JPH0122521B2 - - Google Patents

Info

Publication number
JPH0122521B2
JPH0122521B2 JP54081055A JP8105579A JPH0122521B2 JP H0122521 B2 JPH0122521 B2 JP H0122521B2 JP 54081055 A JP54081055 A JP 54081055A JP 8105579 A JP8105579 A JP 8105579A JP H0122521 B2 JPH0122521 B2 JP H0122521B2
Authority
JP
Japan
Prior art keywords
turbine
water supply
boiler
pressure
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54081055A
Other languages
Japanese (ja)
Other versions
JPS567904A (en
Inventor
Wahei Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8105579A priority Critical patent/JPS567904A/en
Publication of JPS567904A publication Critical patent/JPS567904A/en
Publication of JPH0122521B2 publication Critical patent/JPH0122521B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、火力発電設備において電力系統側の
事故等により発電機より送電が出来なくなり、発
電機を外部系統と切り離し、発電所の負荷のみを
発電機により発電運転にする、いわゆる所内単独
運転となつた時に、タービン駆動給水ポンプの運
転制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a thermal power generation facility in which power cannot be transmitted from a generator due to an accident on the power system side, the generator is disconnected from the external system, and only the load of the power plant is operated by the generator. The present invention relates to operational control of a turbine-driven water supply pump when the plant is in so-called isolated operation.

最近の火力発電設備は、電力系統の事故時に発
電設備を停止することなく、所内負荷のみで運転
し、電力系統の復帰と共に、発電設備を電力系統
と接続することにより、急速に負荷をとることに
より、電力系統の安定を図つている。
Modern thermal power generation equipment can operate with only the on-site load without stopping the power generation equipment in the event of an accident in the power system, and when the power grid is restored, the power generation equipment can be connected to the power grid to quickly take the load off. This is aimed at stabilizing the power system.

第1図に、従来の火力発電設備の概念系統図を
示す。
Figure 1 shows a conceptual diagram of conventional thermal power generation equipment.

第1図において、ボイラー11により発生した
蒸気は、タービン12に導かれ、発電機13を回
し電気を発生させる。
In FIG. 1, steam generated by a boiler 11 is guided to a turbine 12, which turns a generator 13 to generate electricity.

タービン12で仕事をした蒸気は復水器14に
より冷却され、水となつて復水ポンプ15により
送水され、低圧給水加熱器16により加熱され、
脱気器17に一旦貯水される。
The steam that has done work in the turbine 12 is cooled by a condenser 14, turned into water, sent by a condensate pump 15, heated by a low-pressure feed water heater 16,
The water is temporarily stored in the deaerator 17.

脱気器17に貯水された水は、タービン駆動給
水ポンプ18により、高圧水として送水され、高
圧給水加熱器19によりさらに加熱されてボイラ
ー11に送り込まれる。
The water stored in the deaerator 17 is sent as high-pressure water by a turbine-driven feedwater pump 18, further heated by a high-pressure feedwater heater 19, and sent to the boiler 11.

ここで、タービン駆動給水ポンプ18は給水ポ
ンプ駆動用タービン20により駆動されるが、給
水ポンプ駆動用タービン20の蒸気源は通常運転
中はタービン12からの抽気蒸気を使用し、低負
荷時はボイラー11出口蒸気を使用する。
Here, the turbine-driven feedwater pump 18 is driven by a turbine 20 for driving the feedwater pump, but the steam source of the turbine 20 for driving the feedwater pump uses extracted steam from the turbine 12 during normal operation, and during low load, the steam source for the turbine 20 for driving the feedwater pump is used. 11 outlet steam is used.

ボイラー11に送水される給水流量は、タービ
ン駆動給水ポンプ18の回転数により制御され
る。従つて、給水ポンプ駆動用タービン20の回
転数を制御することにより、流量を変化させるこ
とができる。
The flow rate of water supplied to the boiler 11 is controlled by the rotation speed of the turbine-driven water pump 18. Therefore, by controlling the rotation speed of the water supply pump driving turbine 20, the flow rate can be changed.

第2図は、従来の給水制御装置で給水ポンプ駆
動用タービン20に電気−油圧式ガバナを使用し
た例のブロツク図である。
FIG. 2 is a block diagram of an example of a conventional water supply control system in which an electro-hydraulic governor is used in the turbine 20 for driving the water supply pump.

第2図において、設定器22により設定された
給水流量設定値とタービン駆動給水ポンプ18の
吸込流量と比較され、その偏差が調節器23で比
例+積分補償され回転数指令値とされる。
In FIG. 2, the water supply flow rate setting value set by the setting device 22 is compared with the suction flow rate of the turbine-driven water supply pump 18, and the deviation is proportionally and integrally compensated by the regulator 23 and set as the rotation speed command value.

この回転数指令値と給水ポンプ駆動タービン2
0の回転数を、回転数検出器24により検出され
た信号と比較され、その偏差を給水ポンプ駆動用
タービン制御器25によりゲイン補償され、電油
変換器26で油圧信号に変換され、低圧蒸気加減
弁27と高圧蒸気加減弁28を操作することによ
り、給水ポンプ駆動用タービン20の回転数を制
御している。
This rotation speed command value and the water supply pump drive turbine 2
The rotation speed of 0 is compared with the signal detected by the rotation speed detector 24, the deviation is gain compensated by the feedwater pump drive turbine controller 25, converted into a hydraulic signal by the electro-hydraulic converter 26, and the low-pressure steam By operating the control valve 27 and the high pressure steam control valve 28, the rotation speed of the water supply pump driving turbine 20 is controlled.

ここで、低圧蒸気加減弁27と高圧蒸気加減弁
28の関係は、第3図のような特性になつてい
る。
Here, the relationship between the low pressure steam control valve 27 and the high pressure steam control valve 28 has a characteristic as shown in FIG.

つまり、300は弁の全開のときを示し、30
1は低圧気加減弁27の、302は高圧蒸気加減
弁28のそれぞれ制御信号に対する開度特性を表
わす。信号を0から増加させた場合、まず、低圧
蒸気加減弁27が開き始め、全開となつた所で、
高圧蒸気加減弁28が開き始めるように構成され
ている。
In other words, 300 indicates when the valve is fully open, and 30
1 represents the opening degree characteristics of the low-pressure air control valve 27 and 302 the opening characteristics of the high-pressure steam control valve 28 in response to the respective control signals. When the signal is increased from 0, first, the low pressure steam control valve 27 starts to open, and when it becomes fully open,
The high pressure steam control valve 28 is configured to begin to open.

従つて、通常運転中はタービン抽気からの蒸気
により、低圧加減弁27により制御し、タービン
12の負荷が下がりタービン抽気が不足すると、
高圧加減弁28が開いて制御される。
Therefore, during normal operation, steam from the turbine bleed air is used to control the low pressure regulating valve 27, and when the load on the turbine 12 decreases and the turbine bleed air becomes insufficient,
The high pressure regulating valve 28 is opened and controlled.

この通常状態で所内負荷単独運転が発生する
と、タービン12の負荷が急激に所内負荷のみと
なるため、タービン12の加減弁は急閉となる。
If the station load independent operation occurs in this normal state, the load on the turbine 12 suddenly becomes only the station load, so the regulating valve of the turbine 12 is suddenly closed.

すると、ボイラー11出口の蒸気圧力は急上昇
し、それに伴ないタービン駆動給水ポンプ18の
吐出圧力も上昇する。と同時に、タービン抽気蒸
気はほとんどなくなるので、給水ポンプ駆動用タ
ービン20の低圧蒸気源がなくなる。
Then, the steam pressure at the outlet of the boiler 11 rises rapidly, and the discharge pressure of the turbine-driven water supply pump 18 also rises accordingly. At the same time, since the turbine bleed steam is almost completely exhausted, the low pressure steam source for the feedwater pump driving turbine 20 is eliminated.

所定負荷単独運転が発生して、主蒸気圧力が上
昇した瞬間は、タービン駆動給水ポンプ18の回
転数は所内負荷単独運転発生前とほぼ同じである
ので、第4図に示すシステムロスつまり給水流量
と圧力の関係を表わす曲線からもわかるように、
給水流量も急減する。
At the moment when the predetermined load islanding operation occurs and the main steam pressure increases, the rotation speed of the turbine-driven water supply pump 18 is almost the same as before the station load islanding operation occurs, so the system loss, that is, the feedwater flow rate shown in Fig. 4, is reduced. As can be seen from the curve representing the relationship between
Water supply flow rate also decreases rapidly.

この急減した給水流量が、ボイラー11で必要
とする最低流量以下となることも考えられ、さら
には、タービン抽気の低圧蒸気源もなくなるの
で、タービン駆動給水ポンプ18の回転数が低下
し、さらに悪い方向となる。
It is conceivable that this rapidly decreased feed water flow rate will become less than the minimum flow rate required by the boiler 11, and furthermore, since there will be no low pressure steam source for turbine extraction air, the rotation speed of the turbine driven water feed pump 18 will decrease, making matters worse. direction.

従つて、所内負荷単独運転が発生した時、ボイ
ラー11の最低給水流量を確保するためには、タ
ービン駆動給水ポンプ18の回転数を上げてやら
なければならない。
Therefore, in order to ensure the minimum water supply flow rate of the boiler 11 when the station load independent operation occurs, it is necessary to increase the rotation speed of the turbine-driven water supply pump 18.

しかし、従来の第2図に示す制御装置では、調
節器23の比例+積分回路は、通常運転中におけ
る負荷変化に対して補償できる値となつているた
め、そのままでは、所内負荷単独運転発生のよう
な大きな急激な変化に対しては、補償することは
できない。
However, in the conventional control device shown in FIG. 2, the proportional + integral circuit of the regulator 23 has a value that can compensate for load changes during normal operation. It is not possible to compensate for such large and sudden changes.

従つて、従来の制御装置では所内負荷単独運転
時、タービン駆動給水ポンプ18の回転数を必要
回転数までの上昇、または低圧加減弁27から高
圧加減弁28への切替えも、必要時間内に行なう
ことができず、結果的には、ボイラー11の最低
給水流量を割り込み、発電設備を停止させること
となる。
Therefore, in the conventional control device, when the station load is operated alone, the rotation speed of the turbine-driven water supply pump 18 is increased to the required rotation speed, or the low pressure control valve 27 is switched to the high pressure control valve 28 within the necessary time. As a result, the minimum water supply flow rate of the boiler 11 is interrupted, and the power generation equipment is stopped.

これを、第4図に表わす給水流量Q−圧力H関
係曲線を参照しながら説明する。
This will be explained with reference to the water supply flow rate Q-pressure H relationship curve shown in FIG.

第4図において、N+2〜NO〜N−4はター
ビン駆動給水ポンプ18の回転数を示し、aはボ
イラー11の出口蒸気圧力、bはその蒸気圧力に
相当するタービン駆動給水ポンプ18の吐出圧力
である。従つてbとaの差はタービン駆動給水ポ
ンプ18出口からボイラー11出口までの圧力損
失を表わす。
In FIG. 4, N+2 to NO to N-4 indicate the rotational speed of the turbine-driven water supply pump 18, a is the outlet steam pressure of the boiler 11, and b is the discharge pressure of the turbine-driven water supply pump 18 corresponding to the steam pressure. be. Therefore, the difference between b and a represents the pressure loss from the turbine-driven feedwater pump 18 outlet to the boiler 11 outlet.

いま、第4図において、所内負荷単独運転発生
前の運転状態がc点であつたとすると、このとき
の給水流量はdであり、タービン駆動給水ポンプ
18の吐出圧力はe点となつている。
Now, in FIG. 4, if the operating state before the station load independent operation occurs is at point c, the water supply flow rate at this time is d, and the discharge pressure of the turbine-driven water supply pump 18 is at point e.

この状態で所内負荷単独運転が発生して、ボイ
ラー11出口圧力が急上昇し、これと共にタービ
ン駆動給水ポンプ18の吐出圧力がf点になつた
とする。
Assume that in this state, the station load independent operation occurs, the outlet pressure of the boiler 11 rises rapidly, and at the same time, the discharge pressure of the turbine-driven water pump 18 reaches point f.

このとき、タービン駆動給水ポンプ18の回転
数が、NOのままであれば、第4図からもわかる
ように、給水流量はOとなる。そのさいボイラー
11の最低給水流量がgであつたとすると、完全
に、その値以下となつてしまう。
At this time, if the rotation speed of the turbine-driven water supply pump 18 remains at NO, the water supply flow rate becomes O, as can be seen from FIG. If the minimum water supply flow rate of the boiler 11 is g at that time, the flow rate will be completely below that value.

従つて、この時最低でもh点に相当する回転数
まで直ちに上昇させなければならない。そして、
最終的に圧力の降下とともに、j点に相当するN
−3回転にしなければならない。
Therefore, at this time, it is necessary to immediately increase the rotational speed to at least the speed corresponding to point h. and,
Finally, as the pressure drops, N corresponding to point j
- Must be rotated 3 times.

このときの給水ポンプ駆動用タービン20の蒸
気源を見ると、まず、タービン12の抽気蒸気は
急減するため、給水ポンプ駆動用タービン20の
駆動蒸気がなくなり、回転数は低下する。
Looking at the steam source for the feedwater pump driving turbine 20 at this time, first, the extracted steam of the turbine 12 rapidly decreases, so the driving steam for the feedwater pump driving turbine 20 disappears, and the rotation speed decreases.

従つて、h点を確保するためには、蒸気源をボ
イラー11出口蒸気に切替えるべく、給水ポンプ
駆動用タービン20の加減弁を、低圧加減弁27
から高圧加減弁28に直ちに切替える必要があ
る。
Therefore, in order to secure point h, in order to switch the steam source to boiler 11 outlet steam, the regulator valve of the feed water pump driving turbine 20 is changed to the low pressure regulator valve 27.
It is necessary to immediately switch from the high pressure regulating valve 28 to the high pressure regulating valve 28.

しかし、従来の制御装置では、このような急な
動きに対応できないような調節器23となつてい
るため、一時的に回転数が低下してしまい、ボイ
ラー11の最低給水流量gを確保することは不可
能であつた。
However, in the conventional control device, the regulator 23 cannot cope with such sudden movements, so the rotation speed temporarily decreases, making it difficult to ensure the minimum water supply flow rate g of the boiler 11. was impossible.

そこで本発明では、所定負荷単独運転発生時に
ボイラー11出口圧力を検出し、その圧力に見合
つた給水ポンプ駆動用タービン20の回転数に直
ちに指令値を設定すると共に、この指令値に給水
ポンプ駆動用タービン20の高圧加減弁28のボ
イラー出口蒸気に見合つた開度に相当する補正を
行なうことにより、低圧加減弁27から高圧加減
弁28への切替えを早め、ボイラー11への給水
流量を確保する給水ポンプ制御方法を提供するこ
とを目的とする。
Therefore, in the present invention, the outlet pressure of the boiler 11 is detected when a predetermined load single operation occurs, and a command value is immediately set to the rotation speed of the water supply pump driving turbine 20 commensurate with the pressure, and this command value is used to set the rotation speed of the water supply pump driving turbine 20. By making a correction corresponding to the opening degree of the high pressure regulating valve 28 of the turbine 20 commensurate with the boiler outlet steam, the switching from the low pressure regulating valve 27 to the high pressure regulating valve 28 is accelerated, and the water supply flow rate to the boiler 11 is ensured. The purpose is to provide a pump control method.

第5図は、本発明の一実施例のブロツクダイア
グラムである。
FIG. 5 is a block diagram of one embodiment of the present invention.

第5図を見てわかるように、従来の制御系はそ
のまゝである。
As can be seen from FIG. 5, the conventional control system remains the same.

従来の調節器23の出力側に切替器33を設
け、通常運転中は調節器23側とし、所内負荷単
独運転発生時には関数変換器32側の信号が給水
ポンプ駆動用タービン20の制御器25に入力さ
れるように構成されている。
A switch 33 is provided on the output side of the conventional regulator 23, and during normal operation, the switch 33 is connected to the regulator 23 side, and when the station load independent operation occurs, the signal from the function converter 32 side is sent to the controller 25 of the water pump driving turbine 20. configured to be entered.

いま、通常の運転時、前述のように、切替器3
3が調節器23側にあつた場合、設定器22によ
りある流量の設定が与えられ、この設定値とター
ビン駆動給水ポンプ18の吸込流量発信器30の
信号とが比較され、その偏差が調節器23に与え
られ、比例+積分補償され、回転数指令信号とな
り、切替器33を通つて給水ポンプ駆動用タービ
ン20の回転検出器24の信号と比較される。
Now, during normal operation, as mentioned above, switch 3
3 is on the regulator 23 side, a certain flow rate setting is given by the setting device 22, this set value is compared with the signal of the suction flow rate transmitter 30 of the turbine-driven feed water pump 18, and the deviation is determined by the regulator 23. 23, which undergoes proportional + integral compensation to become a rotation speed command signal, which is then passed through a switch 33 and compared with the signal from the rotation detector 24 of the water supply pump driving turbine 20.

この偏差が給水ポンプ駆動用タービン20の制
御器25を通り、電油変換器26により油圧信号
となり加減弁27,28に伝達される。
This deviation passes through the controller 25 of the water supply pump driving turbine 20, becomes a hydraulic pressure signal by the electro-hydraulic converter 26, and is transmitted to the control valves 27 and 28.

この時、タービン12の発電出力が定検負荷運
転中であるとすると、タービン12の抽気蒸気は
十分に有るので、給水ポンプ駆動用タービン20
の加減弁は低圧加減弁27が開となり、高圧加減
弁28は全閉状態で運転されている。
At this time, assuming that the power generation output of the turbine 12 is under periodic load operation, there is sufficient steam extracted from the turbine 12, so the turbine 20 for driving the water supply pump
The low pressure regulating valve 27 is open, and the high pressure regulating valve 28 is operated in a fully closed state.

この運転状態から所内負荷単独運転が発生する
と、切替器33は直ちに圧力発信器31および関
数変換器32からなる補助ボイラ給水制御手段側
に切替わる。
When station load independent operation occurs from this operating state, the switch 33 is immediately switched to the side of the auxiliary boiler feed water control means comprising the pressure transmitter 31 and the function converter 32.

この関数変換器32は、ボイラー11の出口蒸
気圧力(主蒸気圧力)を圧力発信器31により検
出し、その圧力信号を入力として、このときの給
水ポンプ駆動用タービン20すなわちタービン駆
動給水ポンプ18の回転数が決まるような関数と
なつている。
This function converter 32 detects the outlet steam pressure (main steam pressure) of the boiler 11 using the pressure transmitter 31, and uses the detected pressure signal as input to control the feedwater pump driving turbine 20, that is, the turbine-driven feedwater pump 18 at this time. It is a function that determines the rotation speed.

さらに、この関数はタービン駆動給水ポンプ1
8の出口圧力によつて決まる回転数を、第4図の
給水流量Q−圧力H曲線から求め、この回転数値
に所内負荷単独運転時の給水ポンプ駆動用タービ
ン20の蒸気源となる高圧蒸気、つまりボイラー
11の出口蒸気の圧力、温度によるエネルギーに
よつて、そのときの給水ポンプ駆動用タービン2
0の回転数を得るに必要な、高圧加減弁28の開
度となるように、予め計算した値によつて補正し
た関数としている。
Furthermore, this function
The rotation speed determined by the outlet pressure of No. 8 is determined from the feed water flow rate Q-pressure H curve in FIG. In other words, energy from the pressure and temperature of the steam at the outlet of the boiler 11 is used to drive the water supply pump at the turbine 2.
It is a function corrected by a value calculated in advance so that the opening degree of the high pressure regulating valve 28 is necessary to obtain a rotation speed of 0.

この関数変換器32の出力信号は切替器33を
通り回転数の指令値となり、現在の回転数と比較
され、その偏差が給水ポンプ駆動用タービン20
の制御器25によりゲイン補償され、電油変換器
26により油圧信号に変換され、加減弁27,2
8に伝達される。
The output signal of the function converter 32 passes through the switch 33 and becomes a rotation speed command value, which is compared with the current rotation speed, and the deviation is determined by the feedwater pump driving turbine 20.
The gain is compensated by the controller 25, converted into a hydraulic signal by the electro-hydraulic converter 26, and the control valve 27,
8.

そのとき、加減弁は低圧蒸気源すなわちタービ
ン抽気蒸気はなくなつているので、ボイラー出口
蒸気側の高圧加減弁28が開となり、関数変換器
32により与えられた開度まで直ちに開く。
At this time, since the low-pressure steam source, that is, the turbine extracted steam, is no longer present in the regulator valve, the high-pressure regulator valve 28 on the boiler outlet steam side opens immediately to the degree of opening given by the function converter 32.

このさい、給水ポンプ駆動用タービン20の回
転数はさきに関数変換器32のところで説明した
ように、タービン駆動給水ポンプ18の吐出圧力
と流量により決まる回転数となる。
At this time, the rotational speed of the water supply pump driving turbine 20 is determined by the discharge pressure and flow rate of the turbine-driven water supply pump 18, as explained above regarding the function converter 32.

このため、ボイラー11への送水は所内負荷単
独運転発生によるボイラー11の出口蒸気圧力が
上昇しても、ボイラー11が必要とする流量分が
確保され、ボイラー11及びタービン12を停止
させずに、所内負荷単独運転発生時の過渡的な不
安定状態でも継続して運転が可能となり、さらに
は電力系統の安定化にも結びつくこととなる。
Therefore, even if the steam pressure at the outlet of the boiler 11 increases due to the occurrence of isolated load operation in the plant, the flow rate required by the boiler 11 can be ensured, and the water can be supplied to the boiler 11 without stopping the boiler 11 and the turbine 12. It is possible to continue operation even in a transient unstable state when isolated load operation occurs in the plant, and it also leads to stabilization of the power system.

このようにボイラー11の出口側から主蒸気圧
力を検出するようにしたので、応答遅れのない状
態変化検知が可能となる。その結果検知遅れに伴
うボイラーの水位変動、水位低下によるオーバヒ
ート、オーバーヒートによるボイラーチユーブの
破裂などを未然に防ぐことができる。なお、関数
変換器32に入れられている関数は、さきに述べ
たように、所内負荷単独運転発生時の過渡的な状
態を考慮した関数であるため、ボイラー11やタ
ービン12が安定した状態となつたときには、与
えられた関数により求まる給水ポンプ駆動用ター
ビン20の回転数が、その安定時の回転数値と多
少差が現われる。
Since the main steam pressure is detected from the outlet side of the boiler 11 in this way, state changes can be detected without response delay. As a result, it is possible to prevent water level fluctuations in the boiler due to detection delays, overheating due to a drop in water level, and boiler tube rupture due to overheating. As mentioned earlier, the function stored in the function converter 32 is a function that takes into account the transient state at the time of isolated load operation in the station, so the boiler 11 and turbine 12 are not in a stable state. When the rotation speed of the water supply pump driving turbine 20 is determined by the given function, there will be a slight difference between the rotation speed and the stable rotation speed.

従つて、この安定状態となつた以降の回転数指
令値は、通常制御の調節器23側に切替器33を
切替える操作を行なうことも、本発明により提案
するところである。
Therefore, the present invention also proposes that the rotational speed command value after this stable state is controlled by switching the switch 33 to the regulator 23 side for normal control.

この切替時間は、実験や模擬試験によると、所
内負荷単独運転発生から約1〜3分位が適当であ
ることが明らかになつた。
According to experiments and simulation tests, it has been found that the appropriate switching time is about 1 to 3 minutes from the occurrence of the isolated load operation in the station.

以上述べたように、本発明によれば、電力系統
事故時等で発生する発電所所内単独運転時の急速
な負荷降下において、ボイラー給水ポンプ駆動タ
ービンの蒸気源の切替えや回転数制御の指令値
を、所内単独運転時専用の関数変換器を設け、こ
の関数変換器にボイラー出口圧力により、そのと
きに必要となるポンプ回転数および給水ポンプ駆
動タービンの高圧加減弁の開度が求まる関数を入
れておくことにより、所内単独運転発生時にその
関数変換器の出力を指令値として回転数制御を行
なわせ、過渡的な不安定状態においても、ボイラ
ーが必要とする給水量を送水できる。
As described above, according to the present invention, the command value for switching the steam source of the boiler feed water pump drive turbine and controlling the rotation speed can be applied in the case of a rapid load drop during isolated operation within a power plant, which occurs at the time of a power system accident, etc. A function converter is installed specifically for in-house independent operation, and a function is inserted into this function converter to determine the required pump rotation speed and the opening degree of the high pressure regulator valve of the feedwater pump drive turbine based on the boiler outlet pressure. By doing so, when isolated operation occurs in the plant, the output of the function converter is used as a command value to control the rotation speed, and even in a transient unstable state, the amount of water required by the boiler can be supplied.

かくして本発明によれば、発電設備を停止させ
ることもなく、電力系統の事故復帰とともに負荷
を増加させることができ、電力系統の安定化にも
役立てることができる。
Thus, according to the present invention, the load can be increased when the power system recovers from an accident without stopping the power generation equipment, and it can also be useful for stabilizing the power system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の火力発電設備の概念系統図、第
2図は従来の給水ポンプ駆動タービンの給水制御
装置のブロツク図、第3図は給水ポンプタービン
の低圧加減弁と高圧加減弁の関係図、第4図は給
水流量と圧力の関係説明図、第5図は本発明の一
実施例のブロツクダイアグラムである。 11……ボイラ、12……タービン、13……
発電機、14……復水器、15……復水ポンプ、
16……低圧給水加熱器、17……脱気器、18
……給水ポンプ、19……高圧給水加熱器、20
……給水ポンプ駆動タービン、22……設定器、、
23……調節器、25……制御器、26……電油
変換器、27……低圧蒸気加減弁、28……高圧
蒸気加減弁、29……オリフイスあるいはフロノ
ーズ、30……吸込流量発信器、31……圧力発
信器、32……関数変換器、33……切替器。
Figure 1 is a conceptual system diagram of conventional thermal power generation equipment, Figure 2 is a block diagram of a conventional water supply control system for a water pump drive turbine, and Figure 3 is a diagram of the relationship between the low pressure regulator and high pressure regulator of the water pump turbine. , FIG. 4 is an explanatory diagram of the relationship between water supply flow rate and pressure, and FIG. 5 is a block diagram of an embodiment of the present invention. 11... Boiler, 12... Turbine, 13...
Generator, 14... Condenser, 15... Condensate pump,
16...Low pressure feed water heater, 17...Deaerator, 18
...Water pump, 19...High pressure water heater, 20
...Water pump drive turbine, 22...Setting device,,
23...Adjuster, 25...Controller, 26...Electro-hydraulic converter, 27...Low pressure steam control valve, 28...High pressure steam control valve, 29...Orifice or flonose, 30...Suction flow rate transmitter , 31...pressure transmitter, 32...function converter, 33...switcher.

Claims (1)

【特許請求の範囲】[Claims] 1 火力発電設備における所内負荷単独運転発生
時に、通常のボイラ給水制御手段から関数変換器
を含む補助ボイラ給水制御手段に切替え、ボイラ
からの主蒸気圧力を検出し、この主蒸気圧力に基
づいて給水ポンプ駆動用タービンの回転数を制御
することによつてボイラへの給水を行ない、所定
時間後に通常のボイラ給水制御手段に復帰させる
ことを特徴とする所内負荷単独運転時の給水ポン
プ制御方法。
1. When station load islanding occurs in thermal power generation equipment, the normal boiler water supply control means is switched to the auxiliary boiler water supply control means including a function converter, the main steam pressure from the boiler is detected, and the water supply is controlled based on this main steam pressure. 1. A water supply pump control method during station load independent operation, characterized by supplying water to a boiler by controlling the rotational speed of a pump-driving turbine, and returning to normal boiler water supply control means after a predetermined period of time.
JP8105579A 1979-06-27 1979-06-27 Method of controlling water pump in running under only station load Granted JPS567904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8105579A JPS567904A (en) 1979-06-27 1979-06-27 Method of controlling water pump in running under only station load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8105579A JPS567904A (en) 1979-06-27 1979-06-27 Method of controlling water pump in running under only station load

Publications (2)

Publication Number Publication Date
JPS567904A JPS567904A (en) 1981-01-27
JPH0122521B2 true JPH0122521B2 (en) 1989-04-26

Family

ID=13735718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8105579A Granted JPS567904A (en) 1979-06-27 1979-06-27 Method of controlling water pump in running under only station load

Country Status (1)

Country Link
JP (1) JPS567904A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133504A (en) * 1982-02-01 1983-08-09 株式会社日立製作所 Control system of number of revolution of feed pump
JPS58145804A (en) * 1982-02-24 1983-08-31 株式会社日立製作所 Controller for feedwater of nuclear reactor
JPS61228204A (en) * 1985-04-02 1986-10-11 株式会社東芝 Controller for feedwater of nuclear reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845701A (en) * 1971-10-08 1973-06-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845701A (en) * 1971-10-08 1973-06-29

Also Published As

Publication number Publication date
JPS567904A (en) 1981-01-27

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
CA2309058C (en) Method for closed-loop output control of a steam power plant, and a steam power plant
JPH0122521B2 (en)
JPS63117107A (en) Auxiliary steam device
JP2578328B2 (en) Output control method for back pressure turbine generator
JP3469685B2 (en) Control method and control device for feed water pump turbine
JP2000297608A (en) Control device for feed water pump of power station
JPS6239655B2 (en)
JPH0429921B2 (en)
JP3026049B2 (en) Turbine control device
JP3183937B2 (en) Water supply control device
JP3112579B2 (en) Pressure control device
JP2001221010A (en) Load control method and apparatus of electric power plant
JPH0128202B2 (en)
JPS6212361B2 (en)
JPS6326802B2 (en)
JPH08135908A (en) Method and device for controlling temperature of reheat steam of boiler
JP2523493B2 (en) Turbin bypass system
JPH0641804B2 (en) Auxiliary steam pressure controller
JPH0241720B2 (en)
JPH0783404A (en) Controlling method for feed water flow rate regulating valve of boiler
JPH04103902A (en) Method and device for controlling feedwater to boiler
JPH0539703A (en) Steam turbine power generating facility
JPH0688504A (en) Turbine high speed valve control device
JPS59138702A (en) Turbine controller