JP2023032523A - Start-up control device and start-up control method for combined cycle power generation plant - Google Patents

Start-up control device and start-up control method for combined cycle power generation plant Download PDF

Info

Publication number
JP2023032523A
JP2023032523A JP2021138701A JP2021138701A JP2023032523A JP 2023032523 A JP2023032523 A JP 2023032523A JP 2021138701 A JP2021138701 A JP 2021138701A JP 2021138701 A JP2021138701 A JP 2021138701A JP 2023032523 A JP2023032523 A JP 2023032523A
Authority
JP
Japan
Prior art keywords
steam
pressure
signal
turbine
saturation temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021138701A
Other languages
Japanese (ja)
Inventor
英樹 黒羽
Hideki Kuroba
英樹 藤島
Hideki Fujishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2021138701A priority Critical patent/JP2023032523A/en
Publication of JP2023032523A publication Critical patent/JP2023032523A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Turbines (AREA)

Abstract

To provide a start-up control device and a start-up control method for a combined cycle power generation plant capable of shortening the plant start-up time compared with conventional ones.SOLUTION: The start-up control device includes: a converter for inputting a high-pressure steam outlet pressure signal of an exhaust heat recovery boiler and outputting a saturation temperature signal; a rise rate setting circuit that outputs a saturation temperature rise set value to start the exhaust heat recovery boiler at a certain temperature rise rate in response to the saturation temperature signal; a converter that converts the saturation temperature rise set value and outputs a steam pressure set value; and a valve opening degree setting device that outputs an opening degree signal for a high-pressure turbine bypass valve from the steam pressure set value and the high-pressure steam outlet pressure signal. The valve opening degree setting device controls an opening degree of the high-pressure turbine bypass valve, and steam is recovered to a condenser until steam conditions are met for inflow to the steam turbine, and then switched to inflow into the steam turbine after the steam conditions are met.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、コンバインドサイクル発電プラントの起動制御装置及び起動制御方法に関する。 An embodiment of the present invention relates to a start-up control device and a start-up control method for a combined cycle power plant.

コンバインドサイクル発電プラントでは、電力の需要に合わせた発電運転が可能であり、電力の需要によっては、ガスタービンを停止させ、電力が必要な時間にガスタービンを再度起動させるDSS(Daily Start Stop)運転を実施している。 A combined cycle power plant is capable of power generation operation that matches the power demand. Depending on the power demand, the gas turbine is stopped and restarted when the power is needed in a DSS (Daily Start Stop) operation. is being implemented.

ここで、コンバインドサイクル発電プラント起動の制約として、ガスタービンの起動時間、排熱回収ボイラの起動時間、蒸気タービンの起動時間がある。特にプラント起動時においては、蒸気タービンに供給する蒸気の条件を成立させるまでの時間が影響し、特に排熱回収ボイラの起動時間要素が大きな時間のファクターを占めている。このため、排熱回収ボイラの起動時間の短縮化が要求されている。 Here, the restrictions on the start-up of the combined cycle power plant include the start-up time of the gas turbine, the start-up time of the heat recovery steam generator, and the start-up time of the steam turbine. In particular, at the start-up of the plant, the time required to satisfy the conditions of the steam supplied to the steam turbine has an effect, and the start-up time element of the heat recovery boiler is a major factor of the time. Therefore, there is a demand for shortening the start-up time of the heat recovery boiler.

特開2012-57585号公報JP 2012-57585 A

蒸気タービンで発電を開始する為の圧力温度条件を成立させるためには、排熱回収ボイラで発生させる蒸気温度の上昇を速やかに行う必要があるが、排熱回収ボイラで発生させる蒸気の温度上昇速度を速めると、配管を含めた機器の熱疲労が大きくなり、蒸気管等の損傷による重大な事故を発生させる恐れがある。 In order to establish the pressure and temperature conditions for starting power generation with a steam turbine, it is necessary to quickly raise the temperature of the steam generated by the heat recovery boiler. If the speed is increased, the thermal fatigue of equipment including piping will increase, and there is a risk of serious accidents due to damage to steam pipes and the like.

この為、従来のコンバインドサイクル発電プラント起動時においては、排熱回収ボイラで発生させた蒸気を湿分分離させる高圧蒸気ドラムの蒸気圧力を監視し、復水器へ蒸気回収する高圧タービンバイパス制御により、その蒸気圧力の上昇速度を制限することで蒸気温度の上昇速度を制御していた。 For this reason, when the conventional combined cycle power plant starts up, the steam pressure of the high pressure steam drum that separates the moisture from the steam generated by the heat recovery boiler is monitored, and the high pressure turbine bypass control that recovers the steam to the condenser is used. , the rate of steam temperature rise was controlled by limiting the rate of steam pressure rise.

高圧タービンバイパス制御においては、高圧ドラムの圧力条件により、圧力上昇速度を一定速度で抑制し、温度上昇速度制限としていた。しかしながら、高圧蒸気ドラムからの温度上昇の規定値は、一般に一定温度上昇率であり、温度と圧力における飽和関数が一次関数式で表せない為、一定温度上昇を考慮すると温度上昇制限に合わせた圧力上昇率の低いところで温度上昇を設定することとなり、プラント起動時間の大幅な超過を必要としていた。 In the high-pressure turbine bypass control, the pressure rise speed is suppressed at a constant speed depending on the pressure condition of the high-pressure drum, and the temperature rise speed is limited. However, the specified value of the temperature rise from the high-pressure steam drum is generally a constant temperature rise rate, and the saturation function of temperature and pressure cannot be expressed by a linear function expression. The temperature rise was set at a low rate of rise, requiring a significant excess of plant start-up time.

本発明の目的は、従来に比べてプラント起動時間を短縮することのできるコンバインドサイクル発電プラントの起動制御装置及び起動制御方法を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a start-up control apparatus and a start-up control method for a combined cycle power plant, which can shorten the plant start-up time compared with the prior art.

実施形態のコンバインドサイクル発電プラントの起動制御装置は、燃料を燃焼させて駆動するガスタービンと、前記ガスタービンにより駆動し、発電するガスタービン発電機と、前記ガスタービンで発生した燃焼排ガス熱を回収し、主蒸気を生成させる排熱回収ボイラと、前記排熱回収ボイラで生成した蒸気を湿分分離させる高圧蒸気ドラム及び低圧蒸気ドラムと、蒸気によって駆動される蒸気タービンと、前記蒸気タービンにより駆動し、発電する蒸気タービン発電機と、前記排熱回収ボイラで生成した蒸気を前記蒸気タービンに供給する主蒸気配管と、前記排熱回収ボイラで生成した蒸気の圧力を制御する高圧タービンバイパス弁と、蒸気を冷却して水に戻す復水器と、を備えるコンバインドサイクル発電プラントの起動制御装置であって、前記排熱回収ボイラの高圧蒸気出口圧力を測定し、高圧蒸気出口圧力信号を出力する圧力トランスミッターと、前記高圧蒸気出口圧力信号を入力し、飽和温度信号を出力する、蒸気圧力から飽和温度への変換器と、前記飽和温度信号に対し、一定の温度上昇率で前記排熱回収ボイラを起動させる為の飽和温度上昇設定値を出力する飽和温度上昇率設定回路と、前記飽和温度上昇設定値を、蒸気圧力に変換して蒸気圧力設定値を出力する、飽和温度から蒸気圧力への変換器と、前記蒸気圧力設定値と、前記高圧蒸気出口圧力信号とから、前記高圧タービンバイパス弁の開度信号を出力する高圧タービンバイパス弁開度設定器とを具備し、前記高圧タービンバイパス弁開度設定器によって前記高圧タービンバイパス弁の開度を制御し、前記蒸気タービンに流入する蒸気条件が成立するまでの間蒸気を前記復水器へ回収し、前記蒸気条件が成立した後前記復水器への回収から前記蒸気タービンへの流入に切り替えることを特徴とする。 A start-up control device for a combined cycle power plant according to an embodiment includes a gas turbine driven by burning fuel, a gas turbine generator driven by the gas turbine to generate electricity, and recovering the heat of flue gas generated by the gas turbine. a heat recovery boiler for generating main steam, a high pressure steam drum and a low pressure steam drum for separating moisture from the steam generated by the heat recovery steam generator, a steam turbine driven by the steam, and a steam turbine driven by the steam turbine. a steam turbine generator for generating electricity; a main steam pipe for supplying steam generated by the heat recovery boiler to the steam turbine; and a high-pressure turbine bypass valve for controlling the pressure of the steam generated by the heat recovery boiler. a condenser for cooling steam back to water, the start-up control device for a combined cycle power plant comprising: measuring the high pressure steam outlet pressure of the heat recovery boiler and outputting a high pressure steam outlet pressure signal. a pressure transmitter, a steam pressure-to-saturation temperature converter that receives the high-pressure steam outlet pressure signal and outputs a saturation temperature signal, and the heat recovery steam generator at a constant rate of temperature rise with respect to the saturation temperature signal. and a saturation temperature rise rate setting circuit that outputs a saturation temperature rise set value for activating the saturation temperature rise set value, and a steam pressure set value that converts the saturation temperature rise set value to steam pressure and outputs the steam pressure set value from the saturation temperature to the steam pressure. a converter; and a high-pressure turbine bypass valve opening setting device for outputting an opening signal of the high-pressure turbine bypass valve from the steam pressure set value and the high-pressure steam outlet pressure signal, wherein the high-pressure turbine bypass valve The degree of opening of the high-pressure turbine bypass valve is controlled by an degree-of-opening setter, the steam is recovered into the condenser until the conditions for the steam flowing into the steam turbine are satisfied, and the recovery is performed after the conditions for the steam are satisfied. It is characterized by switching from recovery to a water vessel to inflow to the steam turbine.

本発明によれば、従来に比べてプラント起動時間を短縮することのできるコンバインドサイクル発電プラントの制御装置及び制御方法を提供することことができる。 ADVANTAGE OF THE INVENTION According to this invention, the control apparatus and control method of a combined cycle power plant which can shorten plant start-up time compared with the past can be provided.

第1実施形態に係るコンバインドサイクル発電プラントの起動制御装置の概略構成を示す図。1 is a diagram showing a schematic configuration of a start-up control device for a combined cycle power plant according to a first embodiment; FIG. 第2実施形態に係るコンバインドサイクル発電プラントの起動制御装置の概略構成を示す図。The figure which shows schematic structure of the start-up control apparatus of the combined cycle power plant which concerns on 2nd Embodiment. 蒸気の飽和温度と圧力との関係を示すグラフ。Graph showing the relationship between steam saturation temperature and pressure. 従来のコンバインドサイクル発電プラントの起動制御装置の概略構成を示す図。The figure which shows schematic structure of the start-up control apparatus of the conventional combined cycle power plant.

以下、実施形態に係るコンバインドサイクル発電プラントの起動制御装置及び起動制御方法について、図面を参照して説明する。 Hereinafter, a start control device and a start control method for a combined cycle power plant according to embodiments will be described with reference to the drawings.

(第1実施形態)
先ず、図1を参照して第1実施形態について説明する。図1に示すように、実施形態に係るコンバインドサイクル発電プラントは、燃料を燃焼させて駆動するガスタービン(GT)1と、蒸気によって駆動される蒸気タービン(ST)11とを具備している。
(First embodiment)
First, a first embodiment will be described with reference to FIG. As shown in FIG. 1, the combined cycle power plant according to the embodiment includes a gas turbine (GT) 1 driven by burning fuel and a steam turbine (ST) 11 driven by steam.

ガスタービン1の周りには、ガスタービン1に空気を供給する空気圧縮機(COMP)2と、ガスタービン1と共に駆動し発電するガスタービン発電機(GTG)3と、ガスタービン1で発生した燃焼排ガス熱を回収し、蒸気タービン11を駆動するための主蒸気を生成させる排熱回収ボイラ(HRSG)4が配設されている。 Around the gas turbine 1, there are an air compressor (COMP) 2 that supplies air to the gas turbine 1, a gas turbine generator (GTG) 3 that drives and generates electricity together with the gas turbine 1, and combustion generated in the gas turbine 1. A heat recovery steam generator (HRSG) 4 is provided for recovering exhaust gas heat and generating main steam for driving the steam turbine 11 .

排熱回収ボイラ4には、排熱回収ボイラ4で生成した蒸気を湿分分離させる高圧蒸気ドラム(HP DRUM)5及び低圧蒸気ドラム(LP DRUM)6と、排熱回収ボイラ4で生成した蒸気を主蒸気として蒸気タービン11に供給する主蒸気配管7が設けられている。 The heat recovery boiler 4 includes a high pressure steam drum (HP DRUM) 5 and a low pressure steam drum (LP DRUM) 6 for separating moisture from the steam generated by the heat recovery boiler 4, and the steam generated by the heat recovery boiler 4. is provided to the steam turbine 11 as main steam.

主蒸気配管7には、排熱回収ボイラ4の起動初期時において、排熱回収ボイラ4の圧力を規定の圧力まで上昇させる為に主蒸気配管7から蒸気を大気に放出する大気放散ライン8と、排熱回収ボイラ4で生成した蒸気の圧力を制御する為の高圧タービンバイパス弁9と、主蒸気配管7から蒸気タービン11に供給する主蒸気の供給を制御するための主蒸気止弁及び調節弁10が設けられている。 The main steam pipe 7 is provided with an atmospheric release line 8 for releasing steam from the main steam pipe 7 to the atmosphere in order to raise the pressure of the heat recovery boiler 4 to a specified pressure at the initial start of the heat recovery boiler 4. , a high-pressure turbine bypass valve 9 for controlling the pressure of steam generated by the heat recovery boiler 4, and a main steam stop valve and adjustment for controlling the supply of main steam supplied from the main steam pipe 7 to the steam turbine 11. A valve 10 is provided.

蒸気タービン11には、復水器(CONDENSER)12が接続されており、この復水器12には、高圧タービンバイパス弁9からの蒸気も流入する構成となっている。また、蒸気タービン11には、蒸気タービン11によって駆動され、発電する為の蒸気タービン発電機(STG)13が配設されている。 A condenser (CONDENSER) 12 is connected to the steam turbine 11 , and steam from the high-pressure turbine bypass valve 9 also flows into the condenser 12 . The steam turbine 11 is also provided with a steam turbine generator (STG) 13 that is driven by the steam turbine 11 to generate power.

主蒸気配管7の排熱回収ボイラ4との接続部近傍には、高圧蒸気出口圧力検出元14が設けられており、この高圧蒸気出口圧力検出元14には、圧力トランスミッター15が設けられている。圧力トランスミッター15からの高圧蒸気出口圧力信号(PV)16は、制御装置50に入力され、制御装置50からは高圧タービンバイパス弁9に、高圧タービンバイパス弁開度指令信号(MV)18が入力され、その開度が制御される。 A high-pressure steam outlet pressure detection source 14 is provided in the vicinity of the connecting portion of the main steam pipe 7 with the heat recovery boiler 4, and the high-pressure steam outlet pressure detection source 14 is provided with a pressure transmitter 15. . A high-pressure steam outlet pressure signal (PV) 16 from the pressure transmitter 15 is input to the control device 50, and a high-pressure turbine bypass valve opening command signal (MV) 18 is input to the high-pressure turbine bypass valve 9 from the control device 50. , whose opening is controlled.

高圧タービンバイパス弁9と復水器12とを接続する配管には、高圧タービンバイパス弁出口温度検出元19が設けられており、ここには、高圧タービンバイパス弁9の出口温度を監視する為の温度検出器20が設けられている。温度検出器20からの高圧タービンバイパス弁出口温度検出信号(PV)21は、温度調整制御器22に入力される。 A pipe connecting the high-pressure turbine bypass valve 9 and the condenser 12 is provided with a high-pressure turbine bypass valve outlet temperature detection source 19 for monitoring the outlet temperature of the high-pressure turbine bypass valve 9. A temperature detector 20 is provided. A high-pressure turbine bypass valve outlet temperature detection signal (PV) 21 from the temperature detector 20 is input to a temperature regulation controller 22 .

温度調整制御器22は、温度設定値制御器221と、高圧タービンバイパススプレイ調節弁開度設定器222とを具備している。温度設定値制御器221は、高圧タービンバイパス弁出口温度検出信号21に基づいて温度設定値(SV)を高圧タービンバイパススプレイ調節弁開度設定器222に出力する。高圧タービンバイパススプレイ調節弁開度設定器222は、この温度設定値(SV)と高圧タービンバイパス弁出口温度検出信号(PV)21との偏差から高圧タービンバイパススプレイ調節弁開度指令信号(MV)23を算出する。 The temperature adjustment controller 22 includes a temperature set value controller 221 and a high pressure turbine bypass spray control valve opening degree setter 222 . The temperature set value controller 221 outputs a temperature set value (SV) to the high pressure turbine bypass spray control valve opening degree setter 222 based on the high pressure turbine bypass valve outlet temperature detection signal 21 . A high-pressure turbine bypass spray control valve opening setting device 222 generates a high-pressure turbine bypass spray control valve opening command signal (MV) from the deviation between this temperature setting value (SV) and the high-pressure turbine bypass valve outlet temperature detection signal (PV) 21. 23 is calculated.

そして、高圧タービンバイパススプレイ調節弁開度設定器222からの高圧タービンバイパススプレイ調節弁開度指令信号(MV)23が高圧タービンバイパススプレイ調節弁24に入力され、その開度を調節することによって、高圧タービンバイパス弁スプレイライン25及びグランド蒸気復水器送水ライン26からの高圧タービンバイパス弁9への冷却水の供給を調節し、その温度を制御する。 Then, a high-pressure turbine bypass spray control valve opening command signal (MV) 23 from a high-pressure turbine bypass spray control valve opening setting device 222 is input to the high-pressure turbine bypass spray control valve 24, and by adjusting the opening, The supply of cooling water to the high pressure turbine bypass valve 9 from the high pressure turbine bypass valve spray line 25 and the gland steam condenser water line 26 is adjusted to control its temperature.

前述した制御装置50は、蒸気圧力から飽和温度への変換器501と、飽和温度上昇率設定器503と、飽和温度から蒸気圧力への変換器505と、高圧タービンバイパス弁開度設定器507とを具備している。 The aforementioned control device 50 includes a steam pressure-to-saturation temperature converter 501, a saturation temperature rise rate setting device 503, a saturation temperature-to-steam pressure converter 505, and a high-pressure turbine bypass valve opening degree setting device 507. is equipped with

蒸気圧力から飽和温度への変換器501は、圧力トランスミッター15で検出した排熱回収ボイラ4の高圧蒸気出口圧力信号16を入力信号として、飽和温度を算出するための乗数を乗算し、蒸気圧力から飽和温度へ変換する。そして、この飽和温度信号502を、飽和温度上昇率設定器503に入力する。 A steam pressure-to-saturation temperature converter 501 multiplies the high-pressure steam outlet pressure signal 16 of the heat recovery boiler 4 detected by the pressure transmitter 15 by a multiplier for calculating the saturation temperature, and converts the steam pressure to the saturation temperature. Convert to saturation temperature. Then, this saturation temperature signal 502 is input to a saturation temperature rise rate setting device 503 .

飽和温度上昇率設定器503は、入力された飽和温度信号502に対し、一定の温度上昇率で排熱回収ボイラ4を起動する為の飽和温度上昇設定値504を算出して、飽和温度から蒸気圧力への変換器505に入力する。 A saturation temperature rise rate setter 503 calculates a saturation temperature rise set value 504 for starting the exhaust heat recovery boiler 4 at a constant temperature rise rate with respect to the input saturation temperature signal 502, and determines steam from the saturation temperature. Input to converter 505 to pressure.

蒸気タービン11に流入する蒸気条件が成立した後、主蒸気を復水器12への回収から蒸気タービン11への流入に切り替える為の高圧タービンバイパス弁9の開度指令は、主蒸気圧力により決定する。この為、飽和温度から蒸気圧力への変換器505は、飽和温度上昇率設定器503から出力された飽和温度上昇設定値504に蒸気圧力を算出する為の乗数を乗算し飽和温度から蒸気圧力に変換して、この蒸気圧力設定値506を高圧タービンバイパス弁開度設定器507に入力する。 After the conditions for the steam flowing into the steam turbine 11 are established, the opening command of the high-pressure turbine bypass valve 9 for switching the main steam from being recovered in the condenser 12 to flowing into the steam turbine 11 is determined by the main steam pressure. do. Therefore, the saturation temperature to steam pressure converter 505 multiplies the saturation temperature rise setting value 504 output from the saturation temperature rise rate setting device 503 by a multiplier for calculating the steam pressure, and converts the saturation temperature to the steam pressure. After conversion, this steam pressure set value 506 is input to the high pressure turbine bypass valve opening degree setter 507 .

高圧タービンバイパス弁開度設定器507は、入力された蒸気圧力設定値506と圧力トランスミッター15で検出した高圧蒸気出口圧力信号16との偏差により、PID演算し、高圧タービンバイパス弁9の開度を制御する為の高圧タービンバイパス弁開度指令信号18を生成し、これを高圧タービンバイパス弁9に入力する。 The high-pressure turbine bypass valve opening setting device 507 performs PID calculation based on the difference between the input steam pressure set value 506 and the high-pressure steam outlet pressure signal 16 detected by the pressure transmitter 15, and determines the opening of the high-pressure turbine bypass valve 9. A high pressure turbine bypass valve opening command signal 18 for control is generated and input to the high pressure turbine bypass valve 9 .

以上のように、制御装置50では、入力した高圧蒸気出口圧力信号16を、蒸気圧力から飽和温度への変換器501に入力し、飽和温度を算出する。この算出された飽和温度を用いて、飽和温度上昇率設定器503にて、排熱回収ボイラ4の温度上昇率を一定の上昇率で演算し、飽和温度から蒸気圧力への変換器505にて、再度蒸気圧力に変換することで制御を可能とし、蒸気タービン11に流入させる蒸気条件が成立するまで蒸気の温度と圧力を上昇させる。 As described above, in the control device 50, the input high-pressure steam outlet pressure signal 16 is input to the steam pressure-to-saturation temperature converter 501 to calculate the saturation temperature. Using this calculated saturation temperature, the saturation temperature rise rate setting device 503 calculates the temperature rise rate of the heat recovery boiler 4 at a constant rise rate, and the converter 505 from the saturation temperature to the steam pressure , is converted into steam pressure again to enable control, and the temperature and pressure of the steam are increased until the steam conditions for flowing into the steam turbine 11 are satisfied.

そして、蒸気タービン11に流入させる蒸気条件が成立すると、主蒸気の復水器12での回収から蒸気タービン11への流入に切り替える為に、高圧タービンバイパス弁開度設定器507によって、高圧タービンバイパス弁9を閉動作させる。これと共に、主蒸気止弁及び調節弁10が開かれ、蒸気タービン11に主蒸気が導入されて、蒸気タービン11の駆動により蒸気タービン発電機13による発電が行われる。 Then, when the steam conditions for flowing into the steam turbine 11 are established, the high-pressure turbine bypass valve opening degree setting device 507 is operated to switch the recovery of the main steam in the condenser 12 to the flow into the steam turbine 11 . The valve 9 is closed. Along with this, the main steam stop valve and control valve 10 are opened, the main steam is introduced into the steam turbine 11, and the steam turbine 11 is driven to generate power by the steam turbine generator 13.

比較のため、図4に従来におけるコンバインドサイクル発電プラントの起動制御装置及び起動制御方法について示す。なお、図4において、図1と対応する部分には、同一の符号を付して重複した説明は省略する。図4に示すように、従来の起動制御を行う制御装置17は、圧力上昇率演算器171と、タービンバイパス弁開度設定器172とから構成されている。 For comparison, FIG. 4 shows a conventional start-up control device and start-up control method for a combined cycle power plant. In FIG. 4, parts corresponding to those in FIG. 1 are given the same reference numerals, and redundant explanations are omitted. As shown in FIG. 4 , the control device 17 that performs conventional start-up control comprises a pressure rise rate calculator 171 and a turbine bypass valve opening degree setter 172 .

そして、高圧蒸気出口圧力信号16により、圧力上昇率演算器171が一定速度で圧力を上昇させる圧力上昇率173を演算し、タービンバイパス弁開度設定器172が圧力上昇率173と高圧蒸気出口圧力信号16の偏差により、圧力上昇速度を一定速度に抑制し、温度上昇速度制限としていた。これによると一定圧力上昇設定である為、図3に示すとおり、温度上昇速度と圧力上昇速度の関係が一次関数式とならないことに起因して、圧力の低いところでは、温度上昇率が大きくなり、圧力が上昇するに従って温度上昇は極端に低下する。この為、プラント起動時間が長くなってしまっていた。 Based on the high-pressure steam outlet pressure signal 16, a pressure rise rate calculator 171 calculates a pressure rise rate 173 for increasing pressure at a constant speed, and a turbine bypass valve opening setting device 172 calculates the pressure rise rate 173 and the high-pressure steam outlet pressure. By the deviation of the signal 16, the pressure rise speed is suppressed to a constant speed, and the temperature rise speed is limited. According to this, since the pressure rise is set to be constant, as shown in FIG. 3, the relationship between the temperature rise speed and the pressure rise speed does not become a linear function, so the temperature rise rate increases at low pressure. , the temperature rise drops dramatically as the pressure rises. For this reason, the plant start-up time has become long.

これに対して、図1に示した第1実施形態では、温度変換を用いることにより、圧力変化を温度変化に置き換えることで温度変化率設定が可能となり、一般的に3時間程度要していた起動時間を30分程度短縮することが可能となる。このように、一定の上昇率で蒸気温度を上昇させる為、排熱回収ボイラ4の起動時間を短縮することが可能となり、排熱回収ボイラ4で生成された主蒸気を蒸気タービン11に流入開始するまでの時間を短縮することが可能となる。 On the other hand, in the first embodiment shown in FIG. 1, by using temperature conversion, it is possible to set the temperature change rate by replacing the pressure change with the temperature change, and generally it takes about 3 hours. It is possible to shorten the startup time by about 30 minutes. Since the steam temperature is raised at a constant rate of increase in this manner, the start-up time of the heat recovery boiler 4 can be shortened, and the main steam generated by the heat recovery boiler 4 starts to flow into the steam turbine 11. It is possible to shorten the time until

(第2実施形態)
次に、図2を参照して、第2実施形態について説明する。なお、図1に示した第1実施形態と対応する部分には、同一の符号を付して、重複した説明は省略する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG. In addition, the same code|symbol is attached|subjected to the part corresponding to 1st Embodiment shown in FIG. 1, and the overlapping description is abbreviate|omitted.

図2に示すように、第2実施形態では、制御装置50aに、蒸気圧力の実値と設定値の偏差監視器508と、温度設定上昇制限器510が加えられている。蒸気圧力の実値と設定値の偏差監視器508にて、第1実施形態で説明した飽和温度から蒸気圧力への変換器505にて変換された蒸気圧力設定値506と高圧蒸気出口圧力信号16の偏差を監視する。この出力である蒸気圧力の実値と設定値の偏差信号509が、温度設定上昇制限器510に入力され、その偏差の値が所定値未満、例えば0未満の場合(マイナスの場合)に、温度設定上昇制限器510がONとなり、温度設定上昇制限器510からの温度設定値上昇停止/再開信号511により、飽和温度上昇率設定器503における温度設定値の上昇を一時停止させる。一方、偏差の値が所定値以上、例えば0以上の場合(0又はプラスの場合)には、温度設定上昇制限器510がOFFとなり、飽和温度上昇率設定器503における温度設定値の上昇を再開する。 As shown in FIG. 2, in the second embodiment, a deviation monitor 508 between the actual value of the steam pressure and the set value and a temperature setting rise limiter 510 are added to the control device 50a. In the deviation monitor 508 between the actual value and the set value of the steam pressure, the steam pressure set value 506 and the high-pressure steam outlet pressure signal 16 converted by the converter 505 from the saturated temperature to the steam pressure described in the first embodiment. monitor the deviation of A deviation signal 509 between the actual steam pressure value and the set value, which is this output, is input to the temperature setting rise limiter 510, and when the deviation value is less than a predetermined value, for example, less than 0 The set temperature increase limiter 510 is turned on, and the temperature set value increase stop/restart signal 511 from the temperature set value increase limiter 510 temporarily stops the rise of the temperature set value in the saturation temperature rise rate setter 503 . On the other hand, when the deviation value is equal to or greater than a predetermined value, for example, equal to or greater than 0 (zero or plus), the temperature setting increase limiter 510 is turned off, and the saturation temperature increase rate setting device 503 resumes increasing the temperature setting value. do.

換言すれば実質的に、蒸気圧力から飽和温度への変換器501から出力される飽和温度信号502が、飽和温度上昇率設定器503から出力される飽和温度上昇設定値504を超える場合に、飽和温度上昇率設定器503における飽和温度上昇設定値504の上昇を一時停止させ、飽和温度信号502が飽和温度上昇設定値504以下になった場合に飽和温度上昇設定値504の上昇を再開する。このように飽和温度の上昇を制御する。 In other words, when the saturation temperature signal 502 output from the steam pressure-to-saturation temperature converter 501 exceeds the saturation temperature rise setpoint 504 output from the saturation temperature rise rate setter 503, saturation is reached. The rise of the saturation temperature rise set value 504 in the temperature rise rate setter 503 is temporarily stopped, and the rise of the saturation temperature rise set value 504 is resumed when the saturation temperature signal 502 becomes equal to or less than the saturation temperature rise set value 504 . Thus, the saturation temperature rise is controlled.

排熱回収ボイラ4で発生させる蒸気の温度上昇速度を速めると、配管を含めた機器の熱疲労が大きくなり、主蒸気配管7などの損傷による重大な事故を発生させる恐れがある。この為、飽和温度信号502の上昇が飽和温度上昇設定値504を上回る場合、一時的に飽和温度上昇設定値504の上昇を停止させる。このように飽和温度上昇設定値504の上昇を制御することで、蒸気圧力設定値506の上昇継続による高圧蒸気出口圧力信号16の上昇を制御することが可能となり、ボイラが許容する温度上昇速度(ボイラ管材により異なる値)を満足させることが可能となる。 If the temperature rise rate of the steam generated by the heat recovery boiler 4 is accelerated, the thermal fatigue of the equipment including the piping will increase, and there is a risk that the main steam piping 7 will be damaged, resulting in a serious accident. Therefore, when the rise of the saturation temperature signal 502 exceeds the set value 504 of rise in saturation temperature, the rise of the set value 504 of saturation temperature rise is temporarily stopped. By controlling the rise of the saturation temperature rise set value 504 in this way, it is possible to control the rise of the high-pressure steam outlet pressure signal 16 due to the continued rise of the steam pressure set value 506, and the temperature rise rate allowed by the boiler ( different values depending on the boiler tube material) can be satisfied.

以上のように、第2実施形態によれば、第1実施形態と同様な作用効果が得られるとともに、これに加えて、熱疲労による配管を含めた機器を損傷させる様な急激な温度上昇を抑制することが可能となる。これにより、排熱回収ボイラ4の事故要因を抑制することが可能となる。 As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained, and in addition, a rapid temperature rise that damages equipment including piping due to thermal fatigue can be prevented. can be suppressed. As a result, it is possible to suppress accident factors of the heat recovery boiler 4 .

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described above, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1……ガスタービン、2……空気圧縮機、3……ガスタービン発電機、4……排熱回収ボイラ、5……高圧蒸気ドラム、6……低圧蒸気ドラム、7……主蒸気配管、8……大気放散ライン、9……高圧タービンバイパス弁、10……主蒸気止弁及び調節弁、11……蒸気タービン、12……復水器、13……蒸気タービン発電機、14……高圧蒸気出口圧力検出元、15……圧力トランスミッター、16……高圧蒸気出口圧力信号、17……制御装置、18……高圧タービンバイパス弁開度指令信号、19……高圧タービンバイパス弁出口温度検出元、20……温度検出器、21……高圧タービンバイパス弁出口温度検出信号、22……温度調整制御器、23……高圧タービンバイパススプレイ調節弁開度指令信号、24……高圧タービンバイパススプレイ調節弁、25……高圧タービンバイパス弁スプレイライン、26……グランド蒸気復水器送水ライン、50……制御装置、221……温度設定値制御器、222……高圧タービンバイパススプレイ調節弁開度設定器、501……蒸気圧力から飽和温度への変換器、502……飽和温度信号、503……飽和温度上昇率設定器、504……飽和温度上昇設定値、505……飽和温度から蒸気圧力への変換器、506……蒸気圧力設定値、507……高圧タービンバイパス弁開度設定器、508……蒸気圧力の実値と設定値の偏差監視器、509……蒸気圧力の実値と設定値の偏差信号、510……温度設定上昇制限器、511……温度設定値上昇停止/再開信号。 1 gas turbine, 2 air compressor, 3 gas turbine generator, 4 exhaust heat recovery boiler, 5 high-pressure steam drum, 6 low-pressure steam drum, 7 main steam piping, 8...Atmospheric release line, 9...High pressure turbine bypass valve, 10...Main steam stop valve and control valve, 11...Steam turbine, 12...Condenser, 13...Steam turbine generator, 14... High-pressure steam outlet pressure detection source 15 Pressure transmitter 16 High-pressure steam outlet pressure signal 17 Control device 18 High-pressure turbine bypass valve opening command signal 19 High-pressure turbine bypass valve outlet temperature detection 20 Temperature detector 21 High-pressure turbine bypass valve outlet temperature detection signal 22 Temperature adjustment controller 23 High-pressure turbine bypass spray control valve opening command signal 24 High-pressure turbine bypass spray Control valve 25 High-pressure turbine bypass valve spray line 26 Grand steam condenser water supply line 50 Controller 221 Temperature setpoint controller 222 High-pressure turbine bypass spray control valve opening Setting device 501 ... Converter from steam pressure to saturation temperature 502 ... Saturation temperature signal 503 ... Saturation temperature rise rate setter 504 ... Saturation temperature rise set value 505 ... Saturation temperature to steam pressure converter, 506 ... steam pressure set value, 507 ... high-pressure turbine bypass valve opening setting device, 508 ... deviation monitor between actual value and set value of steam pressure, 509 ... actual value of steam pressure and Deviation signal of set value, 510 Temperature setting increase limiter, 511 Temperature set value increase stop/restart signal.

Claims (6)

燃料を燃焼させて駆動するガスタービンと、
前記ガスタービンにより駆動し、発電するガスタービン発電機と、
前記ガスタービンで発生した燃焼排ガス熱を回収し、主蒸気を生成させる排熱回収ボイラと、
前記排熱回収ボイラで生成した蒸気を湿分分離させる高圧蒸気ドラム及び低圧蒸気ドラムと、
蒸気によって駆動される蒸気タービンと、
前記蒸気タービンにより駆動し、発電する蒸気タービン発電機と、
前記排熱回収ボイラで生成した蒸気を前記蒸気タービンに供給する主蒸気配管と、
前記排熱回収ボイラで生成した蒸気の圧力を制御する高圧タービンバイパス弁と、
蒸気を冷却して水に戻す復水器と、
を備えるコンバインドサイクル発電プラントの起動制御装置であって、
前記排熱回収ボイラの高圧蒸気出口圧力を測定し、高圧蒸気出口圧力信号を出力する圧力トランスミッターと、
前記高圧蒸気出口圧力信号を入力し、飽和温度信号を出力する、蒸気圧力から飽和温度への変換器と、
前記飽和温度信号に対し、一定の温度上昇率で前記排熱回収ボイラを起動させる為の飽和温度上昇設定値を出力する飽和温度上昇率設定回路と、
前記飽和温度上昇設定値を、蒸気圧力に変換して蒸気圧力設定値を出力する、飽和温度から蒸気圧力への変換器と、
前記蒸気圧力設定値と、前記高圧蒸気出口圧力信号とから、前記高圧タービンバイパス弁の開度信号を出力する高圧タービンバイパス弁開度設定器と
を具備し、
前記高圧タービンバイパス弁開度設定器によって前記高圧タービンバイパス弁の開度を制御し、前記蒸気タービンに流入する蒸気条件が成立するまでの間蒸気を前記復水器へ回収し、前記蒸気条件が成立した後前記復水器への回収から前記蒸気タービンへの流入に切り替える
ことを特徴とするコンバインドサイクル発電プラントの起動制御装置。
a gas turbine driven by burning fuel;
a gas turbine generator driven by the gas turbine to generate electricity;
an exhaust heat recovery boiler that recovers the heat of the flue gas generated by the gas turbine and generates main steam;
a high-pressure steam drum and a low-pressure steam drum for separating moisture from the steam generated by the heat recovery steam generator;
a steam turbine driven by steam;
a steam turbine generator driven by the steam turbine to generate electricity;
a main steam pipe for supplying the steam generated by the heat recovery steam generator to the steam turbine;
a high-pressure turbine bypass valve that controls the pressure of the steam generated by the heat recovery steam generator;
a condenser that cools the steam back to water;
A start-up control device for a combined cycle power plant comprising
a pressure transmitter for measuring the high-pressure steam outlet pressure of the heat recovery boiler and outputting a high-pressure steam outlet pressure signal;
a steam pressure to saturation temperature converter receiving said high pressure steam outlet pressure signal and outputting a saturation temperature signal;
a saturation temperature rise rate setting circuit for outputting a saturation temperature rise set value for starting the heat recovery boiler at a constant temperature rise rate in response to the saturation temperature signal;
a saturation temperature to steam pressure converter that converts the saturation temperature rise setpoint to steam pressure and outputs a steam pressure setpoint;
a high-pressure turbine bypass valve opening setting device that outputs an opening signal of the high-pressure turbine bypass valve based on the steam pressure set value and the high-pressure steam outlet pressure signal,
The opening of the high-pressure turbine bypass valve is controlled by the high-pressure turbine bypass valve opening setting device, and the steam is recovered to the condenser until the steam condition for flowing into the steam turbine is satisfied, and the steam condition is satisfied. A start-up control device for a combined cycle power plant, characterized by switching from recovery to the condenser to inflow to the steam turbine after establishment.
請求項1記載のコンバインドサイクル発電プラントの起動制御装置であって、
前記高圧蒸気出口圧力信号と前記蒸気圧力設定値との偏差信号を出力する蒸気圧力の偏差監視器と、
前記蒸気圧力の偏差監視器において算出された前記偏差信号の値が所定値未満の場合、前記蒸気圧力設定値の上昇を停止させ、前記偏差信号の値が所定値以上の場合、前記蒸気圧力設定値の上昇を再開させる温度設定値上昇制御器と、
を具備したことを特徴とするコンバインドサイクル発電プラントの起動制御装置。
A startup control device for a combined cycle power plant according to claim 1,
a steam pressure deviation monitor that outputs a deviation signal between the high-pressure steam outlet pressure signal and the steam pressure set value;
When the value of the deviation signal calculated by the deviation monitor of the steam pressure is less than a predetermined value, the steam pressure set value is stopped increasing, and when the value of the deviation signal is greater than or equal to the predetermined value, the steam pressure is set. a temperature setpoint increase controller to resume increasing the value;
A startup control device for a combined cycle power plant, comprising:
請求項2記載のコンバインドサイクル発電プラントの起動制御装置であって、
前記所定値がゼロであり、前記偏差信号の値がマイナスの場合、前記蒸気圧力設定値の上昇を停止させ、前記偏差信号の値がゼロ又はプラスの場合、前記蒸気圧力設定値の上昇を再開させる
ことを特徴とするコンバインドサイクル発電プラントの起動制御装置。
A startup control device for a combined cycle power plant according to claim 2,
When the predetermined value is zero and the value of the deviation signal is negative, the increase of the steam pressure setpoint is stopped, and when the value of the deviation signal is zero or positive, the increase of the steam pressure setpoint is resumed. A start-up control device for a combined cycle power plant characterized by:
燃料を燃焼させて駆動するガスタービンと、
前記ガスタービンと共に駆動し、発電するガスタービン発電機と、
前記ガスタービンで発生した燃焼排ガス熱を回収し、主蒸気を生成させる排熱回収ボイラと、
前記排熱回収ボイラで生成した蒸気を湿分分離させる高圧蒸気ドラム及び低圧蒸気ドラムと、
蒸気によって駆動される蒸気タービンと、
前記蒸気タービンにより駆動し、発電する蒸気タービン発電機と、
前記排熱回収ボイラで生成した蒸気を前記蒸気タービンに供給する主蒸気配管と、
前記排熱回収ボイラで生成した蒸気の圧力を制御する高圧タービンバイパス弁と、
蒸気を冷却して水に戻す復水器と、
を備えるコンバインドサイクル発電プラントの起動制御方法であって、
前記排熱回収ボイラの高圧蒸気出口圧力を測定し、高圧蒸気出口圧力信号を出力する圧力測定ステップと、
前記高圧蒸気出口圧力信号を入力し、飽和温度信号を出力する、蒸気圧力から飽和温度への変換ステップと、
前記飽和温度信号に対し、一定の温度上昇率で前記排熱回収ボイラを起動させる為の飽和温度上昇設定値を出力する飽和温度上昇率設定ステップと、
前記飽和温度上昇設定値を、蒸気圧力に変換して蒸気圧力設定値を出力する、飽和温度から蒸気圧力への変換ステップと、
前記蒸気圧力設定値と、前記高圧蒸気出口圧力信号とから、前記高圧タービンバイパス弁の開度信号を出力する高圧タービンバイパス弁開度設定ステップと
を具備し、
前記高圧タービンバイパス弁開度設定ステップによって前記高圧タービンバイパス弁の開度を制御し、前記蒸気タービンに流入する蒸気条件が成立するまでの間蒸気を前記復水器へ回収し、前記蒸気条件が成立した後前記復水器への回収から前記蒸気タービンへの流入に切り替える
ことを特徴とするコンバインドサイクル発電プラントの起動制御方法。
a gas turbine driven by burning fuel;
a gas turbine generator driven together with the gas turbine to generate electricity;
an exhaust heat recovery boiler that recovers the heat of the flue gas generated by the gas turbine and generates main steam;
a high-pressure steam drum and a low-pressure steam drum for separating moisture from the steam generated by the heat recovery steam generator;
a steam turbine driven by steam;
a steam turbine generator driven by the steam turbine to generate electricity;
a main steam pipe for supplying the steam generated by the heat recovery steam generator to the steam turbine;
a high-pressure turbine bypass valve that controls the pressure of the steam generated by the heat recovery steam generator;
a condenser that cools the steam back to water;
A start-up control method for a combined cycle power plant comprising
a pressure measuring step of measuring the high-pressure steam outlet pressure of the heat recovery boiler and outputting a high-pressure steam outlet pressure signal;
a steam pressure to saturation temperature conversion step of inputting the high pressure steam outlet pressure signal and outputting a saturation temperature signal;
a saturation temperature rise rate setting step of outputting a saturation temperature rise set value for starting the heat recovery boiler at a constant temperature rise rate with respect to the saturation temperature signal;
a saturation temperature-to-steam pressure conversion step of converting the saturation temperature rise setpoint into steam pressure and outputting the steam pressure setpoint;
a high-pressure turbine bypass valve opening degree setting step of outputting an opening degree signal of the high-pressure turbine bypass valve from the steam pressure set value and the high-pressure steam outlet pressure signal;
The opening degree of the high pressure turbine bypass valve is controlled by the high pressure turbine bypass valve opening degree setting step, and the steam is recovered to the condenser until the steam conditions for flowing into the steam turbine are satisfied, and the steam conditions are satisfied. A start-up control method for a combined cycle power plant, characterized by switching from recovery to the condenser to inflow to the steam turbine after establishment.
請求項4記載のコンバインドサイクル発電プラントの起動制御方法であって、
前記高圧蒸気出口圧力信号と前記蒸気圧力設定値との偏差信号を出力する蒸気圧力の偏差監視ステップと、
前記蒸気圧力の偏差監視ステップにおいて算出された前記偏差信号の値が所定値未満の場合、前記蒸気圧力設定値の上昇を停止させ、前記偏差信号の値が所定値以上の場合、前記蒸気圧力設定値の上昇を再開させる温度設定値上昇制御ステップと、
を具備したことを特徴とするコンバインドサイクル発電プラントの起動制御方法。
A startup control method for a combined cycle power plant according to claim 4,
a steam pressure deviation monitoring step of outputting a deviation signal between the high-pressure steam outlet pressure signal and the steam pressure set value;
If the value of the deviation signal calculated in the deviation monitoring step of the steam pressure is less than a predetermined value, the steam pressure setting value is stopped, and if the value of the deviation signal is equal to or greater than the predetermined value, the steam pressure is set. a temperature setpoint increase control step for restarting the increase of the value;
A startup control method for a combined cycle power plant, comprising:
請求項5記載のコンバインドサイクル発電プラントの起動制御方法であって、
前記所定値がゼロであり、前記偏差信号の値がマイナスの場合、前記蒸気圧力設定値の上昇を停止させ、前記偏差信号の値がゼロ又はプラスの場合、前記蒸気圧力設定値の上昇を再開させる
ことを特徴とするコンバインドサイクル発電プラントの起動制御方法。
A startup control method for a combined cycle power plant according to claim 5,
When the predetermined value is zero and the value of the deviation signal is negative, the increase of the steam pressure setpoint is stopped, and when the value of the deviation signal is zero or positive, the increase of the steam pressure setpoint is resumed. A start-up control method for a combined cycle power plant, characterized by:
JP2021138701A 2021-08-27 2021-08-27 Start-up control device and start-up control method for combined cycle power generation plant Pending JP2023032523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021138701A JP2023032523A (en) 2021-08-27 2021-08-27 Start-up control device and start-up control method for combined cycle power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021138701A JP2023032523A (en) 2021-08-27 2021-08-27 Start-up control device and start-up control method for combined cycle power generation plant

Publications (1)

Publication Number Publication Date
JP2023032523A true JP2023032523A (en) 2023-03-09

Family

ID=85416284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021138701A Pending JP2023032523A (en) 2021-08-27 2021-08-27 Start-up control device and start-up control method for combined cycle power generation plant

Country Status (1)

Country Link
JP (1) JP2023032523A (en)

Similar Documents

Publication Publication Date Title
JPS6149485B2 (en)
KR101883689B1 (en) Plant control apparatus, plant control method and power plant
JP4913087B2 (en) Control device for combined power plant
EP2270317B1 (en) Apparatus for control of gas turbine in uniaxial combined-cycle plant, and method therefor
US20180058321A1 (en) Plant control apparatus, plant control method and power plant
JP2015124710A (en) Control device and activation method
JP2000130108A (en) Starting method for combined cycle power plant
US4145995A (en) Method of operating a power plant and apparatus therefor
JP2023032523A (en) Start-up control device and start-up control method for combined cycle power generation plant
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
CN110382842B (en) Gas turbine combined cycle plant and control method for gas turbine combined cycle plant
US10697369B2 (en) Method for shutting down a gas turbine and a steam turbine of a combined cycle power plant at the same time
JP4208397B2 (en) Start-up control device for combined cycle power plant
US10450900B2 (en) Plant control apparatus, plant control method and power generating plant
JP5734117B2 (en) Combined cycle power plant and operation method thereof
JP3660757B2 (en) Control device for combined cycle power plant
JP2008075996A (en) Exhaust heat recovery boiler and its steam pressure control method
JP4981509B2 (en) Combined power plant steam turbine operation control system
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPH11148603A (en) Controller for coal/residual oil gassifying combined power generation plant
Anisimov et al. Development and Implementation of Automatic Conversion of Steam-Gas Power Unit from Compound Cycle Mode to Steam-Power Mode Without Shutdown of the Unit
JP2645128B2 (en) Coal gasification power plant control unit
JP2007285220A (en) Combined cycle power generation facility
JP4335703B2 (en) Gasification combined power generation system
JP5890221B2 (en) Coal gasification combined power plant and its operation control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240705