JPH0743226B2 - Condenser cooling water flow controller - Google Patents

Condenser cooling water flow controller

Info

Publication number
JPH0743226B2
JPH0743226B2 JP62080968A JP8096887A JPH0743226B2 JP H0743226 B2 JPH0743226 B2 JP H0743226B2 JP 62080968 A JP62080968 A JP 62080968A JP 8096887 A JP8096887 A JP 8096887A JP H0743226 B2 JPH0743226 B2 JP H0743226B2
Authority
JP
Japan
Prior art keywords
cooling water
condenser
flow rate
signal
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62080968A
Other languages
Japanese (ja)
Other versions
JPS63247592A (en
Inventor
義男 草山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62080968A priority Critical patent/JPH0743226B2/en
Publication of JPS63247592A publication Critical patent/JPS63247592A/en
Publication of JPH0743226B2 publication Critical patent/JPH0743226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、復水器冷却水流量制御装置に係り、特に復水
器冷却管の清浄度が運転条件,洗浄等により変化し復水
器真空度が変化するよう発電プラントの復水器冷却水流
量制御装置に関する。
Description: TECHNICAL FIELD The present invention relates to a condenser cooling water flow rate control device, and in particular to a condenser in which the cleanliness of the condenser cooling pipe changes depending on operating conditions, cleaning, etc. The present invention relates to a condenser cooling water flow rate control device for a power plant so that the degree of vacuum changes.

〔従来の技術〕[Conventional technology]

火力発電プラントを例として復水器冷却水系統を示すと
概略第1図の通りである。同図において1は発電機出力
検出器、2は冷却水入口温度検出器、3は冷却水出口温
度検出器、4は冷却水流量検出器であり、これら第2図
に示す各検出器に対応するものである。
FIG. 1 is a schematic diagram showing a condenser cooling water system by taking a thermal power plant as an example. In the figure, 1 is a generator output detector, 2 is a cooling water inlet temperature detector, 3 is a cooling water outlet temperature detector, 4 is a cooling water flow rate detector, and corresponds to each detector shown in FIG. To do.

近年原子力発電プラントの増大,日間負荷変化幅の拡大
から新設の火力発電プラントは勿論、既設の大容量火力
発電プラントも各種改造の上、中間負荷運用するケース
が多くなつてきたが、復水器冷却水ポンプにあつては部
分負荷時のポンプ軸動力を軽減する為、復水器熱負荷に
見合つた冷却水量にポンプ送水量を調整可能なよう可動
翼ポンプを採用するケースが多くなつてきた。
In recent years, due to the increase of nuclear power plants and the expansion of daily load change range, not only new thermal power plants but also existing large-capacity thermal power plants have been modified in various ways and intermediate load operation has become common. For cooling water pumps, in order to reduce the power of the pump shaft during partial load, there are many cases in which a movable vane pump is adopted so that the pump water supply amount can be adjusted to the cooling water amount that matches the condenser heat load. .

従来、復水器冷却水量の制御はこの可動翼冷却水ポンプ
の翼開度を第2図の様な制御装置を使用して第3図に示
すように行なつていた。
Conventionally, the amount of condenser cooling water has been controlled by controlling the blade opening of the movable blade cooling water pump as shown in FIG. 3 by using a control device as shown in FIG.

第2図において、1は発電機出力検出器、2は冷却水入
口温度検出器、3は冷却水出口温度検出器、4は冷却水
流量検出器であり、5,6,7はそれぞれ流量指令値作成
器、加算器、調節器である。5は流量指令値作成器は第
3図をそのままプログラムしたもので復水器冷却水出入
口温度差(ΔT)制限線と、冷却水入口温度をパラメー
タとした発電機出力の関数として与えられる経済運用線
との高値出力を流量指令値としている。
In FIG. 2, 1 is a generator output detector, 2 is a cooling water inlet temperature detector, 3 is a cooling water outlet temperature detector, 4 is a cooling water flow rate detector, and 5, 6 and 7 are flow rate commands respectively. A value generator, an adder, and a regulator. 5 is a flow rate command value generator that is a program of Fig. 3 as it is. Economic operation given as a function of condenser cooling water inlet / outlet temperature difference (ΔT) limit line and generator output with cooling water inlet temperature as a parameter. The high value output with the line is used as the flow rate command value.

ここでΔT制御線は環境規制値(一般に7℃前後)から
(1)式より得られるものであり、又、経済運用線は第
4図の点線を発電機出力毎に作成する ここで Q:復水器熱負荷(Kcal/h) G:冷却水量(m3/h) C:冷却水の定圧比熱(Kcal/kg℃) γ:冷却水の比重量(kg/m3) ことにより得られるもので、冷却水温度及び冷却水量変
化に伴うプラント効率変化量量と冷却水ポンプ消費動力
による効率向上量の比較による効率利得値が最大となる
冷却水量線である。ちなみに冷却水温度及び冷却水量変
化に伴う効率変化は復水器真空度変化からくるもので、
真空度の変化と効率変化の関係は第5図の通りである。
Here, the ΔT control line is obtained from the environmental regulation value (generally around 7 ° C) by the formula (1), and the economic operation line is created by the dotted line in Fig. 4 for each generator output. Here Q: condenser heat load (Kcal / h) G W: cooling water (m 3 / h) C P : specific heat at constant pressure of the cooling water (Kcal / kg ℃) γ: specific weight of the cooling water (kg / m 3 ) This is the cooling water volume line that maximizes the efficiency gain value by comparing the amount of change in plant efficiency with changes in cooling water temperature and the amount of cooling water and the amount of efficiency improvement due to cooling water pump consumption power. By the way, the change in efficiency due to the change in cooling water temperature and the amount of cooling water comes from the change in condenser vacuum degree.
The relationship between the degree of vacuum change and the efficiency change is as shown in FIG.

〔発明が解決しようとする問題点〕 上記従来技術は、復水器冷却管の清浄度変化時に経済運
用線が変化するということに対して制御上の配慮がなさ
れておらず、最適経済運用にならないという問題があつ
た。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, control consideration is not given to the fact that the economic operation line changes when the cleanliness of the condenser cooling pipe changes, and therefore optimal economic operation is achieved. There was a problem of not becoming.

即ち、経済運用線は前述の如く復水器真空度が変化すれ
ば変化するものであるが、復水器真空度は(2)式で与
えられる蒸気温度に対する飽和圧力で算出され、復水器
熱負荷,冷却水入口温度,冷却水流量以外にも冷却管の
清浄度(φ)が変化すれば変化することに対して従来
技術ではこの配慮がなされておらず、経済運用線は復水
器設計清浄度一定で作成されていた。
That is, the economic operation line changes if the condenser vacuum degree changes as described above, but the condenser vacuum degree is calculated by the saturated pressure with respect to the steam temperature given by the equation (2), and In addition to heat load, cooling water inlet temperature, cooling water flow rate, if the cleanliness (φ 2 ) of the cooling pipe changes, this consideration is not made in the prior art, and the economic operation line is condensate. It was created with a constant cleanliness design.

ただし ここで t:復水器内蒸気温度(℃) t1:冷却水入口温度(℃) S:冷却面積(m2) K:熱貫流率(Kcal/m2h℃) φ1:冷却水入口温度に対する補正係数 φ2:冷却管の清浄度で冷却管の汚れに対する係数 φ3:冷却管材質および肉厚に対する補正係数 C:冷却管外径によつて決定される定数 V:冷却管の管内平均流速(m/s) Q:G・C・γ:(1)式の記号と同じです。 However Here t s: condenser in steam temperature (℃) t 1: the cooling water inlet temperature (° C.) S: cooling area (m 2) K: heat transmission coefficient (Kcal / m 2 h ℃) φ 1: cooling water Correction coefficient for inlet temperature φ 2 : coefficient of cleanliness of cooling tube for dirt on cooling tube φ 3 : correction coefficient for cooling tube material and wall thickness C: constant determined by cooling tube outer diameter V: cooling tube Average flow velocity in pipe (m / s) Q: G W · C P · γ: Same as the symbol in equation (1).

冷却管清浄度は一般に運転条件(冷却水への硫酸第1
鉄,塩素の注入等)、冷却管の清浄頻度、洗浄後の経過
時間、経年劣化等で変化するが、一例として清浄頻度と
経過過時間による清浄度変化の例を第6図に示す。
Cooling pipe cleanliness generally depends on operating conditions (sulfuric acid
(Injection of iron and chlorine, etc.), cleaning frequency of cooling pipes, elapsed time after cleaning, deterioration over time, etc., but as an example, FIG. 6 shows an example of the cleaning frequency and the change in cleanliness with elapsed time.

本発明の目的は、復水器冷却管の清浄度が設計清浄度よ
り変化した場合にも最適経済運用を可能とする復水冷却
水流量制御装置を提供することにある。
An object of the present invention is to provide a condensate cooling water flow rate control device that enables optimum economic operation even when the cleanliness of the condenser cooling pipe changes from the designed cleanliness.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、復水器実績(現在)冷却管清浄度を求め、
設計清浄度と異なつている場合、該清浄度を使用してプ
ラント効率利得が最大となる復水器真空度、冷却水流量
を同時に算出し、実績(現在)冷却水量と算出した冷却
水量の偏差相当分だけ従来技術にある流量指令値を補正
することにより達成される。
The purpose of the above is to obtain the actual (current) cooling pipe cleanliness of the condenser,
If it differs from the design cleanliness, the cleanliness is used to simultaneously calculate the condenser vacuum and the cooling water flow rate that maximizes the plant efficiency gain, and the deviation between the actual (current) cooling water quantity and the calculated cooling water quantity This is achieved by correcting the flow rate command value in the prior art by a considerable amount.

ここに、本発明は、発電機の出力信号及び復水器冷却水
流量信号の関係における各復水器入口冷却水の温度信号
に対して求められた経済運用線と、前記復水器入口冷却
水の温度信号及び復水器出口冷却水の温度信号に基づい
て求められた制限線との関係から流量指令値信号を求め
ると共に、該流量指令値信号と前記復水器冷却水流量と
の偏差に基づいて復水器への冷却水流量を制御する復水
器冷却水流量制御装置において、前記復水器の真空度を
検出する検出器と、該検出器より得られた復水器の真空
度信号と前記復水器入口冷却水の温度信号と前記復水器
出口冷却水の温度信号とに基づいて前記復水器の洗浄度
を求め、かつ該洗浄度からプラント効率利得が最大とな
る前記復水器の真空度及び冷却水量を求める演算器とを
設けると共に、前記プラント効率利得が最大となる前記
復水器の冷却水量に基づいて前記流量指令値信号が最適
経済運用値となるように補正したものである。
Here, the present invention relates to an economic operation line obtained for the temperature signal of each condenser inlet cooling water in the relationship between the output signal of the generator and the condenser cooling water flow rate signal, and the condenser inlet cooling The flow rate command value signal is obtained from the relationship between the water temperature signal and the limiting line obtained based on the temperature signal of the condenser outlet cooling water, and the deviation between the flow rate command value signal and the condenser cooling water flow rate. In a condenser cooling water flow rate control device for controlling a cooling water flow rate to a condenser based on, a detector for detecting the degree of vacuum of the condenser, and a condenser vacuum obtained from the detector. Degree signal, the temperature signal of the condenser inlet cooling water, and the temperature signal of the condenser outlet cooling water, the degree of cleaning of the condenser is obtained, and the plant efficiency gain becomes maximum from the degree of cleaning. A calculator for determining the degree of vacuum and the amount of cooling water of the condenser is provided, and Plant efficiency gains are those based on said amount of cooling water of the condenser with the maximum flow rate command value signal is corrected to be optimum economic production value.

〔作用〕[Action]

復水器実績清浄度によるプラント効率利得が最大となる
復水器真空度、冷却水量の計算は、前記(2),
(3),(4)式、並びに第4図,第5図を使用して行
ない又、実績冷却水量と算出した冷却水量の偏差相当分
だけ従来技術にある流量指令値を補正することは、従来
技術の経済運用線を最適経済運用線にすることに値す
る。
The condenser vacuum degree and the amount of cooling water that maximize the plant efficiency gain due to the actual condenser cleanliness are calculated in (2),
Using the equations (3) and (4) and FIGS. 4 and 5, it is also possible to correct the flow rate command value in the prior art by the amount corresponding to the deviation between the actual cooling water amount and the calculated cooling water amount. It deserves to make the economic operation line of the prior art the optimum economic operation line.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.

第7図に本発明が適用された一実施例を示す。FIG. 7 shows an embodiment to which the present invention is applied.

ここで図中に示す各検出器は第1図に示す各検出器に対
応するものである。
The detectors shown in the figure correspond to the detectors shown in FIG.

第7図において1は発電機出力検出器,2は冷却水入口温
度検出器,3は冷却水出口温度検出器,4は冷却水流量検出
器であり,5,6,7,8がそれぞれ初期流量指令値作成器,加
算器,調節器復水器真空度検出器であつて、9,10,11,12
が本発明の中心を成すそれぞれ復水器清浄度算出器効率
利得を最大とする復水器真空度,冷却水流量算出器,補
正冷却水流量算出器,流量指令値補正器である。
In FIG. 7, 1 is a generator output detector, 2 is a cooling water inlet temperature detector, 3 is a cooling water outlet temperature detector, 4 is a cooling water flow rate detector, and 5, 6, 7, and 8 are initial stages, respectively. Flow rate command value generator, adder, controller Condenser vacuum degree detector, which is 9,10,11,12
Are the condenser vacuum level, the cooling water flow rate calculator, the corrected cooling water flow rate calculator, and the flow rate command value corrector, each of which is the center of the present invention.

まず、1の発電機出力検出器と2の冷却水入口温度検出
器から5の初期流量指令値作成器によつて、従来技術に
ある経済運用線の如く流量指令値を作成し、12の流量指
令値補正器で2の冷却水入口温度検出器から得られる温
度と3の冷却水出口温度検出器から得られる温度のΔT
制限を行なつた上ポンプ可動翼の初期制御を行なう。
First, using the generator output detector 1 and the cooling water inlet temperature detector 2, the initial flow rate command value generator 5 creates flow rate command values as in the conventional economic operation line, and the flow rates of 12 ΔT of the temperature obtained from the cooling water inlet temperature detector 2 and the temperature obtained from the cooling water outlet temperature detector 3 with the command value corrector
Performs initial control of the upper pump movable blade with limitation.

次に、初期制御によつて4の冷却水流量検出器から得ら
れる流量と前述の2および3の温度、8の復水器真空度
検出器から得られる真空度を使用して、9の復水器清浄
度算出器で清浄度を算出する。
Next, by using the flow rate obtained from the cooling water flow rate detector 4 by the initial control, the temperatures of 2 and 3 described above, and the vacuum degree obtained from the condenser vacuum degree detector 8 of 8, the recovery of 9 is performed. Calculate the cleanliness with a waterware cleanliness calculator.

清浄度は、通常(5)式の如く算出されることから ここで φ2d:設計冷却管清浄度 K:実績の熱貫流率を設計状態に換算した修正熱貫流率
(Kcal/m2h℃) Kd:設計熱貫流率(Kcal/m2h℃) 前記検出器で得られたプロセスデータは、直接には修正
熱貫流率の算出に用いられる。
Since cleanliness is usually calculated as in equation (5), Where φ 2 d: Designed cooling pipe cleanliness K: Modified thermal transmission coefficient (Kcal / m 2 h ℃) obtained by converting the actual thermal transmission coefficient into the design state Kd: Designed thermal transmission coefficient (Kcal / m 2 h ℃) The process data obtained with the detector is directly used for the calculation of the corrected heat transmission coefficient.

9で清浄度が得られると、前述の(2),(3),
(4)式を利用して10の効率利得を最大とする復水器真
空度・冷却水流量算出器により利得を最大とする冷却水
流量が算出される。
When the cleanliness is obtained in 9, the above (2), (3),
Using equation (4), the condenser vacuum and cooling water flow rate calculator that maximizes the efficiency gain of 10 calculates the cooling water flow rate that maximizes the gain.

該流量と実績(現在)の冷却水量との偏差を11の補正冷
却水量算出器にて算出し、12の流量指冷値補正器に与え
て流量指令値が最適経済運用値となるよう補正する。
The deviation between the flow rate and the actual (current) cooling water amount is calculated by 11 correction cooling water amount calculators, and is given to 12 flow rate finger cooling value correctors to correct the flow rate command value to the optimum economic operation value. .

尚、従来技術と同様、この際にΔT制限を考慮する。At this time, the ΔT limitation is taken into consideration as in the prior art.

〔発明の効果〕〔The invention's effect〕

本発明によれば、運転条件によつて復水器冷却管の清浄
度が大きく変化しても、復水器冷却水ポンプの可動翼開
度をプラント効率上最適な位置(最適経済運用水量にな
る可動翼開度)に制御するという効果がある。
According to the present invention, even if the cleanliness of the condenser cooling pipe changes significantly depending on the operating conditions, the movable blade opening of the condenser cooling water pump is set to the optimum position in terms of plant efficiency (optimal economic operating water amount). It has the effect of controlling the movable blade opening).

【図面の簡単な説明】[Brief description of drawings]

第1図は、復水器冷却水系統図、第2図は従来技術にな
る冷却水流量制御装置、第3図は可動翼冷却系運用線
図、第4図は可動翼ポンプ経済運用水量検討図、第5図
は復水器真空度熱効率修正曲線、第6図は洗浄頻度と清
浄度の関係線図であり、第7図は本発明になる冷却水流
量制御装置である。
Fig. 1 is a condenser cooling water system diagram, Fig. 2 is a conventional cooling water flow rate control device, Fig. 3 is a movable blade cooling system operation diagram, and Fig. 4 is a movable blade pump economic operation water amount. Fig. 5 is an examination diagram, Fig. 5 is a condenser vacuum degree thermal efficiency correction curve, Fig. 6 is a relationship diagram of cleaning frequency and cleanliness, and Fig. 7 is a cooling water flow rate control device according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発電機の出力信号及び復水器冷却水流量信
号の関係における各復水器入口冷却水の温度信号に対し
て求められた経済運用線と、前記復水器入口冷却水の温
度信号及び復水器出口冷却水の温度信号に基づいて求め
られた制限線との関係から流量指令値信号を求めると共
に、該流量指令値信号と前記復水器冷却水流量信号との
偏差に基づいて復水器への冷却水流量を制御する復水器
冷却水流量制御装置において、 前記復水器の真空度を検出する検出器と、該検出器より
得られた復水器の真空度信号と前記復水器入口冷却水の
温度信号と前記復水器出口冷却水の温度信号とに基づい
て前記復水器の洗浄度を求め、かつ該洗浄度からプラン
ト効率利得が最大となる前記復水器の真空度及び冷却水
量を求める演算器とを設けると共に、 前記プラント効率利得が最大となる前記復水器の冷却水
量に基づいて前記流量指令値信号が最適経済運用値とな
るように補正することを特徴とする復水器冷却水流量制
御装置。
1. An economic operation line determined for a temperature signal of each condenser inlet cooling water in the relationship between an output signal of a generator and a condenser cooling water flow rate signal, and the condenser inlet cooling water. The flow rate command value signal is obtained from the relationship between the temperature signal and the limit line obtained based on the temperature signal of the condenser outlet cooling water, and the deviation between the flow rate command value signal and the condenser cooling water flow rate signal is determined. A condenser cooling water flow rate control device for controlling the flow rate of cooling water to the condenser based on a detector for detecting the degree of vacuum of the condenser, and the degree of vacuum of the condenser obtained from the detector. The degree of cleaning of the condenser is obtained based on a signal, a temperature signal of the condenser inlet cooling water, and a temperature signal of the condenser outlet cooling water, and the plant efficiency gain becomes maximum from the degree of cleaning. A calculator for determining the degree of vacuum of the condenser and the amount of cooling water is provided. Plant efficiency gain condenser cooling water flow rate control device, characterized in that the flow rate command value signal is corrected such that the optimum economic operation value based on the amount of cooling water of the condenser becomes maximum.
JP62080968A 1987-04-03 1987-04-03 Condenser cooling water flow controller Expired - Lifetime JPH0743226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62080968A JPH0743226B2 (en) 1987-04-03 1987-04-03 Condenser cooling water flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080968A JPH0743226B2 (en) 1987-04-03 1987-04-03 Condenser cooling water flow controller

Publications (2)

Publication Number Publication Date
JPS63247592A JPS63247592A (en) 1988-10-14
JPH0743226B2 true JPH0743226B2 (en) 1995-05-15

Family

ID=13733311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080968A Expired - Lifetime JPH0743226B2 (en) 1987-04-03 1987-04-03 Condenser cooling water flow controller

Country Status (1)

Country Link
JP (1) JPH0743226B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184211B2 (en) * 2008-05-23 2013-04-17 株式会社日立製作所 Condenser and power generation equipment
JP5202149B2 (en) * 2008-07-16 2013-06-05 中国電力株式会社 Management method of generator output limit due to temperature difference of intake and drainage
CN108804847B (en) * 2018-06-21 2022-04-29 华北电力科学研究院有限责任公司 Method and system for determining optimal flow value of circulating water pump of condenser
CN112069650B (en) * 2020-07-21 2023-08-18 国网河北省电力有限公司电力科学研究院 Condenser performance evaluation method and terminal equipment
CN113221272B (en) * 2021-05-11 2024-03-29 哈电发电设备国家工程研究中心有限公司 Wet cooling unit condenser economic back pressure calculation method based on condenser end difference and traversal method
CN113701519B (en) * 2021-08-16 2023-09-29 中国能源建设集团江苏省电力设计院有限公司 Method for optimizing circulating water system under condenser separately arranged on main turbine and small turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969690A (en) * 1982-10-13 1984-04-19 Toshiba Corp Operation monitoring device for condenser

Also Published As

Publication number Publication date
JPS63247592A (en) 1988-10-14

Similar Documents

Publication Publication Date Title
CN103576711B (en) Based on the chemical reactor temperature-controlled process that quantitative one-parameter PID controls
JPH0743226B2 (en) Condenser cooling water flow controller
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP2677616B2 (en) Condenser vacuum degree control device
JP2758245B2 (en) Drain water level control device for feed water heater
JPS6357803B2 (en)
CN111637633A (en) Control method for constant-temperature backwater of solid regenerative furnace
JPS6154927B2 (en)
CN111794820B (en) Organic Rankine cycle system
JPS6316193B2 (en)
JPH0631688B2 (en) Control method for operating number of condenser cooling pumps
JPH021990B2 (en)
JPS6239657B2 (en)
JPH06323509A (en) Steam supplying device
JPS6151645B2 (en)
CN112460577A (en) Water level adjusting method and system for high-pressure heater
SU787363A1 (en) Method of automatic control of process of ammonia synthesis
JPH0535352B2 (en)
JPH0337084B2 (en)
CN117375006A (en) Thermoelectric load distribution method for multi-capacity-containing unit and multi-section steam extraction heat supply thermal power plant
JPS62237012A (en) Heated steam pressure controller of heater for steam turbine
JPH0979508A (en) Feed water controller for steam generating plant
JPS6237285B2 (en)
JP2003120217A (en) Device and method for controlling gas turbine combined cycle steam temperature
JPS61149788A (en) Blade angle control device for movable blade type pump