒸気止弁 25a,25b 全閉指令信号 26a,26b タービン駆動給水ポンプ停止信号 27c,27d 投入指令信号 28c,28d c,d側電動機駆動給水ポンプの遮断
器閉信号 29a,29b AND回路 30a〜30c OR回路 31a〜34a 変化率演算器 35a〜38a 警報設定器 39a OR回路 40a 加算器 41a 加算器 42a 警報設定器 43a 警報設定器 44a OR回路 45 信号比較器 46 原子炉水位設定器
1 Water supply control device 2 Reactor water level signal 3 Water supply flow signal 4 Main steam flow signal 5a-5g Input interface 6a, 6b Steam control valve drive device 7a-7g Adder 8 Control calculator 9a-9d Mode switch 10a-10d Increase / decrease Operator 11 Main control circuit 12a-12d Water supply pump control signal generation circuit 13d-13i Output interface 14a, 14b Steam control valve 15a, 15b Pump drive turbine 16a-16d Turbine drive water supply pump 17a-17d Flow signal 18a-18d Check Valves 19c, 19d Water supply regulating valves 20c, 20d Electric motors 21c, 21d Circuit breakers 22a-22d Failure signals for water supply pump control signal generation circuit 23A, 23B Failure determination means for water supply pump control signal generation circuit 24a, 24b Turbine steam for water supply pump drive Stop valve 25a, 5b Fully closed command signal 26a, 26b Turbine drive feed water pump stop signal 27c, 27d Closing instruction signal 28c, 28dc, d side electric motor drive feed water pump breaker close signal 29a, 29b AND circuit 30a-30c OR circuit 31a-34a Change Rate calculator 35a to 38a Alarm setter 39a OR circuit 40a Adder 41a Adder 42a Alarm setter 43a Alarm setter 44a OR circuit 45 Signal comparator 46 Reactor water level setter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 プラントの水位信号,給水流量信号,主
蒸気流量信号等を取り込み必要な給水量等を演算する手
段と、前記演算手段の出力に基づいて前記各給水ポンプ
の駆動手段の制御量を演算しそれぞれの制御信号を出力
する複数の給水ポンプ制御信号発生手段とを含み、一部
の前記給水ポンプを待機系とし残りの前記給水ポンプを
常用系として運転する給水制御装置において、 前記給水ポンプ制御信号発生手段のいずれかの故障を検
出する手段と、 前記故障検出手段からの前記給水ポンプ制御信号発生手
段の故障信号に基づいて前記待機系の給水ポンプを起動
させる手段とを備えたことを特徴とする給水制御装置。
1. A means for fetching a water level signal, a feed water flow rate signal, a main steam flow rate signal, etc. of a plant to calculate a necessary feed water quantity and the like, and a control quantity of a driving means of each of the water feed pumps based on the output of the calculating means. And a plurality of water supply pump control signal generating means for calculating respective control signals, and operating a part of the water supply pumps as a standby system and the remaining water supply pumps as a regular system, wherein the water supply A means for detecting a failure of any of the pump control signal generating means, and a means for activating the water pump of the standby system based on the failure signal of the water supply pump control signal generating means from the failure detecting means. Water supply control device characterized by.
【請求項2】 プラントの水位信号,給水流量信号,主
蒸気流量信号等を取り込み必要な給水量等を演算する手
段と、前記演算手段の出力に基づいて前記各給水ポンプ
の駆動手段の制御量を演算しそれぞれの制御信号を出力
する複数の給水ポンプ制御信号発生手段とを含み、一部
の前記給水ポンプを待機系とし残りの前記給水ポンプを
常用系として運転する給水制御装置において、 前記給水ポンプ制御信号発生手段のいずれかの故障を検
出する手段と、 前記故障検出手段からの前記給水ポンプ制御信号発生手
段の故障信号に基づいて対応する前記常用系内の給水ポ
ンプを停止させるとともに、前記待機系の給水ポンプを
起動させる手段とを備えたことを特徴とする給水制御装
置。
2. A means for calculating a required water supply amount, etc. by taking in a water level signal, a feed water flow rate signal, a main steam flow rate signal, etc. of a plant, and a control amount of a drive means of each of the water feed pumps based on the output of the calculation means And a plurality of water supply pump control signal generating means for calculating respective control signals, and operating a part of the water supply pumps as a standby system and the remaining water supply pumps as a regular system, wherein the water supply A means for detecting any failure of the pump control signal generating means, and stopping the corresponding water supply pump in the service system based on the failure signal of the water supply pump control signal generating means from the failure detecting means, and A water supply control device comprising means for activating a standby water supply pump.
【請求項3】 プラントの水位信号,給水流量信号,主
蒸気流量信号等を取り込み必要な給水量等を演算する手
段と、前記演算手段の出力に基づいて前記各給水ポンプ
の駆動手段の制御量を演算しそれぞれの制御信号を出力
する複数の給水ポンプ制御信号発生手段とを含み、一部
の前記給水ポンプを待機系とし残りの前記給水ポンプを
常用系として運転する給水制御装置において、 前記給水ポンプ制御信号発生手段のいずれかの故障を検
出する手段と、 前記故障検出手段からの前記給水ポンプ制御信号発生手
段の故障信号に基づいて対応する前記常用系内の給水ポ
ンプを停止させる手段と、 前記故障信号および前記停止を条件として待機系の給水
ポンプを起動させる手段とを備えたことを特徴とする給
水制御装置。
3. A means for taking in a water level signal, a feed water flow rate signal, a main steam flow rate signal, etc. of a plant to calculate a necessary feed water quantity, etc., and a control quantity of a drive means of each of the water feed pumps based on the output of the calculating means. And a plurality of water supply pump control signal generating means for calculating respective control signals, and operating a part of the water supply pumps as a standby system and the remaining water supply pumps as a regular system, wherein the water supply Means for detecting any failure of the pump control signal generating means, means for stopping the corresponding water supply pump in the service system based on the failure signal of the water supply pump control signal generating means from the failure detecting means, A water supply control device comprising means for starting a water supply pump of a standby system on condition of the failure signal and the stop.
【請求項4】 プラントの水位信号,給水流量信号,
主蒸気流量信号等を取り込み必要な給水量等を演算する
手段と、前記演算手段の出力に基づいて前記各給水ポン
プの駆動手段の制御量を演算しそれぞれの制御信号を出
力する複数の給水ポンプ制御信号発生手段とを含み、一
部の前記給水ポンプを待機系とし残りの前記給水ポンプ
を常用系として運転する給水制御装置において、 前記給水ポンプ制御信号発生手段のいずれかの故障を検
出する手段と、 前記故障検出手段からの前記給水ポンプ制御信号発生手
段の故障信号に基づいて待機系の給水ポンプを起動させ
る手段と、 前記故障信号および前記起動を条件として故障した前記
給水ポンプ制御信号発生手段に対応する給水ポンプを停
止させる手段とを備えたことを特徴とする給水制御装
置。
4. A plant water level signal, a feed water flow rate signal,
A means for taking in the main steam flow rate signal and the like to calculate a necessary water supply amount and the like, and a plurality of water supply pumps for calculating the control amounts of the drive means of the respective water supply pumps and outputting respective control signals based on the output of the calculating means. In a water supply control device including a control signal generating means and operating a part of the water supply pumps as a standby system and the remaining water supply pumps as a regular system, means for detecting a failure of any of the water supply pump control signal generating means. A means for activating a standby water supply pump based on a failure signal of the water supply pump control signal generation means from the failure detection means; and the water supply pump control signal generation means that has failed on the condition of the failure signal and the start-up. And a means for stopping the water supply pump corresponding to the water supply control apparatus.
【請求項5】 請求項1ないし4のいずれか一項に記載
の給水制御装置において、 前記給水ポンプ制御信号発生手段の故障検出手段が、前
記給水ポンプ制御信号発生手段の入力および/または出
力信号の変化率の大きさが所定値を越えたとき故障検出
信号を出力する手段であることを特徴とする給水制御装
置。
5. The water supply control device according to claim 1, wherein the failure detection means of the water supply pump control signal generation means is an input and / or output signal of the water supply pump control signal generation means. Is a means for outputting a failure detection signal when the magnitude of the rate of change of the water supply exceeds a predetermined value.
【請求項6】 請求項1ないし4のいずれか一項に記載
の給水制御装置において、 前記給水ポンプ制御信号発生手段の故障検出手段が、前
記給水ポンプ制御信号発生手段の入力信号と出力信号と
の偏差の大きさが所定値を越えたとき故障検出信号を出
力する手段であることを特徴とする給水制御装置。
6. The water supply control device according to claim 1, wherein the failure detection means of the water supply pump control signal generation means includes an input signal and an output signal of the water supply pump control signal generation means. Is a means for outputting a failure detection signal when the magnitude of the deviation exceeds a predetermined value.
【請求項7】 請求項1ないし4のいずれか一項に記載
の給水制御装置において、 前記給水ポンプ制御信号発生手段の故障検出手段が、前
記給水ポンプ制御信号発生手段の出力信号間のそれぞれ
の偏差の大きさが所定値を越えたとき故障検出信号を出
力する手段であることを特徴とする給水制御装置。
7. The water supply control device according to claim 1, wherein the failure detection means of the water supply pump control signal generation means is arranged between output signals of the water supply pump control signal generation means. A water supply controller, which is means for outputting a failure detection signal when the magnitude of the deviation exceeds a predetermined value.
JP4117617A 1992-05-11 1992-05-11 Water supply control device Expired - Fee Related JP2811254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117617A JP2811254B2 (en) 1992-05-11 1992-05-11 Water supply control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117617A JP2811254B2 (en) 1992-05-11 1992-05-11 Water supply control device

Publications (2)

Publication Number Publication Date
JPH05312303A true JPH05312303A (en) 1993-11-22
JP2811254B2 JP2811254B2 (en) 1998-10-15

Family

ID=14716192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117617A Expired - Fee Related JP2811254B2 (en) 1992-05-11 1992-05-11 Water supply control device

Country Status (1)

Country Link
JP (1) JP2811254B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831933A (en) * 1993-05-14 1998-11-03 Fujitsu Limited Programmable semiconductor memory device
US6026052A (en) * 1994-05-03 2000-02-15 Fujitsu Limited Programmable semiconductor memory device
JP2010029701A (en) * 2009-11-09 2010-02-12 Hitachi Industrial Equipment Systems Co Ltd Fire pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271005A (en) * 1987-09-16 1988-11-08 株式会社日立製作所 Plant with pump group

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271005A (en) * 1987-09-16 1988-11-08 株式会社日立製作所 Plant with pump group

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831933A (en) * 1993-05-14 1998-11-03 Fujitsu Limited Programmable semiconductor memory device
US6262924B1 (en) 1993-05-14 2001-07-17 Fujitsu Limited Programmable semiconductor memory device
US6026052A (en) * 1994-05-03 2000-02-15 Fujitsu Limited Programmable semiconductor memory device
JP2010029701A (en) * 2009-11-09 2010-02-12 Hitachi Industrial Equipment Systems Co Ltd Fire pump

Also Published As

Publication number Publication date
JP2811254B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
JPH05312303A (en) Water supply control device
JP5562806B2 (en) Reactor water level control system
JP2001289989A (en) Steam turbine controller for nuclear power plant
JP3302788B2 (en) Turbine control unit and reactor isolation cooling system control system
JP2509612B2 (en) Bypass controller
JP3005504B2 (en) Water supply system
JP2539514B2 (en) Boiler water supply control device
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPS6015917B2 (en) Nuclear reactor water supply control device
JPH0232298A (en) Nuclear reactor water feed controller
JP2585204B2 (en) Feed water pump recirculation valve controller
JP2000088210A (en) Feedwater/condensate pump device
JP2585410B2 (en) Stationary variable voltage frequency power supply for reactor circulation pump
JPS62196505A (en) Feedwater flow controller
JP4435056B2 (en) Power supply device for recirculation pump and control method thereof
JPH1181915A (en) Selective load cutoff/input device in power plant
JP3604566B2 (en) Water supply control device for boiling water nuclear power plant
JPS60157603A (en) Feed flow rate controller for nuclear reactor
JPS6225831A (en) Accesory system controller for power generation plant
JPH0432799A (en) Nuclear reactor operation area limiting device
JPS6025685B2 (en) Automatic operation method of steam turbine for driving boiler feed water pump
JPH059602B2 (en)
JPH02290597A (en) Control device for feed water pump of nuclear reactor
JPH07280988A (en) Protective system for nuclear power plant and operation deciding method therefor
KR20100076621A (en) Control logic system for variable frequency driver and method driving the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees