JPS6015917B2 - Nuclear reactor water supply control device - Google Patents

Nuclear reactor water supply control device

Info

Publication number
JPS6015917B2
JPS6015917B2 JP56011085A JP1108581A JPS6015917B2 JP S6015917 B2 JPS6015917 B2 JP S6015917B2 JP 56011085 A JP56011085 A JP 56011085A JP 1108581 A JP1108581 A JP 1108581A JP S6015917 B2 JPS6015917 B2 JP S6015917B2
Authority
JP
Japan
Prior art keywords
water supply
water level
water
signal
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56011085A
Other languages
Japanese (ja)
Other versions
JPS57127883A (en
Inventor
秀明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56011085A priority Critical patent/JPS6015917B2/en
Publication of JPS57127883A publication Critical patent/JPS57127883A/en
Publication of JPS6015917B2 publication Critical patent/JPS6015917B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は沸騰水型原子力発電所における原子炉の給水制
御装置に係り、特にプラントの過渡変化発生等に起因す
る異常高水位が生じた時の対応措贋の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water supply control system for a reactor in a boiling water nuclear power plant, and particularly relates to improvements in response measures when abnormally high water levels occur due to transient changes in the plant, etc. .

一般に沸騰水型原子力発電所においては複雑なインタロ
ツクを備えた給水制御系により原子炉の給水制御がなさ
れるものとなっている。
Generally, in boiling water nuclear power plants, water supply to the reactor is controlled by a water supply control system equipped with complex interlocks.

この給水制御系は、通常は原子炉水位信号と、主蒸気流
量信号と、給水流量信号との三信号を入力信号とし、こ
れらの三信号の演算結果に基づき、原子炉出力が25%
ら久上の場合にはタービン駆動式給水ポンプの回転数を
制御し、原子炉出力が25%以下の場合にはモータ駆動
式給水ポンプの出口流量を制御して原子炉の水位を一定
に維持するものとなっている。しかるに、タービントリ
ップによるスクラム等のプラントの過渡変化発生時には
、原子炉の圧力上昇により原子炉水位が急減する。・そ
うすると、設定水位と実水位とのミスマッチングが生じ
るため、給水制御系から各給水ポンプに対し給水増加指
令が与えられる。したがって原子炉水位はその後急速に
上昇し、遂には異常高水位(以下、水位L−8と称す)
に至る。原子炉は水位L−8の状態となることで、十分
な冷却材確保がなされ燃料の健全性は確保される。ただ
し、これ以上の原子炉水位の上昇があると、主蒸気管へ
の溢水が起こるので、これを防ぐ目的で水位L−8にな
ったところでポンプトリツプ信号が送出され給水ポンプ
全台を自動的にトリツプするものとなっている。なおか
かる動作はプラントの過渡変化発生時のみならず給水制
御系自体の故障によっても生じる。給水ポンプが水位L
−8におけるトリツプ信号により全台トリップすると、
一時的に全給水喪失の状態となる。したがってその後、
原子炉の水位は崩壊熱による流出蒸気によって下降を始
める。この状態をそのま)放置すると原子炉の水位はさ
らに下降を続け、遂には非常用炉心冷却系の起動という
事態を招くことになる。そこで運転員は原子炉水位を連
続的に監視し、原子炉水位がL−8以下になったところ
で通常はモータ駆動式給水ポンプを手動で起動し、原子
炉への冷却水注入を開始して原子炉水位を一定に維持す
ることが必要となる。
This feed water control system normally receives three signals as input signals: the reactor water level signal, the main steam flow rate signal, and the feed water flow rate signal, and based on the calculation results of these three signals, the reactor output is adjusted to 25%.
If the water level is too high, the rotation speed of the turbine-driven water pump is controlled, and when the reactor output is below 25%, the outlet flow rate of the motor-driven water pump is controlled to maintain a constant water level in the reactor. It has become something to do. However, when a transient change occurs in the plant such as a scram due to a turbine trip, the reactor water level rapidly decreases due to the pressure increase in the reactor.・This will cause a mismatch between the set water level and the actual water level, so the water supply control system will issue a water supply increase command to each water supply pump. Therefore, the reactor water level rose rapidly after that, and finally reached an abnormally high water level (hereinafter referred to as water level L-8).
leading to. By bringing the reactor to a water level of L-8, sufficient coolant is secured and the integrity of the fuel is ensured. However, if the reactor water level rises further than this, water will overflow into the main steam pipes, so in order to prevent this, a pump trip signal is sent out when the water level reaches L-8 and all water pumps are automatically turned off. It is a tripping experience. Note that such an operation occurs not only when a transient change occurs in the plant, but also due to a failure of the water supply control system itself. Water pump is at water level L
When all the units trip due to the trip signal at -8,
All water supply will be temporarily lost. Therefore, after that
The water level in the reactor begins to fall due to steam escaping from decay heat. If this situation is left as it is, the water level in the reactor will continue to fall, eventually leading to the activation of the emergency core cooling system. Therefore, operators continuously monitor the reactor water level, and when the reactor water level drops below L-8, they usually manually start the motor-driven water supply pump and begin injecting cooling water into the reactor. It is necessary to maintain a constant reactor water level.

しかも上記起動操作は、原子炉の過渡変化等が発生した
のち、短時間内に適確に行なう必要がある。しかるに上
記起動操作は運転員の手動操作に依存しているため、迅
速性および適確性に欠けている。また仮りに上記起動操
作が適確になされたとしても、その後の操作が不適確で
あると、再び原子炉水位をL一8に至らしめ給水ポンプ
の自動トリツプを再発生させるおそれがある。このよう
に操作上の不手際から大容量電動機であるポンプ駆動用
電動機の不必要な起動停止を行なうことは、機器保護上
も好ましいことではない。本発明はこのような従来の給
水制御系および給水系における不具合を除去すべくなさ
れたもので、その目的はプラントの過渡変化発生等に起
因する原子炉水位L−8の信号が送出されたとき、少な
くとも一部の給水ポンプを停止させないま)主蒸気管へ
の溢水を防止でき、しかもその後の原子炉水位を運転員
の手動操作によらず自動的に所定レベルに安定化させ得
、加えてその後原子炉水位が再度上限レベルに達するよ
うな事態が仮りに生じても給水ポンプ自体の無用な停止
、起動を操返えごずにすむ原子炉の給水制御装置を提供
することにある。
Moreover, the above startup operation needs to be performed accurately within a short time after a transient change or the like occurs in the reactor. However, since the starting operation is dependent on manual operation by an operator, it lacks promptness and accuracy. Furthermore, even if the startup operation is performed properly, if the subsequent operation is incorrect, there is a risk that the reactor water level will reach L-8 again and the automatic trip of the water pump will occur again. Unnecessarily starting and stopping the pump drive motor, which is a large-capacity motor, due to operational clumsiness as described above is not desirable in terms of equipment protection. The present invention was made to eliminate such problems in the conventional water supply control system and water supply system, and its purpose is to eliminate the problem when the reactor water level L-8 signal is sent due to the occurrence of transient changes in the plant, etc. It is possible to prevent water from overflowing into the main steam pipe (unless at least some of the water supply pumps are stopped), and the subsequent reactor water level can be automatically stabilized at a predetermined level without manual operation by operators; To provide a water supply control device for a nuclear reactor that can avoid unnecessary stopping and starting of the water supply pump itself even if a situation in which the reactor water level reaches the upper limit level again occurs.

以下、図面に示す実施例によって本発明の構成および作
用効果等を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration, effects, etc. of the present invention will be explained in detail below with reference to embodiments shown in the drawings.

図面は沸騰水型原子力発電所の給水制御系を示す図で、
1は主水位制御器である。この主水位制御器1はプラン
トの運転中において、入力端子T1,T2,T3に到来
する原子炉水位信号SI、主蒸気流量信号S2、給水流
量信号S3の三つの信号を比較演算し、原子炉の水位を
設定水位に制御するための水位制御信号を送出する。上
記水位制御信号は手動・自動切替器(以下M/A切替器
という)2A,2Bおよび3A,3Bの自動側信号入力
端に入力する。M/A切替器2A,2Bおよび3A,3
Bは自動側に切替えられたとき主水位制御器1からの信
号を出力信号として送出し、手動側に切替えられたとき
端子4A,4Bおよび5A,5Bに与えられる特定信号
を出力信号として送出する。M/A切替器2A,2Bか
ら送出される信号は、一方において後述する弁開度固定
器14に入力すると共に、他方において後述するりレー
15の常閉接点150ならびに15b2をそれぞれ介し
てポンプ出口流量調整弁6A,6Bに与えられる。
The drawing shows the water supply control system of a boiling water nuclear power plant.
1 is the main water level controller. During plant operation, this main water level controller 1 compares and calculates three signals, the reactor water level signal SI, the main steam flow rate signal S2, and the feed water flow rate signal S3, which arrive at input terminals T1, T2, and T3, and A water level control signal is sent to control the water level to the set water level. The water level control signal is input to the automatic side signal input terminals of manual/automatic switching devices (hereinafter referred to as M/A switching devices) 2A, 2B and 3A, 3B. M/A switch 2A, 2B and 3A, 3
When B is switched to the automatic side, it sends out the signal from the main water level controller 1 as an output signal, and when it is switched to the manual side, it sends out specific signals given to terminals 4A, 4B and 5A, 5B as an output signal. . The signals sent from the M/A switchers 2A and 2B are input to the valve opening degree fixing device 14, which will be described later, on the one hand, and are sent to the pump outlet via the normally closed contacts 150 and 15b2 of the relay 15, which will be described later, on the other hand. It is applied to the flow rate regulating valves 6A and 6B.

上記流量調整弁6A,68はモータ7A,7Bによって
駆動されるモータ駆動式給水ポンプ8A,88の出口流
量を調整するためのものである。M/A切替器3A,3
Bから送出される信号は、タービン蒸気量加減弁9A,
9Bに与えられる。上記加減弁9A,98はタービン1
0A,1OBに供給される蒸気量を加減することによっ
て、タービン駆動式給水ポンプ11A,11Bの回転速
度を制御するためのものである。なおタービン駆動式給
水ポンプ11A,11Bは原子炉出力が25%以上のと
きに稼動し、モータ駆動式給水ポンプ8A,8Bは原子
炉出力が25%以下のときに稼動するものとなっており
、タービン駆動式給水ポンプ11A,11Bの停止時に
おいてモー夕駆動式給水ポンプ8A,8Bが図示しない
系により自動起動するものとなっている。ところで前記
入力端子TIに到来する原子炉水位信号SIは一対の警
報設定器12,13にも入力するものとなっている。こ
れらの警報設定器12,13は原子炉水位信号SIが水
位L−8を示む値を呈したときすなわち原子炉水位が限
界レベル以上になったとき作動し、警報信号を接点出力
として送出する。すなわち上記警報設定器12は作動時
に一対の常開接点12a,,12a2を閉成させ、警報
設定器13は作動時に一対の常開接点13a,,13a
2を閉成させる。一方、弁開度固定器14は、前記M/
A切替器2A,2Bを介して得られる水位制御信号が、
電源喪失等の原因により一つでも異常を呈したとき、前
記ポンプ出口流量調整弁6A,6Bの弁開度を固定化し
現状維持をはかるためのものであり、同時に常開接点1
4aを閉成させるものとなつている。
The flow rate regulating valves 6A, 68 are for adjusting the outlet flow rate of the motor-driven water supply pumps 8A, 88 driven by the motors 7A, 7B. M/A switch 3A, 3
The signal sent from B is the turbine steam amount control valve 9A,
Given to 9B. The control valves 9A, 98 are the turbine 1
This is for controlling the rotational speed of the turbine-driven water supply pumps 11A and 11B by adjusting the amount of steam supplied to 0A and 1OB. The turbine-driven water pumps 11A and 11B operate when the reactor output is 25% or more, and the motor-driven water pumps 8A and 8B operate when the reactor output is 25% or less. When the turbine-driven water pumps 11A, 11B are stopped, the motor-driven water pumps 8A, 8B are automatically started by a system not shown. By the way, the reactor water level signal SI arriving at the input terminal TI is also input to a pair of alarm setting devices 12 and 13. These alarm setting devices 12 and 13 operate when the reactor water level signal SI exhibits a value indicating the water level L-8, that is, when the reactor water level exceeds the limit level, and send out an alarm signal as a contact output. . That is, the alarm setting device 12 closes a pair of normally open contacts 12a, 12a2 when activated, and the alarm setting device 13 closes a pair of normally open contacts 13a, 13a when activated.
2 is closed. On the other hand, the valve opening degree fixing device 14
The water level control signal obtained via the A switch 2A, 2B is
This is to fix the valve opening degrees of the pump outlet flow rate regulating valves 6A and 6B to maintain the current status when even one abnormality occurs due to a power loss or the like, and at the same time, the normally open contact 1
4a.

リレー15は制御電源母線V,W間に前記警報設定器1
2,13の各常開接点12a2,13a2を直列に介し
て接続されており、動作時に常開駿点15b,,15b
2を開き、常開接点15a,,15a2を閉じるものと
なっている。
A relay 15 connects the alarm setting device 1 between the control power bus lines V and W.
The normally open contacts 12a2 and 13a2 are connected in series, and the normally open contacts 15b, 15b are connected in series during operation.
2 is opened, and normally open contacts 15a, 15a2 are closed.

上記の常閉接点15q,15Qは前述したようにM/A
切替器2A,2Bと調整弁6A,6Bとの間にそれぞれ
介在しており、常開接点15a,,15a2は定電流源
からなる全閉信号発生器16と調整弁6A,6Bとの間
にそれぞれ介在している。つまり、上記リレー15は動
作時において、調整弁6A,6Bの入力をM/A切替器
2A,2B側のものから全閉信号発生器16側のものへ
切替える入力信号切替素子である。トリツプコィル17
は上記リレー15と並列接続されており、前記接点12
a2,13a2が閉成したとき付勢され、タービン駆動
式給水ポンプ11A,1IBをトリツプする。
The above normally closed contacts 15q and 15Q are M/A as mentioned above.
The normally open contacts 15a, 15a2 are interposed between the switching devices 2A, 2B and the regulating valves 6A, 6B, respectively, and the normally open contacts 15a, 15a2 are interposed between the fully closed signal generator 16 consisting of a constant current source and the regulating valves 6A, 6B. They are intervening. That is, the relay 15 is an input signal switching element that switches the input of the regulating valves 6A, 6B from the M/A switch 2A, 2B side to the fully closed signal generator 16 side during operation. trip coil 17
is connected in parallel with the relay 15, and the contact 12
When a2 and 13a2 are closed, they are energized and trip the turbine-driven water supply pumps 11A and 1IB.

トリップコィル18は、前記一対の警報設定器12,1
3の各常開接点12a,,13a,および前記弁開度固
定器14の常開接点14aとを直列に介して前記制御電
源母線V,W間に接続されており、付勢時に前言己モー
タ駆動式給水ポンプ8A,8Bをトリツプする。
The trip coil 18 is connected to the pair of alarm setting devices 12 and 1.
3 and the normally open contact 14a of the valve opening degree fixing device 14 are connected between the control power bus lines V and W, and when energized, the motor Trip the driven water supply pumps 8A and 8B.

次に上記の如く構成された本装置の動作を説明する。Next, the operation of the apparatus configured as described above will be explained.

先ず原子炉出力が25%以上の場合について説明する。
この場合はタービン駆動式給水ポンプ11A,11B側
が稼動している。したがって、定常時においてはM/A
切替器3A,3Bを介して加減弁9A,9Bに与えられ
る水位制御信号に応じてポンプ11A,11Bが回転速
度を制御され、給水制御がなされる。そして原子炉水位
が水位L−8になると、警報設定器12,13の鞍点1
2a2,13a2が閉成し、リレー15およびトリップ
コィル17が付勢される。このため、一方においてター
ビン駆動式給水ポンプ11A,11Bが停止すると共に
、他方においてリレー接点15a,,15a2の閉成に
よって調整弁6A,6Bへ全閉信号発生器16からの全
閉信号が与えられる。このため調整弁6A.68は全閉
状態となる。したがってモータ駆動式給水ポンプ8A,
8Bがタービン駆動式給水ポンプ11A,11Bのトリ
ップに伴い自動起動しても、原子炉への給水は行なわれ
ない。原子炉水位がL−8以下になると、警報設定器1
2,13の接点12a2,13a2が開放するので、リ
レー15が復帰する。したがってリレー接点が元の状態
に切替わり、常閉接点150,15Qを介して水位制御
信号が調整弁6A,6Bに加わる。このため、その後は
M/A切替器2A,2Bを通しての水位制御信号に応じ
た定常の水位制御がモータ駆動式給水ポンプ8A,8B
によって行なわれ、原子炉水位は設定水位に安定する。
次に原子炉出力が25%以下の場合について説明する。
First, the case where the reactor output is 25% or more will be explained.
In this case, the turbine-driven water pumps 11A and 11B are in operation. Therefore, in steady state, M/A
The rotational speeds of the pumps 11A, 11B are controlled according to water level control signals given to the regulating valves 9A, 9B via the switching devices 3A, 3B, thereby controlling water supply. When the reactor water level reaches water level L-8, the saddle point 1 of the alarm setting devices 12 and 13
2a2 and 13a2 are closed, and relay 15 and trip coil 17 are energized. Therefore, on the one hand, the turbine-driven water supply pumps 11A and 11B are stopped, and on the other hand, by closing the relay contacts 15a and 15a2, a fully closed signal from the fully closed signal generator 16 is given to the regulating valves 6A and 6B. . For this reason, the regulating valve 6A. 68 is in a fully closed state. Therefore, motor-driven water pump 8A,
Even if 8B is automatically started in response to the tripping of turbine-driven water supply pumps 11A and 11B, water is not supplied to the reactor. When the reactor water level falls below L-8, alarm setting device 1
Since the contacts 12a2 and 13a2 of 2 and 13 are opened, the relay 15 returns to its original state. Therefore, the relay contacts are switched back to their original states, and the water level control signal is applied to the regulating valves 6A, 6B via the normally closed contacts 150, 15Q. Therefore, after that, steady water level control according to the water level control signal through the M/A switch 2A, 2B is performed by the motor-driven water supply pumps 8A, 8B.
The reactor water level is stabilized at the set water level.
Next, a case where the reactor output is 25% or less will be explained.

この場合はモータ駆動式給水ポンプ8A,8Bが稼動状
態になっている。したがって定常状態においてはM/A
切替器2A,28を通った水位制御信号がリレー15の
常閉接点150,15Qを介して調整弁6A,6Bにそ
れぞれ与えられる。このため給水ポンプ8A,8Bの各
出口流量が水位制御信号の値に応じて制御される。今、
原子炉水位が水位L−8になると、警報設定器12,1
3が作動し、接点12a,,12a2,13a,,13
a2を閉じる。
In this case, the motor-driven water supply pumps 8A and 8B are in operation. Therefore, in steady state, M/A
The water level control signals passed through the switches 2A and 28 are applied to the regulating valves 6A and 6B via the normally closed contacts 150 and 15Q of the relay 15, respectively. For this reason, each outlet flow rate of the water supply pumps 8A, 8B is controlled according to the value of the water level control signal. now,
When the reactor water level reaches water level L-8, the alarm setting device 12,1
3 is activated, contacts 12a, 12a2, 13a, 13
Close a2.

したがってリレー15が作動し常閉接点150,15b
2が開き、常開接点15a,,15a2が閉じる。この
ため調整弁6A,6Bには全閉信号発生器16からの全
閉信号が加わり、同調整弁6A,6Bは全閉状態となる
。したがって原子炉への給水はストップする。原子炉水
位が崩壊熱による蒸気流出分だけ低下し、L−8以下に
なると、警報設定器12,13は復帰し接点12a,,
12a2,13a,,13a2を開く。こうなると、前
述同様にリレー15が復帰して接点が元の状態に戻るの
で、調整弁6A,6BにはM/A切替器2A,2Bを介
して水位制御信号が加わる。故にその後は上記信号に応
じた定常の水位制御がモータ駆動式給水ポンプ8A,8
Bによって行なわれ、原子炉水位は設定水位に安定する
。なお、モータ駆動式給水ポンプ8A,88による給水
制御に移行したのち、何らかの原因により、原子炉水位
が再びL−8に達した場合には、リレー15が再び作動
し、調整弁6A,6Bが全閉状態となり、その後原子炉
水位がL−8以下になればリレー15が復帰し、前述同
機の水位制御信号による給水制御がなされる。
Therefore, the relay 15 is activated and the normally closed contacts 150, 15b
2 opens, and the normally open contacts 15a, 15a2 close. Therefore, a fully closed signal from the fully closed signal generator 16 is applied to the regulating valves 6A, 6B, and the regulating valves 6A, 6B are brought into a fully closed state. Therefore, water supply to the reactor will be stopped. When the reactor water level decreases by the amount of steam flowing out due to decay heat and becomes less than L-8, the alarm setting devices 12 and 13 return to contact 12a, .
Open 12a2, 13a, 13a2. When this happens, the relay 15 is reset and the contacts return to their original states as described above, so a water level control signal is applied to the regulating valves 6A, 6B via the M/A switchers 2A, 2B. Therefore, after that, steady water level control according to the above signal is performed by the motor-driven water supply pumps 8A, 8.
B is performed, and the reactor water level stabilizes at the set water level. In addition, if for some reason the reactor water level reaches L-8 again after switching to water supply control using the motor-driven water supply pumps 8A, 88, the relay 15 will be activated again and the regulating valves 6A, 6B will be activated. When the reactor water level becomes fully closed and the reactor water level falls below L-8, the relay 15 is reset and water supply control is performed using the water level control signal from the above-mentioned aircraft.

つまり大容量電動機であるポンプモータの無用な停止、
起動の線返しを回避できる。ところで今、電源喪失等の
原因により水位制御信号がなくなると、弁関度固定器1
4が働き調整弁6A,6Bの関度を現状々態にロックす
る。
In other words, unnecessary stoppage of the pump motor, which is a large-capacity electric motor,
You can avoid line reversals at startup. By the way, if the water level control signal is lost due to power loss or other reasons, valve control level fixing device 1
4 works to lock the relationship between the regulating valves 6A and 6B to the current state.

したがってこのとき前述の如く原子炉水位が水位L−8
に達するような事態が発生しリレー15が動作すること
により調整弁6A,6Bに全閉信号が与えられても、調
整弁6A,6Bは全閉状態にならない。しかしながら本
装置においては、上記事態が発生した場合は、警報設定
器12,13の各常開接点12a,,13a,と、弁関
度固定器14の常開接点14aとが全て閉成することか
らトリツプコィル18が付勢され、モータ駆動式給水ポ
ンプ8A,8Bを停止させる。したがって原子炉への給
水は停止する。なお夕−ビン駆動式給水ポンプ11A,
118は水位L−8になれば無条件で停止状態になるの
で、上記のような動作は行なわれない。なお本発明は上
述した一実施例に限定されるものではない。
Therefore, at this time, as mentioned above, the reactor water level is at water level L-8.
Even if such a situation occurs and the relay 15 operates and a fully close signal is given to the regulating valves 6A, 6B, the regulating valves 6A, 6B do not become fully closed. However, in this device, when the above situation occurs, the normally open contacts 12a, 13a of the alarm setting devices 12, 13, and the normally open contact 14a of the valve relationship fixing device 14 are all closed. The trip coil 18 is energized to stop the motor-driven water supply pumps 8A and 8B. Therefore, water supply to the reactor will be stopped. In addition, the evening bottle drive type water supply pump 11A,
118 is unconditionally stopped when the water level reaches L-8, so the above operation is not performed. Note that the present invention is not limited to the above-mentioned embodiment.

たとえば前記実施例ではモータ駆動式給水ポンプおよび
タービン駆動式給水ポンプをそれぞれ2台づつ設けた場
合を示したがこれらのポンプの設置台数等は所要給水量
や各ポンプの能力に応じて任意に決定すればよい。また
前記実施例では警報設定器の警報信号が接点の開閉動作
により出力されるものを示したが半導体スイッチのON
、OFF動作により出力されるものであってもよい。同
様に調整弁への入力信号切替素子としてリレーを示した
が、このリレーの代りに半導体スイッチを用いてもよい
。このほか本発明の要旨を変えない範囲で種々変形実施
できるのは勿論である。以上説明したように本発明によ
れば原子炉の水位が限界レベル(水位L−8)以上にな
ると警報設定器からの警報信号により信号切替手段が働
き、流量調整弁に全閉信号が与えられて給水をストップ
し、原子炉の水位が限界レベル以下になり警報信号がな
くなると信号切替手段が復帰し、流量調整弁に水位制御
信号が与えられて定常の給水制御動作に戻るので、給水
ポンプ自体の停止を行なわずに主蒸気管への溢水を防止
でき、しかもその後の原子炉水位を運転員の手動操作に
依存することなく自動的に所定レベルに安定化させ得る
上、水位制御信号が異常を呈した状態において原子炉水
位が限界レベル以上になったときに限り給水ポンプの停
止が行なわれるので、たとえ再度原子炉水位が上限レベ
ルに達するような事態が生じても信号切替手段による調
整弁の開閉動作のみが糠返えされるだけで、給水ポンプ
自体時に大容量電動機等の無用な停止、起動々作は行な
わずにすむ原子炉の給水制御装置を提供できる。
For example, in the above embodiment, two motor-driven water pumps and two turbine-driven water pumps are installed, but the number of these pumps can be determined arbitrarily depending on the required water supply amount and the capacity of each pump. do it. In addition, in the above embodiment, the alarm signal of the alarm setting device was output by the opening/closing operation of the contact, but when the semiconductor switch is turned on,
, it may be output by an OFF operation. Similarly, although a relay is shown as an input signal switching element to the regulating valve, a semiconductor switch may be used instead of this relay. Of course, various other modifications can be made without departing from the gist of the present invention. As explained above, according to the present invention, when the water level in the reactor exceeds the limit level (water level L-8), the signal switching means is activated by the alarm signal from the alarm setting device, and a fully closed signal is given to the flow rate regulating valve. When the water level in the reactor falls below the limit level and the alarm signal disappears, the signal switching means returns and a water level control signal is given to the flow rate adjustment valve to return to normal water supply control operation, so the water supply pump It is possible to prevent water from overflowing into the main steam pipe without shutting down the reactor itself, and the subsequent water level in the reactor can be automatically stabilized at a predetermined level without relying on manual operations by operators. Since the feed water pump is stopped only when the reactor water level reaches the limit level or higher in an abnormal state, even if the reactor water level reaches the upper limit level again, the signal switching means will not be able to make any adjustments. It is possible to provide a water supply control device for a nuclear reactor, which eliminates the need for unnecessary stopping and starting of a large-capacity electric motor, etc. when the water supply pump itself is operated, by only changing the opening and closing operations of the valves.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の−実施例の回路構成を示す図である。 1・・・・・・主水位制御器、6A,6B・・・・・・
流量調整弁、8A,8B…・・・モータ駆動式給水ポン
プ、9A,9B・・・・・・蒸気量加減弁、11A,1
1B・・・・・・タービン駆動式給水ポンプ、14・・
・・・・弁関度固定器、15……リレー、17,18…
…トリツプコイル。
The figure is a diagram showing a circuit configuration of an embodiment of the present invention. 1... Main water level controller, 6A, 6B...
Flow rate adjustment valve, 8A, 8B...Motor-driven water supply pump, 9A, 9B...Steam amount adjustment valve, 11A, 1
1B...Turbine-driven water pump, 14...
...Valve function fixing device, 15... Relay, 17, 18...
...Trip coil.

Claims (1)

【特許請求の範囲】 1 原子炉への給水を行なう給水ポンプと、この給水ポ
ンプによる給水流量を調整する流量調整弁と、この流量
調整弁に水位制御信号を与えて弁開度を制御する手段と
、原子炉の水位が限界レベル以上のとき警報信号を出す
警報設定器と、この警報設定器から警報信号が送出され
ている期間は前記水位制御信号に代えて全閉信号を前記
調整弁に与え弁開度を全閉状態にする信号切替手段と、
前記水位制御信号が異常を呈したとき前記調整弁の弁開
度を固定化する弁開度固定器と、この弁開度固定器によ
り前記調整弁の弁開度が固定化されている状態において
前記警報設定器から警報信号が送出されたとき前記給水
ポンプを停止させる手段とを具備したことを特徴とする
原子炉の給水制御装置。 2 給水ポンプは原子炉の低出力時に稼動するモータ駆
動式給水ポンプであることを特徴とする特許請求の範囲
第1項記載の原子炉の給水制御装置。 3 信号切替手段は警報信号に応動するリレーを切替素
子としたものであることを特徴とする特許請求の範囲第
1項記載の原子炉の給水制御装置。
[Scope of Claims] 1. A water supply pump that supplies water to the nuclear reactor, a flow rate adjustment valve that adjusts the flow rate of water supplied by this water supply pump, and a means for controlling the valve opening by applying a water level control signal to this flow rate adjustment valve. an alarm setting device that issues an alarm signal when the water level in the reactor is above a limit level, and a fully closed signal sent to the regulating valve in place of the water level control signal during the period when the alarm signal is being sent from the alarm setting device. a signal switching means for changing the valve opening degree to a fully closed state;
a valve opening degree fixing device that fixes the valve opening degree of the regulating valve when the water level control signal exhibits an abnormality, and a state in which the valve opening degree of the regulating valve is fixed by the valve opening degree fixing device; A water supply control device for a nuclear reactor, comprising means for stopping the water supply pump when an alarm signal is sent from the alarm setting device. 2. The water supply control device for a nuclear reactor according to claim 1, wherein the water supply pump is a motor-driven water supply pump that operates at low output of the nuclear reactor. 3. The water supply control device for a nuclear reactor according to claim 1, wherein the signal switching means has a switching element that is a relay that responds to an alarm signal.
JP56011085A 1981-01-28 1981-01-28 Nuclear reactor water supply control device Expired JPS6015917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56011085A JPS6015917B2 (en) 1981-01-28 1981-01-28 Nuclear reactor water supply control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56011085A JPS6015917B2 (en) 1981-01-28 1981-01-28 Nuclear reactor water supply control device

Publications (2)

Publication Number Publication Date
JPS57127883A JPS57127883A (en) 1982-08-09
JPS6015917B2 true JPS6015917B2 (en) 1985-04-22

Family

ID=11768131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56011085A Expired JPS6015917B2 (en) 1981-01-28 1981-01-28 Nuclear reactor water supply control device

Country Status (1)

Country Link
JP (1) JPS6015917B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618784U (en) * 1984-06-21 1986-01-20 東洋ラジエ−タ−株式会社 Corrugated fin type heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077974A (en) 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd Oil separating means and refrigerating apparatus equipped with the same
JP5520800B2 (en) 2010-12-17 2014-06-11 株式会社神戸製鋼所 Oil separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618784U (en) * 1984-06-21 1986-01-20 東洋ラジエ−タ−株式会社 Corrugated fin type heat exchanger

Also Published As

Publication number Publication date
JPS57127883A (en) 1982-08-09

Similar Documents

Publication Publication Date Title
JPS6015917B2 (en) Nuclear reactor water supply control device
JP2811254B2 (en) Water supply control device
JPS6239655B2 (en)
JP3005504B2 (en) Water supply system
JPS5916679B2 (en) Reactor water supply control system
JPS59105598A (en) Feedwater control device
JPS63686B2 (en)
JPS63278101A (en) Process controller
JPH0121122Y2 (en)
SU830077A1 (en) Method of automatic control of feed water supply to two users
JPH0799249B2 (en) Reactor feedwater pump control method
JPH0122521B2 (en)
JPH0980195A (en) Steam turbine controller for nuclear reactor power plant
JPH063490A (en) Reactor feed water control equipment
JPS6029916B2 (en) Boiling water reactor water supply control device
JPH0416601B2 (en)
JPS5895992A (en) Controlling method for stop of synchronous generator
JPH0367078A (en) Preventive device for overflow in water supply
JPH0222360B2 (en)
JPH0518075B2 (en)
JPS58168111A (en) Controller of feed water regulating valve
JPS62112099A (en) Nuclear reactor isolation cooling system controller
JPS5930239B2 (en) Reactor water supply control system
JPS6025683B2 (en) steam pressure control device
JPH0410597B2 (en)