JPH0337084B2 - - Google Patents

Info

Publication number
JPH0337084B2
JPH0337084B2 JP56163763A JP16376381A JPH0337084B2 JP H0337084 B2 JPH0337084 B2 JP H0337084B2 JP 56163763 A JP56163763 A JP 56163763A JP 16376381 A JP16376381 A JP 16376381A JP H0337084 B2 JPH0337084 B2 JP H0337084B2
Authority
JP
Japan
Prior art keywords
drain
water level
flow rate
feed water
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56163763A
Other languages
Japanese (ja)
Other versions
JPS5865913A (en
Inventor
Masashi Nakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16376381A priority Critical patent/JPS5865913A/en
Publication of JPS5865913A publication Critical patent/JPS5865913A/en
Publication of JPH0337084B2 publication Critical patent/JPH0337084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • F22D1/325Schematic arrangements or control devices therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明は、発電プラント等に用いられるタービ
ンの給水加熱器のドレン水位制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drain water level control device for a feed water heater of a turbine used in a power generation plant or the like.

発電プラントにおける給水加熱器はタービンの
途中段落よりの抽気蒸気により、ボイラーまたは
原子炉等の蒸気発生器への給水を予熱するために
設けられている。
A feedwater heater in a power generation plant is provided to preheat feedwater to a steam generator such as a boiler or a nuclear reactor using extracted steam from an intermediate stage of a turbine.

第1図は、一般的に発電プラントにおいて複数
の給水加熱器が用いられているその構成を示すブ
ロツク図である。なお、図面において同一符号は
同一もしくは相当部分を示す。
FIG. 1 is a block diagram showing a configuration in which a plurality of feed water heaters are generally used in a power generation plant. In addition, in the drawings, the same reference numerals indicate the same or corresponding parts.

しかして、タービン2,3で仕事をした蒸気の
一部を点線で示すように抽気し、給水加熱器5,
6,8,9で給水と熱交換を行なわせることによ
り、復水器4からの蒸気発生器1への給水を加熱
するが、復水器4からボイラーつまり蒸気発生器
1側へ向かつてつまり給水加熱器9,8,6,5
の順にその器内圧力が高くなるように構成されて
いる。
A part of the steam that has done work in the turbines 2 and 3 is extracted as shown by the dotted line, and the feed water heater 5,
6, 8, and 9 heat the feed water from the condenser 4 to the steam generator 1 by exchanging heat with the feed water. Feed water heater 9, 8, 6, 5
The internal pressure increases in this order.

給水を加熱するために使用された蒸気は給水加
熱器内で凝縮し、各給水加熱器の器内圧力の差に
よつて水位調節弁を経て、復水器側の給水加熱器
に順次送られる。
The steam used to heat the feed water is condensed in the feed water heater, and is sequentially sent to the feed water heater on the condenser side via the water level control valve due to the difference in internal pressure of each feed water heater. .

第1図において、給水加熱器5で凝縮したドレ
ンは水位調節弁13を経て給水加熱器6に送ら
れ、給水加熱器6には給水加熱器5からのドレン
とタービン2よりの蒸気が流入し、水位調節弁1
4を経てドレンが脱気器7に送られる。給水加熱
器6の器内圧力が低下して脱気器7にドレンを送
ることが不可能となつた場合には、給水加熱器6
のドレンは脱気器7をバイパスして、水位調節弁
15を経て給水加熱器8に送られる。給水加熱器
8からは水位調節弁17を通して給水加熱器9に
ドレンが送られる。給水加熱器9のドレンはドレ
ンポンプ11により昇圧され、水位調節弁16を
通して復水ラインに送られる。
In FIG. 1, condensate condensed in the feedwater heater 5 is sent to the feedwater heater 6 via the water level control valve 13, and the condensate from the feedwater heater 5 and steam from the turbine 2 flow into the feedwater heater 6. , water level control valve 1
4, the drain is sent to a deaerator 7. If the internal pressure of the feed water heater 6 decreases and it becomes impossible to send condensate to the deaerator 7, the feed water heater 6
The drain bypasses the deaerator 7 and is sent to the feed water heater 8 via the water level control valve 15. Drain is sent from the feed water heater 8 to the feed water heater 9 through the water level control valve 17. The drain from the feed water heater 9 is pressurized by the drain pump 11 and sent to the condensate line through the water level control valve 16.

ここに、水位調節弁13は給水加熱器5のドレ
ン水位を一定にするように水位調節計の信号によ
り動作する。以下同様に、水位調節弁14,15
は給水加熱器6のドレン水位を、水位調節弁17
は給水加熱器8のドレン水位を、水位調節弁16
は給水加熱器9のドレン水位をそれぞれ一定にす
るように動作する。
Here, the water level control valve 13 is operated by a signal from the water level controller so as to keep the drain water level of the feed water heater 5 constant. Similarly, the water level control valves 14, 15
is the drain water level of the feed water heater 6, and the water level control valve 17
is the drain water level of the feed water heater 8, and the water level control valve 16
operate to keep the drain water level of the feed water heater 9 constant.

ところで、第2図は給水加熱器の構成を表わす
側断面図である。給水(実線矢印)は給水入口2
2より給水加熱器5内に入り、伝熱管24を通し
てドレン冷却部26、凝縮部27、蒸気減温部2
5において、それぞれドレン、抽気蒸気からの熱
伝達により温度を上昇させ、給水出口21より給
水加熱器外に出て次の給水加熱器に入る。蒸気入
口20よりタービンからの抽気(破線矢印)が入
り、伝熱管24を介して給水に熱を伝える。蒸気
は凝縮部27で給水に熱を与えて凝縮し、ドレン
冷却部24で給水に熱を与えて飽和温度の状態か
ら過冷却され、ドレン出口23より水位調節弁を
通つて復水器4側の給水加熱器6に入る。
By the way, FIG. 2 is a side sectional view showing the configuration of the feed water heater. Water supply (solid arrow) is water supply inlet 2
2 into the feed water heater 5 and passes through the heat transfer tube 24 to the drain cooling section 26, the condensing section 27, and the steam temperature reduction section 2.
5, the temperature is increased by heat transfer from the drain and bleed steam, and the water exits the feed water heater from the feed water outlet 21 and enters the next feed water heater. Bleed air from the turbine (dashed arrow) enters through the steam inlet 20 and transfers heat to the feed water via the heat transfer tubes 24. The steam is condensed by applying heat to the feed water in the condensing section 27, is supercooled from the saturated temperature state by applying heat to the feed water in the drain cooling section 24, and is then passed from the drain outlet 23 through the water level control valve to the condenser 4 side. into the feed water heater 6.

給水加熱器内のドレンは、ドレンが抽気配管を
通つてタービに逆流しないように、ある水位上昇
とならないようにしておく必要がある。また、給
水加熱器の熱交換の効果を上げるために、一定量
以下とならないようにする必要がある。このため
給水加熱器内のドレン水位はある値に制御されて
いる。
The condensate in the feed water heater must be kept below a certain level rise to prevent condensate from flowing back into the turbine through the bleed piping. In addition, in order to increase the effectiveness of heat exchange in the feed water heater, it is necessary to ensure that the amount does not fall below a certain level. For this reason, the drain water level in the feed water heater is controlled to a certain value.

給水加熱器のドレン水位制御は第3図のように
行なわれる。
The drain water level control of the feed water heater is performed as shown in FIG.

給水加熱器5のドレン水位を水位検出器32で
検出し水位調節計35で弁13の操作信号の演算
を行ない水位調節弁13を動作させ、給水加熱器
5より給水加熱器6へ流れるドレンの流量を変化
させることによつて行なわれる。給水加熱器6と
次段の給水加熱器8のドレン水位の制御について
も、水位調節弁15,17を流れる流量を調整す
ることによつて行なわれる。各給水加熱器のドレ
ン水位は、給水加熱器に入つてくる蒸気量と前段
の給水加熱器から流入するドレン量の和と、その
給水加熱器から流出するドレン量が等しい時に一
定値となる。
The drain water level of the feed water heater 5 is detected by the water level detector 32, and the water level controller 35 calculates the operation signal for the valve 13 to operate the water level control valve 13, thereby controlling the drain flowing from the feed water heater 5 to the feed water heater 6. This is done by varying the flow rate. The drain water levels of the feed water heater 6 and the next stage feed water heater 8 are also controlled by adjusting the flow rates through the water level control valves 15 and 17. The drain water level of each feed water heater becomes a constant value when the sum of the amount of steam entering the feed water heater and the amount of drain flowing in from the previous feed water heater is equal to the amount of drain flowing out from that feed water heater.

水位調節弁13を流れるドレン量は、水位調節
弁13の入口圧力、出口圧力、弁の流量係数、流
体であるドレンの温度の影響を受ける。給水加熱
器5でのドレンの過冷却度が大きいと、流体であ
るドレンの温度が水位調節弁13の出口側の圧力
の飽和温度以下であれば、ドレンの弁13出口で
のフラツシユ現象が生じないので、水位調節弁1
3を流れるドレン量は、弁前後の差圧の平方根と
弁の流量係数の積に比例する。給水加熱器5での
ドレンの過冷却度が小さくて、流体であるドレン
の温度が水位調節弁13の出口側の圧力の飽和温
度以上であると、弁13の出口でドレンのフラツ
シユ現象が生じる。この場合には、水位調節弁1
3を流れるドレン流量はドレン温度による補正を
行なう必要がある。
The amount of condensate flowing through the water level control valve 13 is influenced by the inlet pressure and outlet pressure of the water level control valve 13, the flow rate coefficient of the valve, and the temperature of the condensate fluid. If the degree of supercooling of the condensate in the feed water heater 5 is large, a flash phenomenon will occur at the outlet of the condensate valve 13 if the temperature of the condensate fluid is below the saturation temperature of the pressure on the outlet side of the water level control valve 13. Since there is no water level control valve 1
The amount of drain flowing through 3 is proportional to the product of the square root of the pressure difference across the valve and the flow coefficient of the valve. If the degree of supercooling of the condensate in the feed water heater 5 is small and the temperature of the condensate as a fluid is higher than the saturation temperature of the pressure on the outlet side of the water level control valve 13, a flashing phenomenon of the condensate occurs at the outlet of the valve 13. . In this case, water level control valve 1
The drain flow rate flowing through No. 3 must be corrected based on the drain temperature.

そこで、従来の給水加熱器水位制御には次のよ
うな欠点があつた。
Therefore, the conventional water heater water level control has the following drawbacks.

○ア 水位検出器33により検出されたドレン水位
と水位設定値との値から水位調節計36により
演算を行ない、水位調節弁15の開度を調整し
てドレン水位を一定の値としようとするため、
給水加熱器6への流入、流出量にアンバランス
が生じても、そのアンバランスにより水位が変
化するまで制御が働かない。このため発電プラ
ントの負荷変化時のような大きな外乱の働く場
合には水位が大きく変動する。つまり、水位の
変動に対し制御に遅れがある。
○A Calculation is performed by the water level controller 36 from the value of the drain water level detected by the water level detector 33 and the water level setting value, and the opening degree of the water level control valve 15 is adjusted to keep the drain water level at a constant value. For,
Even if an imbalance occurs in the amount of inflow and outflow to the feed water heater 6, the control will not work until the water level changes due to the imbalance. For this reason, when a large disturbance occurs, such as when a power plant's load changes, the water level fluctuates greatly. In other words, there is a delay in control with respect to fluctuations in water level.

○イ 各給水加熱器5,6,8,9はそれぞれ復水
器4側の給水加熱器にドレンを流出する構成に
なつている。このため給水加熱器5で水位変動
が生じた時、水位調節弁13を操作して給水加
熱器5から給水加熱器6に流れるドレン量を変
化させて、水位を水位設定値と等しくする。こ
のとき給水加熱器6から見ると、今まで流入流
出がバランスしていた状態から水位調節弁13
が操作され、流入するドレン量が変化すること
によつて、流入流出のアンバランスが生じ水位
が変化する。このようにある給水加熱器のドレ
ン水位に変動が生じた時には、それ以降の給水
加熱器に順次変動が伝播する。
B. Each of the feed water heaters 5, 6, 8, and 9 is configured to drain drain to the feed water heater on the condenser 4 side. Therefore, when a water level fluctuation occurs in the feed water heater 5, the water level control valve 13 is operated to change the amount of drain flowing from the feed water heater 5 to the feed water heater 6, thereby making the water level equal to the water level setting value. At this time, when viewed from the feed water heater 6, the water level control valve 13
is operated and the amount of drain flowing in changes, causing an imbalance of inflow and outflow, and the water level changes. In this way, when a change occurs in the drain water level of a certain feed water heater, the change is sequentially propagated to the subsequent feed water heaters.

○ウ 脱気器7のように大きな貯水容量を持つタン
クが復水、給水ラインに設けられているような
発電プラントの場合においては、プラントの負
荷降下時、タービンの抽気圧力は負荷降下に従
つて低下するが、給水温度は貯水容量による大
きな時間遅れを持つため、各給水加熱器に入る
給水温度は過渡的に負荷のバランス点での給水
温度より高くなる。このために過渡的に給水加
熱器でのドレンの過冷却度が減少する。ドレン
の過冷却度が減少することによつて、水位調節
弁の出口側でのドレンのフラツシユが大きくな
り、水位調節弁の流量が減少し、ドレン水位の
上昇となる。
○C In the case of a power plant where a tank with a large water storage capacity, such as the deaerator 7, is installed in the condensate and water supply lines, when the plant load drops, the turbine extraction pressure will follow the load drop. However, since the feed water temperature has a large time delay due to the water storage capacity, the feed water temperature entering each feed water heater becomes transiently higher than the feed water temperature at the load balance point. This transiently reduces the degree of subcooling of the drain in the feedwater heater. As the degree of subcooling of the drain decreases, the flash of the drain on the outlet side of the water level control valve increases, the flow rate of the water level control valve decreases, and the drain water level rises.

ここにおいて本発明は、これらの欠点を払拭す
るために、各給水加熱器への蒸気の流入量、流入
するドレン量、各給水加熱器から流出するドレン
量を推定し、流入量と流出量との差および差の変
化に応じた信号を発生する演算部を設け、水位検
出器からの水位信号により演算された信号と共に
水位調節弁への操作信号を発生する制御装置を提
供することを目的とする。
In order to eliminate these drawbacks, the present invention estimates the amount of steam flowing into each feed water heater, the amount of condensate flowing in, and the amount of condensate flowing out from each feed water heater, and calculates the amount of inflow and outflow. It is an object of the present invention to provide a control device that includes a calculation unit that generates a signal according to the difference between and changes in the difference, and generates an operation signal to a water level control valve along with a signal calculated based on a water level signal from a water level detector. do.

第4図は本発明の一実施例の構成を示すブロツ
ク図である。
FIG. 4 is a block diagram showing the configuration of an embodiment of the present invention.

第4図は給水加熱器5,6の2台分の水位制御
装置を表わしており、各給水加熱器5,6の圧
力、温度および給水の流量、温度、水位調節弁1
3,15の開度、タービン抽気圧力等のデータ4
2,43,45,46,……により給水加熱器5
6への抽気流量を計算する抽気流量演算部49,
54,……および給水加熱器より流出するドレン
流量を計算するドレン流量演算部50,55,…
…ならびに給水加熱器ドレン水位検出器32,3
3,……からの給水加熱器ドレン水位とその水位
設定値47,52,……と抽気流量演算部49,
54,……とドレン流量演算部50,55,……
からの値により水位調節弁51,56を作動する
操作信号を発生する制御演算部48,53,……
より構成される。
FIG. 4 shows the water level control device for two feed water heaters 5 and 6, and shows the pressure and temperature of each feed water heater 5 and 6, the flow rate and temperature of the feed water, and the water level control valve 1.
Data such as opening degree of 3 and 15, turbine extraction pressure, etc. 4
2, 43, 45, 46, ... by the feed water heater 5
a bleed air flow rate calculation unit 49 that calculates the bleed air flow rate to 6;
54, . . . and drain flow rate calculation units 50, 55, . . . that calculate the drain flow rate flowing out from the feed water heater.
...and feed water heater drain water level detector 32, 3
3, the feed water heater drain water level from . . . and its water level set value 47, 52, .
54, . . . and drain flow rate calculation sections 50, 55, .
Control calculation units 48, 53, .
It consists of

すなわち、本発明は、従来装置に比べ、抽気流
量演算部49,54……およびドレン流量演算部
50,55,……を付加して構成されているの
で、圧力、温度、弁開度などの変化による給水加
熱器からのドレンの流入量、およびその給水加熱
器より流出するドレン量の変化の推定値を用い
て、ドレン水位の信号と共に制御演算を行なうこ
とができ、特に給水加熱器への流入量と給水加熱
器からの流出量のバランスを一定に保つよう水位
調節弁を操作することにより、水位変化の発生の
原因を先行的に補助することができる。
That is, the present invention is configured by adding bleed air flow rate calculation sections 49, 54, ... and drain flow rate calculation sections 50, 55, ..., compared to the conventional device, so that pressure, temperature, valve opening degree, etc. Control calculations can be performed using the estimated changes in the amount of condensate flowing into the feedwater heater and the amount of condensate flowing out from the feedwater heater, together with the drain water level signal. By operating the water level control valve to maintain a constant balance between the amount of inflow and the amount of outflow from the feedwater heater, the cause of the water level change can be assisted in advance.

次に本発明になる給水加熱器水位制御の他の実
施例のブロツク図を第5図に示す。
Next, a block diagram of another embodiment of the feed water heater water level control according to the present invention is shown in FIG.

本発明によつて構成された制御部は500,5
00′,……であつて、次の部分から成る。
The control section configured according to the present invention has 500,5
00',... and consists of the following parts.

() タービンと給水加熱器との間の差圧を差圧
検出器57,57,′……(42,45,……
に相当)で検出し、開平演算器49,54,…
…によりタービンより給水加熱器に流れる抽気
流量演算部と、 () 水位調節弁の開度信号を位置検出器58,
58′,……で検出し関数発生器63,6
3,′……で弁の位置と流量係数との非線形性
の補償を行ない、弁の出口側の圧力を圧力検出
器60,60′,……で検出し、温度検出器6
1,61′,……で検出したドレン温度から、
関数発生器64,64′,……により求める弁
出口側でのドレンのフラツシユの発生した場合
の弁出口側の補正圧力とを、高値優先器65,
65′,……で比較し、弁出口側圧力として高
い値のものを採用し、圧力検出器59,59′,
……で検出した弁入口圧力と差をとり、この値
を弁の実効差圧としたものと、前記関数発生器
63,63′,……の信号とを乗算することに
より、給水加熱器から流出するドレン演算を推
定するドレン流量演算部50,55,……と、 () 給水加熱器への抽気、ドレンの流入流出量
の差を加減算器67,68,……で求め、その
差を比例微分演算器69,69′,……で演算
して流量の補正信号を発生し、ドレン水位検出
器32,33,……と水位設定器45,49,
……の信号により、比例積分演算器70,7
0′で水位の補正信号を発生し、これらの値の
和を取つて制御出力とする制御演算部48,5
3,……と である。ただし、ここで加減算器68は高圧側の
給水加熱器よりドレンが流入する場合のものを示
している。
() The differential pressure between the turbine and the feed water heater is detected by differential pressure detectors 57, 57,'... (42, 45,...
), and the square root calculators 49, 54,...
. . . A flow rate calculation unit for extracting air flowing from the turbine to the feed water heater;
58', ... are detected and the function generators 63, 6
3,'... compensate for the nonlinearity between the valve position and the flow coefficient, and the pressure on the outlet side of the valve is detected by the pressure detectors 60, 60',..., and the temperature detector 6
From the drain temperature detected at 1,61',...
The correction pressure on the valve outlet side when a drain flash occurs on the valve outlet side obtained by the function generators 64, 64', .
65', ..., the higher value is adopted as the valve outlet side pressure, and the pressure detectors 59, 59',
By taking the difference between the valve inlet pressure and the detected valve inlet pressure, and multiplying this value as the effective differential pressure of the valve by the signals of the function generators 63, 63', ..., from the feed water heater. Drain flow rate calculation units 50, 55, . . . for estimating the calculation of outflowing drain; The proportional differential calculators 69, 69', . . . calculate and generate a flow rate correction signal, and the drain water level detectors 32, 33, . . . and the water level setters 45, 49,
According to the signal of..., the proportional-integral calculators 70, 7
Control calculation units 48, 5 which generate a water level correction signal at 0' and sum these values to provide a control output.
3,... However, the adder/subtractor 68 is shown here for the case where drain flows from the feed water heater on the high pressure side.

そうして、本発明のさらに他の実施例のブロツ
ク図を第6図に表わす。
A block diagram of yet another embodiment of the present invention is shown in FIG.

各給水加熱器への抽気流量、水位調節弁の弁開
度、入口圧力、出口圧力、ドレン温度等は負荷一
定とした時の値は所謂ヒートバランスデータとし
て負荷の関数として与えられる。負荷変化時にお
いては、それらの値の変化はそれぞれある時間的
な遅れをもつ。そしてこれらの遅れは近似的にあ
る遅れ要素で実現することができる。
The values of the bleed air flow rate to each feed water heater, the opening degree of the water level control valve, the inlet pressure, the outlet pressure, the drain temperature, etc. when the load is constant are given as so-called heat balance data as a function of the load. When the load changes, the changes in these values each have a certain time delay. These delays can be approximately realized by certain delay elements.

第6図は、負荷信号73により定常時における
抽気流量を求める抽気流量演算部49、弁入口圧
力を求める弁入口圧力演算部75、弁出口圧力を
求める弁出口圧力演算部76、ドレン温度を求め
るドレン温度演算部77、弁開度演算部74およ
び過度変化時にそれぞれの時間遅れを計算する遅
れ要素78〜82から構成されるプロセス・デー
タの推定器を示す。
FIG. 6 shows a bleed air flow rate calculation unit 49 that calculates the bleed air flow rate in steady state based on the load signal 73, a valve inlet pressure calculation unit 75 that calculates the valve inlet pressure, a valve outlet pressure calculation unit 76 that calculates the valve outlet pressure, and a valve outlet pressure calculation unit 76 that calculates the drain temperature. A process data estimator comprising a drain temperature calculation section 77, a valve opening degree calculation section 74, and delay elements 78 to 82 that calculate respective time delays at the time of excessive change is shown.

第6図の推定器の信号を第5図のプロセス・デ
ータの検出器の信号の代用として利用することに
より、給水加熱器への抽気の流入量、ドレンの流
入流出量を推定することができる。
By using the estimator signal in Figure 6 as a substitute for the process data detector signal in Figure 5, it is possible to estimate the amount of bleed air flowing into the feed water heater and the amount of drain flowing in and out. .

かくして本発明においては、給水加熱器の蒸気
およびドレンの流出流入量を制御に利用すること
になるので、次の効果がある。
Thus, in the present invention, the outflow and inflow amounts of steam and drain from the feedwater heater are utilized for control, so the following effects can be achieved.

○ア 発電プラントの負荷変化時のようなタービン
の抽気圧力の変化による給水加熱器への抽気流
量および給水加熱器からのドレンの流出量の変
化による水位の変動を抑えることができる。
○A It is possible to suppress fluctuations in water level due to changes in the flow rate of extracted air to the feed water heater and the amount of condensate flowing out from the feed water heater due to changes in the extraction pressure of the turbine, such as when the power plant load changes.

○イ 高圧側の給水加熱器の水位変動によつて生じ
る低圧側の給水加熱器へのドレン流量の変化に
よる水位の変動を抑えることができる。
○B Fluctuations in water level caused by changes in the drain flow rate to the low-pressure side feedwater heater caused by water level fluctuations in the high-pressure side feedwater heater can be suppressed.

○ウ 発電プラントの負荷降下時のような給水加熱
器内圧力の降下と、給水温度の降下の割合の差
異により生じる水位調節弁での流量ゲインの低
下による水位の変動を抑えることができる。
○C It is possible to suppress fluctuations in water level due to a decrease in flow rate gain at the water level control valve, which is caused by a difference in the ratio between the drop in the pressure inside the feed water heater and the drop in the temperature of the feed water, such as when the power plant load drops.

○エ プラントに検出器を設けることなく、負荷信
号からだけで、給水加熱器への抽気の流入量、
ドレンの流入流出を推定演算できる。
○ E. The amount of bleed air flowing into the feed water heater can be determined just from the load signal without installing a detector in the plant.
The inflow and outflow of drain can be estimated and calculated.

以上により、本発明によれば、給水加熱器への
抽気蒸気の流入量、ドレンの流入流出量の推定値
を給水加熱器の水位信号と共に利用し、発電プラ
ントの負荷変化時、および高圧側の給水加熱器の
水位変動にやり起こる、流入流出量のアンバラン
スを先行的に補正することにより、ドレン水位の
変動を減少することができ、発電プラントの運転
をより安定化することができる。
As described above, according to the present invention, estimated values of the inflow amount of extracted steam to the feedwater heater and the inflow and outflow amount of condensate are used together with the water level signal of the feedwater heater, and the By proactively correcting the imbalance in the inflow and outflow amounts that occurs due to water level fluctuations in the feed water heater, fluctuations in the drain water level can be reduced and the operation of the power plant can be more stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発電プラントの概略の系統図、第2図
は給水加熱器の断面図、第3図は復水の給水加熱
器の水位制御系統図、第4図は本発明の一実施例
の概念図、第5図は本発明の他の実施例のブロツ
ク図、第6図は本発明のさらに他の実施例になる
プラントの動特性演算部の概念図である。 1……蒸気発生器、2,3……タービン、4…
…復水器、5,6,8,9……給水加熱器、7…
…脱気器、10……給水ポンプ、11……ドレン
ポンプ、12……復水ポンプ、13,14,1
5,16,17……水位調節弁、18……給水加
熱器胴体、19……前段ドレン入口、20……抽
気入口、21……給水出口、22……給水入口、
23……ドレン出口、24……伝熱管、25……
蒸気減温部、26……ドレン冷却部、27……凝
縮部、28……ドレン、32,33,34……水
位検出器、35,36,37……水位調節計、4
2,43,45,46……プラントデータ信号、
47,52……水位設定値、48,53……制御
演算部、49,54……抽気流量演算部、50,
55……ドレン流量演算部、57,57′……差
圧検出器、58,58′……開度検出器、59,
59′,60,60′……圧力検出器、61,6
1′……温度検出器、62,62′……開平演算
器、63,63′,64,64′……関数発生器、
65,65′……高値優先器、66,66′……乗
算器、67,68……加減算器、69,69′…
…比例微分演算器、70,70′……比例積分演
算器、71,72……弁操作信号、73……負荷
信号、74……弁開度演算部、75……弁入口圧
力演算部、76……弁出口圧力演算部、77……
ドレン温度演算部、78,79,80,81,8
2……遅れ要素。
Fig. 1 is a schematic system diagram of a power generation plant, Fig. 2 is a sectional view of a feed water heater, Fig. 3 is a water level control system diagram of a condensate feed water heater, and Fig. 4 is an example of an embodiment of the present invention. FIG. 5 is a conceptual diagram of another embodiment of the present invention, and FIG. 6 is a conceptual diagram of a dynamic characteristic calculating section of a plant according to still another embodiment of the present invention. 1... Steam generator, 2, 3... Turbine, 4...
... Condenser, 5, 6, 8, 9 ... Feed water heater, 7...
... Deaerator, 10 ... Water supply pump, 11 ... Drain pump, 12 ... Condensate pump, 13, 14, 1
5, 16, 17...Water level control valve, 18...Water heater body, 19...Pre-stage drain inlet, 20...Bleed air inlet, 21...Water supply outlet, 22...Water supply inlet,
23...Drain outlet, 24...Heat transfer tube, 25...
Steam temperature reduction section, 26... Drain cooling section, 27... Condensing section, 28... Drain, 32, 33, 34... Water level detector, 35, 36, 37... Water level controller, 4
2, 43, 45, 46...plant data signal,
47, 52... Water level set value, 48, 53... Control calculation unit, 49, 54... Bleed air flow rate calculation unit, 50,
55... Drain flow rate calculation section, 57, 57'... Differential pressure detector, 58, 58'... Opening degree detector, 59,
59', 60, 60'...Pressure detector, 61, 6
1'... Temperature detector, 62, 62'... Square root calculator, 63, 63', 64, 64'... Function generator,
65, 65'... High value priority device, 66, 66'... Multiplier, 67, 68... Addition/subtraction device, 69, 69'...
...Proportional differential calculator, 70, 70'... Proportional integral calculator, 71, 72... Valve operation signal, 73... Load signal, 74... Valve opening calculation section, 75... Valve inlet pressure calculation section, 76... Valve outlet pressure calculation section, 77...
Drain temperature calculation section, 78, 79, 80, 81, 8
2...Delay element.

Claims (1)

【特許請求の範囲】 1 復水器から複数個の給水加熱器が直列に従続
して接続され蒸気発生器へ給水し、タービン抽気
蒸気により給水を加熱し凝縮したドレンを順次調
節弁を介して高圧側から低圧側の給水加熱器に流
し、ドレンの流出量を水位調節弁の操作により調
整し、給水加熱器ドレン水位を制御する発電プラ
ントの給水加熱器水位制御装置において、 発電プラントのプロセスデータより給水加熱器
への、抽気蒸気流入量を推定演算する抽気流量演
算部と、 ドレンの高圧側からの流入量と低圧側への流出
量よりドレン流量値を推定するドレン流量演算部
と、 これらの抽気蒸気流量値と、ドレン流量値と、
ドレン検出器からのドレン水位と、ドレン水位設
定器からのドレン水位設定値と、かつ前段の高圧
側給水加熱器のドレン流量演算部から与えられる
ドレン流量値とを、それぞれ導入し水位調節弁の
操作出力を演算し制御する制御演算部とを備える
ことを特徴とする発電プラントにおける給水加熱
器水位制御装置。 2 特許請求の範囲第1項に記載した給水加熱器
水位制御装置において、 タービンと給水加熱器間の差圧より抽気蒸気流
量を推定演算し、 高圧側の給水加熱器から流入するドレン量およ
び低圧側の給水加熱器へ流出するドレン量から給
水加熱器でのドレンの流入量、流出量の偏差のド
レン流量値を求め、 先の抽気蒸気流量と、ドレン流量値と、前段高
圧側給水加熱器のドレン流量演算部から与えられ
るドレン流量値との加減演算を行い、 この加減演算した信号とドレン水位による制御
演算信号とを合わせて水位調節弁への制御信号と
する ことを特徴とする発電プラントにおける給水加熱
器水位制御装置。
[Claims] 1. A plurality of feed water heaters are connected in series from a condenser to supply water to a steam generator, and the feed water is heated by turbine extraction steam and the condensed drain is sequentially passed through a control valve. In a power plant feedwater heater water level control system, the feedwater heater water level control system controls the water level of the feedwater heater drain by controlling the drain water level from the high-pressure side to the low-pressure side feedwater heater by operating the water level control valve. A bleed air flow rate calculation unit that estimates and calculates the amount of bleed steam flowing into the feed water heater from data; a drain flow rate calculation unit that estimates a drain flow rate value from the amount of inflow from the high pressure side of the drain and the amount of outflow to the low pressure side; These extraction steam flow rate values, drain flow rate values,
The drain water level from the drain detector, the drain water level set value from the drain water level setting device, and the drain flow rate value given from the drain flow rate calculation section of the high pressure side feed water heater in the previous stage are respectively introduced and the water level control valve is adjusted. 1. A feedwater heater water level control device for a power generation plant, comprising: a control calculation unit that calculates and controls an operation output. 2. In the feedwater heater water level control device described in claim 1, the flow rate of extracted steam is estimated from the differential pressure between the turbine and the feedwater heater, and the drain amount flowing from the high-pressure side feedwater heater and the low pressure are calculated. From the amount of condensate flowing out to the feed water heater on the side, calculate the drain flow rate value of the deviation of the inflow and outflow amounts of condensate at the feed water heater, and calculate the difference between the previous extraction steam flow rate, drain flow rate value, and the previous high pressure side feed water heater. A power generation plant characterized in that an addition/subtraction operation is carried out with respect to a drain flow rate value given from a drain flow rate calculation section, and the added/subtracted signal and a control operation signal based on the drain water level are combined to form a control signal to a water level control valve. Feed water heater water level control device.
JP16376381A 1981-10-14 1981-10-14 Water level controller of feed water heater in power plant Granted JPS5865913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16376381A JPS5865913A (en) 1981-10-14 1981-10-14 Water level controller of feed water heater in power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16376381A JPS5865913A (en) 1981-10-14 1981-10-14 Water level controller of feed water heater in power plant

Publications (2)

Publication Number Publication Date
JPS5865913A JPS5865913A (en) 1983-04-19
JPH0337084B2 true JPH0337084B2 (en) 1991-06-04

Family

ID=15780240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16376381A Granted JPS5865913A (en) 1981-10-14 1981-10-14 Water level controller of feed water heater in power plant

Country Status (1)

Country Link
JP (1) JPS5865913A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946403A (en) * 1982-09-09 1984-03-15 株式会社東芝 Controller for water level
JP2758245B2 (en) * 1990-03-12 1998-05-28 株式会社東芝 Drain water level control device for feed water heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938763A (en) * 1972-08-18 1974-04-11
JPS56108008A (en) * 1980-01-29 1981-08-27 Tokyo Shibaura Electric Co Controller for water level of drain of feed water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938763A (en) * 1972-08-18 1974-04-11
JPS56108008A (en) * 1980-01-29 1981-08-27 Tokyo Shibaura Electric Co Controller for water level of drain of feed water heater

Also Published As

Publication number Publication date
JPS5865913A (en) 1983-04-19

Similar Documents

Publication Publication Date Title
JP5855240B2 (en) Operation method of circulating waste heat recovery steam generator
JP5318880B2 (en) Method for operation of once-through boiler and forced once-through boiler
US4345438A (en) Deaerator level control
JPS6214047B2 (en)
JPH0337084B2 (en)
JP2758245B2 (en) Drain water level control device for feed water heater
JP2003269702A (en) Deaerator level controller
JP2653798B2 (en) Boiler and turbine plant control equipment
JP2625422B2 (en) Boiler control device
JPS637244B2 (en)
JPH0330761B2 (en)
GB2083178A (en) Deaerator level control
JPS6042846B2 (en) Condensate recovery device
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JPS5840405A (en) Method and device for controlling water level of drain in feedwater heater
JPS6237285B2 (en)
JPH02176302A (en) Drain water level controller
JPS6225921B2 (en)
JPH11270805A (en) Feed water heater water level control device
JPS63682B2 (en)
JPS6250756B2 (en)
JPH0220565Y2 (en)
JPS59110810A (en) Water level control device for steam turbine degasifier
JPS6011282B2 (en) Method and device for controlling the amount of ventilation in the superheater of a sodium-heated steam generator