JPS637244B2 - - Google Patents

Info

Publication number
JPS637244B2
JPS637244B2 JP9984581A JP9984581A JPS637244B2 JP S637244 B2 JPS637244 B2 JP S637244B2 JP 9984581 A JP9984581 A JP 9984581A JP 9984581 A JP9984581 A JP 9984581A JP S637244 B2 JPS637244 B2 JP S637244B2
Authority
JP
Japan
Prior art keywords
steam
flow
reheater
brackish water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9984581A
Other languages
Japanese (ja)
Other versions
JPS582403A (en
Inventor
Norio Yasugadaira
Takeshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9984581A priority Critical patent/JPS582403A/en
Publication of JPS582403A publication Critical patent/JPS582403A/en
Publication of JPS637244B2 publication Critical patent/JPS637244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/26Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
    • F01K3/262Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam by means of heat exchangers
    • F01K3/265Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam by means of heat exchangers using live steam for superheating or reheating

Description

【発明の詳細な説明】 本発明は、原子力プラント等における汽水分離
再熱装置の加熱蒸気等を制御する制御方法並びに
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method and a control device for controlling heating steam, etc. of a brackish water separation and reheating device in a nuclear power plant or the like.

一般に、沸騰水型あるいは加圧水型軽水炉から
発生する蒸気は、化石燃料を用いるボイラーから
の発生蒸気に比べ低圧、低温であり、飽和状態の
蒸気条件である。そのために、高圧タービンでの
膨張過程において多量の湿分が発生し、そのまま
この蒸気を低圧タービンに導けば、湿分によるタ
ービン内部効率の低下とエロージヨンによる翼の
損傷を招いてしまう。したがつて、従来は、高圧
タービンと低圧タービンの管路の中途に汽水分離
再熱装置を配設し、低圧タービンに導かれる前
に、過熱蒸気状態に変化させている。該汽水分離
再熱装置2は汽水分離装置と第一段再熱装置及び
第2段再熱装置とによつて構成され、前記の第1
段再熱装置の加熱蒸気は高圧タービンの中途から
抽気した蒸気を用い、第2段再熱装置の加熱蒸気
は原子炉からの主蒸気から分岐した蒸気を用いて
いる。夫々の加熱蒸気は複数の伝熱管群によつて
構成された管束を介して、被加熱蒸気と熱交換し
てほとんどの蒸気は凝縮液となつてドレン管を介
して汽水分離再熱装置より給水加熱器に導かれ
る。
In general, steam generated from a boiling water type or pressurized water type light water reactor is at a lower pressure and temperature than steam generated from a boiler using fossil fuels, and is under saturated steam conditions. For this reason, a large amount of moisture is generated during the expansion process in the high-pressure turbine, and if this steam is directly led to the low-pressure turbine, the moisture will cause a decrease in the turbine's internal efficiency and damage to the blades due to erosion. Therefore, conventionally, a brackish water separation and reheating device is disposed in the middle of the pipeline between the high-pressure turbine and the low-pressure turbine, and the brackish water is changed into a superheated steam state before being led to the low-pressure turbine. The brackish water separation and reheating device 2 is composed of a brackish water separation device, a first stage reheating device, and a second stage reheating device.
The heating steam of the stage reheating device uses steam extracted from the middle of the high-pressure turbine, and the heating steam of the second stage reheating device uses steam branched from the main steam from the nuclear reactor. Each heated steam exchanges heat with the heated steam through a tube bundle made up of a plurality of heat transfer tube groups, and most of the steam becomes condensed liquid, which is then supplied to water from the brackish water separation and reheating device via a drain pipe. guided to a heater.

上記のような汽水分離再熱装置では、管束を構
成する伝熱管が長大であるために、ある運転状態
では、最も熱負荷の大きい管の内部で相当量の加
熱蒸気が凝縮することがある。また、これらの伝
熱管に流入する加熱蒸気が伝熱管の出口端の手前
で完全に凝縮すると、過冷却した凝縮液の溜りが
できる恐れがある。この凝縮液の過冷却現象に伴
なう不都合な問題は、伝熱管に局部的に発生する
熱応力、熱変形あるいは伝熱管内部を流れる蒸気
−凝縮液の二相流流れの不安定現象をもたらし、
伝熱管の信頼性を著しく損う可能性がある。この
問題を軽減するために、伝熱管入口端にオリフイ
スを設けたり、伝熱管内を掃気する蒸気を付加す
ると効果があるという提案がある。しかし、オリ
フイスを設ける方法並びにその代りの手段は、凝
縮液の過冷却並びに汽水分離再熱装置における関
連した不安定性の問題に対する完全な解決法にな
らないのが普通である。オリフイスを設けること
が完全な解決法にならない一つの理由は、任意の
所定のオリフイスを設けた場合、蒸気の流れをあ
る動作条件に対する理論的な熱伝達の需要を充た
すように、かつ夫々の管に分配するように実施し
ても、あらゆる動作条件、特に負荷変化が急激な
場合には理想的な設計をすることが困難である。
また、実際には、極めて膨大な数の伝熱管により
管束が構成されるために、夫々の管の流動状態を
適正にするようにオリフイスを設計することも極
めて難しいことである。
In the above-mentioned brackish water separation and reheating apparatus, since the heat transfer tubes constituting the tube bundle are long and large, in certain operating conditions, a considerable amount of heated steam may condense inside the tubes with the largest heat load. Furthermore, if the heated steam flowing into these heat transfer tubes is completely condensed before the outlet end of the heat transfer tubes, there is a risk that a pool of supercooled condensate may form. The disadvantageous problems associated with this phenomenon of supercooling of condensate are localized thermal stress and thermal deformation in the heat exchanger tube, or instability of the two-phase flow of steam and condensate flowing inside the heat exchanger tube. ,
There is a possibility that the reliability of the heat exchanger tubes will be significantly impaired. In order to alleviate this problem, it has been proposed that it would be effective to provide an orifice at the inlet end of the heat exchanger tube or to add steam to scavenge the inside of the heat exchanger tube. However, the orifice provision method and its alternatives typically do not provide a complete solution to the problem of condensate subcooling and associated instability in brackish water separation and reheat devices. One reason that orifices are not a perfect solution is that any given orifice will direct the steam flow to meet the theoretical heat transfer demands for a given operating condition and Even if it is implemented to distribute the load, it is difficult to create an ideal design under all operating conditions, especially when the load changes rapidly.
Furthermore, in reality, since a tube bundle is composed of an extremely large number of heat transfer tubes, it is extremely difficult to design an orifice so as to optimize the flow state of each tube.

一方、伝熱管内の流れが不安定にならないよう
に、加熱蒸気に掃気蒸気を単に付加するという手
段だけでは、相当量の蒸気を浪費するために、プ
ラントの熱効率低下を招いてしまう。
On the other hand, simply adding scavenging steam to the heating steam to prevent the flow in the heat transfer tubes from becoming unstable wastes a considerable amount of steam, resulting in a decrease in the thermal efficiency of the plant.

本発明の目的は、原子力発電プラントの汽水分
離再熱装置を構成する再熱器の伝熱管内部の流動
不安定現象を回避し、過冷却問題に起因する不具
合を防止して再熱器の信頼性向上を図つた汽水分
離再熱装置の制御方法及び制御装置を提供するこ
とにある。
The purpose of the present invention is to avoid the flow instability phenomenon inside the heat transfer tube of the reheater that constitutes the brackish water separation and reheating device of a nuclear power plant, and to prevent malfunctions caused by overcooling problems, thereby improving the reliability of the reheater. An object of the present invention is to provide a control method and a control device for a brackish water separation and reheating device that improve performance.

本発明の特徴は、再熱器を経た加熱流体である
加熱蒸気と凝縮液の加熱蒸気量並びに凝縮液量を
検出し、夫々の流量に基づいて伝熱管内部の流動
状態を判定し、さらに凝縮液の過冷却、不安定な
流動が発生しない流動状態を選定できるように再
熱器を流下した加熱蒸気の蒸気流量を制御する汽
水分離再熱装置の制御方法並びに制御装置を提供
するものである。
The feature of the present invention is to detect the amount of heated steam and condensate that are heated fluids that have passed through a reheater, and the amount of condensed liquid, determine the flow state inside the heat transfer tube based on the respective flow rates, and further detect the amount of condensed liquid. The present invention provides a control method and a control device for a brackish water separation and reheating device that controls the flow rate of heated steam flowing down a reheater so as to select a flow state that does not cause supercooling of the liquid or unstable flow. .

以下、本発明の具体的内容について実施例を用
いて詳しく説明する。第1図に示す如く、高圧タ
ービン1と低圧タービン6の管路17と18の中
途に汽水分離再熱装置2を配設し、低圧タービン
6に導かれる前に、過熱蒸気状態に変化させてい
る。該汽水分離再熱装置2は汽水分離装置3と第
一再熱装置4及び第2段再熱装置5とによつて構
成され、前記の第1段再熱装置4の加熱蒸気配管
20に導く加熱蒸気は高圧タービン1の中途から
抽気した蒸気を用い、第2段再熱装置5の加熱蒸
気配管19に導く加熱蒸気は原子炉からの主蒸気
管15から分岐した蒸気を用いている。夫々の加
熱蒸気は複数の伝熱管群(図示せず)によつて構
成された管束31,32を介して、蒸気配管17
を通じて導かれる被加熱蒸気と熱交換してリザー
ブタンク33,73に導入される。そしてこれら
リザーブタンク33,73から蒸気は弁38,7
8を備えた蒸気配管39,79を通じて、凝縮し
たドレンは弁35,75を備えたドレン管34,
74を通じて、それぞれ給水加熱器13,14に
導かれている。また、前記加熱蒸気配管19,2
0には弁77,67が設置されている。この様な
構成の汽水分離再熱装置においては、加熱蒸気の
凝縮を伴なう場合の再熱器伝熱管内部の流れは、
通常第4図に示すように、伝熱管の管長に対して
管入口端から管出口端に向かつてほぼ直線的に加
熱蒸気の乾き度xが減少し、逆に、伝熱管内部断
面積を凝縮液が占有する面積が増大する傾向にな
る。しかし、この蒸気相と凝縮液相との二相流の
流動様式は、気相側の流量と液相側の流量割合に
よつて、変化し第2図に示すような複雑なフロー
パターンマツプによつて流動様式が分類される。
第2図は横軸にGl/Gg・・ψ、縦軸にGg/で示 したもので、 Gg:蒸気流量 Gl:凝縮液流量 、ψは特性値で流体の物性値によつて変化す
る量であり、(Ft−lb)単位では次式で表わせる。
Hereinafter, specific contents of the present invention will be explained in detail using Examples. As shown in FIG. 1, a brackish water separation and reheating device 2 is installed in the middle of pipes 17 and 18 between the high-pressure turbine 1 and the low-pressure turbine 6, and the brackish water is changed into a superheated steam state before being introduced to the low-pressure turbine 6. There is. The brackish water separation and reheating device 2 is composed of a brackish water separating device 3, a first reheating device 4, and a second stage reheating device 5, and is led to the heated steam piping 20 of the first stage reheating device 4. Steam extracted from the middle of the high-pressure turbine 1 is used as the heating steam, and steam branched from the main steam pipe 15 from the nuclear reactor is used as the heating steam led to the heating steam pipe 19 of the second stage reheating device 5. Each heated steam is delivered to the steam pipe 17 via tube bundles 31 and 32 constituted by a plurality of heat transfer tube groups (not shown).
The steam is introduced into the reserve tanks 33, 73 after exchanging heat with the heated steam guided through the steam. The steam from these reserve tanks 33, 73 flows through valves 38, 7.
The condensed condensate is passed through the steam pipes 39, 79 with valves 35, 75 to the drain pipe 34, with valves 35, 75.
74, and are led to the feed water heaters 13 and 14, respectively. In addition, the heating steam pipes 19, 2
0 is provided with valves 77 and 67. In a brackish water separation and reheating device with such a configuration, the flow inside the reheater heat exchanger tube when the heated steam is condensed is as follows:
Normally, as shown in Figure 4, the dryness x of the heated steam decreases almost linearly from the tube inlet end to the tube outlet end with respect to the tube length of the heat exchanger tube, and conversely, the internal cross-sectional area of the heat exchanger tube is condensed. The area occupied by the liquid tends to increase. However, the flow pattern of this two-phase flow of the vapor phase and the condensed liquid phase changes depending on the flow rate ratio of the gas phase side and the liquid phase side, resulting in a complicated flow pattern map as shown in Figure 2. Accordingly, the flow patterns are classified.
In Figure 2, the horizontal axis shows G l /G g ...ψ, and the vertical axis shows G g /, where G g is the steam flow rate G l is the condensate flow rate, and ψ is a characteristic value that depends on the physical properties of the fluid. It is a quantity that changes accordingly, and can be expressed in units of (F t −l b ) by the following formula.

=〔(γg/0.075)(γl/62.3)〕1/2 ψ=73/σ〔μl(62.3/γl21/3 γg:蒸気の比重量 γl:凝縮液の比重量 σ:表面張力 μl:凝縮液の粘性係数 この図から明らかなように、気相と液相の流量
によつて層状流、波状流、環状流、噴霧流、せん
状流、スラグ流、気泡流の7つの領域に分けられ
る。第3図に示した各フローパターンのスケツチ
図をみると明らかな如く、層状流、環状流、噴霧
流などは安定した流れ状態であるが、波状流、せ
ん状流、スラグ流は極めて不安定な流動様式で、
凝縮液の閉塞に伴なう水撃現象を起し、圧力変動
が大きい非定常な流れ現象や、過冷却現象の誘因
となる可能性が大きい。したがつて、汽水分離再
熱装置の伝熱管内部流れのような凝縮を伴なう二
相流れの安定性を確立し、凝縮液の過冷却による
伝熱管の熱応力、熱変形、流れの不安定を除去す
るためには、上記の安定なフローパターンを選定
する手段が最も有効である。そのためには、液相
側と気相側の流量を的確に検出、制御する手段が
必要になつてくる。本発明は、上述の如き気液二
相流の流れ現象をとらえたうえで、夫々の流量、
流量比、状態量などを情報量として検出し、適正
なフローパターンに修正する制御手段を提供する
ものである。
= [(γ g /0.075) (γ l /62.3)] 1/2 ψ=73/σ [μ l (62.3/γ l ) 2 ] 1/3 γ g : Specific weight of steam γ l : Specific weight of condensate Specific weight σ: Surface tension μ l : Viscosity coefficient of condensate As is clear from this figure, depending on the flow rates of the gas phase and liquid phase, there is laminar flow, wavy flow, annular flow, spray flow, spiral flow, and slag flow. , divided into seven regions of bubble flow. As is clear from the sketch diagrams of each flow pattern shown in Figure 3, laminar flow, annular flow, and spray flow are stable flow states, but wavy flow, spiral flow, and slug flow are extremely unstable. In a fluid style,
Water hammer due to condensate blockage is likely to occur, leading to unsteady flow phenomena with large pressure fluctuations and supercooling phenomena. Therefore, the stability of the two-phase flow with condensation, such as the flow inside the heat exchanger tube of a brackish water separation and reheating device, is established, and the thermal stress, thermal deformation, and flow instability of the heat exchanger tube due to supercooling of the condensate are established. In order to eliminate stability, the most effective method is to select a stable flow pattern as described above. For this purpose, a means for accurately detecting and controlling the flow rates on the liquid phase side and the gas phase side is required. The present invention captures the flow phenomenon of the gas-liquid two-phase flow as described above, and the flow rate of each,
It provides a control means that detects the flow rate ratio, state quantity, etc. as the amount of information and corrects the flow pattern to an appropriate flow pattern.

第5図は本発明を適用した汽水分離再熱装置の
加熱蒸気量制御手段を示したもので、この図では
簡略化するために汽水分離再熱装置2は第1段の
再熱装置4のみで構成されているが、再熱装置が
複数段から構成される場合にでも勿論適用できる
制御技術である。第5図においても、高圧タービ
ン1からの排気蒸気は蒸気管17を介して汽水分
離再熱装置2に流入し、該汽水分離再熱装置2は
汽水分離装置3、再熱装置4で構成された円胴形
のシエルになつている。汽水分離装置3で蒸気中
の湿分を分離、除去された蒸気は、再熱装置4に
流入し、複数の伝熱管群から成る管束31の管外
を通過することによつて加熱側蒸気と熱交換を行
ない、過熱蒸気と状態変化して低圧タービン入口
管18を経て、後続する低圧タービンへ導かれ
る。加熱蒸気管20の再熱装置4入口部には、加
熱蒸気量制御弁67が配置される。該加熱蒸気量
制御弁67は、タービン負荷の変化に応じ、負荷
変化率演算器55の制御信号を、再熱装置4の出
口の被加熱蒸気温度を設定する温度設定器54に
入力する。該温度設定器54から制御出力信号7
0と再熱装置4出口の被加熱蒸気温度を温度検出
器48によつて検出した検出信号71とを比較す
る比較器53に入力される。該比較器53では設
定温度と検出温度の差を比較して、比較器53か
らの制御信号は前記の加熱蒸気制御弁67の開度
設定手段49に入力される。該制御弁開度設定手
段49は可変温度演算器50、可変流量演算器5
1、可変弁開度演算器52によつて構成される。
前記比較器53からの設定温度と検出温度との偏
差によつて、タービン出力に応じた被加熱蒸気温
度に修正するための温度量を演算する。次いで、
修正温度にするための加熱蒸気の修正量を該可変
流量演算器51によつて演算する。さらに、前記
可変流量演算器51からの加熱蒸気修正量を可変
弁開度演算器52に入力することによつて、加熱
蒸気量制御弁67の修正弁開度を決定し、可変弁
開度演算器52からの制御信号66を加熱蒸気量
制御弁67に入力し、制御弁67の開度修正を行
ない、適正加熱蒸気量が決定される。
FIG. 5 shows the heating steam amount control means of the brackish water separation and reheating device to which the present invention is applied. In this figure, for the sake of simplicity, the brackish water separation and reheating device 2 includes only the first stage reheating device 4. However, this control technique can of course be applied even when the reheating device is composed of multiple stages. Also in FIG. 5, exhaust steam from the high-pressure turbine 1 flows into the brackish water separation and reheating device 2 through the steam pipe 17, and the brackish water separation and reheating device 2 is composed of a brackish water separation device 3 and a reheating device 4. It is shaped like a cylindrical shell. The steam from which moisture has been separated and removed by the brackish water separator 3 flows into the reheating device 4 and is converted into heating-side steam by passing through the outside of the tube bundle 31 consisting of a plurality of heat transfer tube groups. After heat exchange, the superheated steam changes state and is led to the following low pressure turbine through the low pressure turbine inlet pipe 18. A heating steam amount control valve 67 is arranged at the inlet of the heating steam pipe 20 into the reheating device 4 . The heating steam amount control valve 67 inputs a control signal from the load change rate calculator 55 to the temperature setting device 54 which sets the heated steam temperature at the outlet of the reheating device 4 in response to a change in the turbine load. Control output signal 7 from the temperature setting device 54
0 and a detection signal 71 obtained by detecting the temperature of the heated steam at the outlet of the reheating device 4 by the temperature detector 48. The comparator 53 compares the difference between the set temperature and the detected temperature, and a control signal from the comparator 53 is input to the opening degree setting means 49 of the heating steam control valve 67. The control valve opening setting means 49 includes a variable temperature calculator 50 and a variable flow rate calculator 5.
1. Consists of a variable valve opening computing unit 52.
Based on the deviation between the set temperature and the detected temperature from the comparator 53, a temperature amount for correcting the heated steam temperature according to the turbine output is calculated. Then,
The variable flow rate calculator 51 calculates the corrected amount of heating steam to achieve the corrected temperature. Furthermore, by inputting the heated steam correction amount from the variable flow rate calculator 51 to the variable valve opening calculator 52, the corrected valve opening of the heating steam amount control valve 67 is determined, and the variable valve opening is calculated. The control signal 66 from the device 52 is input to the heating steam amount control valve 67, the opening degree of the control valve 67 is corrected, and the appropriate heating steam amount is determined.

一方、前記汽水分離再熱装置2の再熱装置4の
加熱蒸気は、管束31を構成する伝熱管の内部に
おいて、被加熱蒸気との熱交換によつて部分的に
凝縮し、伝熱管の出口では蒸気と凝縮液との二相
流となつてドレン管68を経由してリザーブタン
ク33に流入する。リザーブタンク33の内部で
は、凝縮したドレン73とベント蒸気72とに分
離される。ベント蒸気72はリザーブタンク33
の上部蒸気室と接続したベント蒸気管37を介し
て、ベント蒸気量制御弁38へ導かれる。ベント
蒸気管37の中途にはベント蒸気量を検出する流
量検出器42が配置され、ベント蒸気量検出信号
43は流量演算器57に入力される。また、リザ
ーブタンク33の下部のドレン73はドレン管3
4を介して、ドレン量制御弁35に導かれる。ド
レン管34の中途にはドレン量を検出する流量検
出器45が配置され、該流量検出器45のドレン
量検出信号46は流量演算器57に入力される。
前記の流量演算器57はベント蒸気量演算器58
とドレン量演算器59とから構成され、該流量演
算器57の出力信号としてベント蒸気量及びドレ
ン量がフローパターン判定手段60に入力され
る。このフローパターン判定手段60はフローパ
ターン判定器61とベント蒸気量修正器62で構
成され、該フローパターン判定器61では、前記
の流量演算器57より入力されたベント蒸気量
Gg、ドレン量Glを用いてGl/Gg及び前記の特性
パラメータ、ψを決定し、(Gl/Gg)・・ψ
とGg/との相関性を表わす第2図に示したフ
ローパターンマツプから伝熱管内部の二相流の流
動様式を判定する。流動様式が第2図の斜線で示
した領域、即ち層状流、環状流、噴霧流の領域で
あればベント蒸気量の修正なしに運転可能とな
り、もし波状流、スラグ流、せん状流、気泡流な
どの不安定な流動現象を呈する領域であれば安定
な領域に移向させるようにベント蒸気量修正器6
2に制御信号を送り、該ベント蒸気量修正器62
によつてベント蒸気量の修正量を決定し、該修正
器62の制御信号65をベント蒸気量制御弁38
に与えて適正流量になるように制御弁38の開度
調整を行なう。
On the other hand, the heated steam of the reheating device 4 of the brackish water separation and reheating device 2 is partially condensed by heat exchange with the heated steam inside the heat exchanger tubes constituting the tube bundle 31, and is partially condensed at the outlet of the heat exchanger tubes. Then, it becomes a two-phase flow of steam and condensate and flows into the reserve tank 33 via the drain pipe 68. Inside the reserve tank 33, condensed drain 73 and vent steam 72 are separated. Vent steam 72 is stored in reserve tank 33
The steam is led to a vent steam amount control valve 38 via a vent steam pipe 37 connected to the upper steam chamber of the steam chamber. A flow rate detector 42 for detecting the amount of vent steam is arranged in the middle of the vent steam pipe 37, and a vent steam amount detection signal 43 is inputted to the flow rate calculator 57. In addition, the drain 73 at the bottom of the reserve tank 33 is connected to the drain pipe 3.
4 to the drain amount control valve 35. A flow rate detector 45 for detecting the amount of drain is placed in the middle of the drain pipe 34, and a drain amount detection signal 46 from the flow rate detector 45 is input to a flow rate calculator 57.
The flow rate calculator 57 is a vent steam amount calculator 58.
and a drain amount calculator 59, and the vent steam amount and drain amount are inputted to the flow pattern determining means 60 as output signals of the flow rate calculator 57. The flow pattern determining means 60 is composed of a flow pattern determining device 61 and a vent steam amount corrector 62.
Using G g and the drain amount G l , determine G l /G g and the above characteristic parameter, ψ, and (G l /G g )...ψ
The flow pattern of the two-phase flow inside the heat exchanger tube is determined from the flow pattern map shown in Figure 2, which shows the correlation between G g and G g /. If the flow pattern is in the shaded area in Figure 2, that is, laminar flow, annular flow, or spray flow, operation is possible without modifying the vent steam amount. If the region exhibits an unstable flow phenomenon such as a flow, the vent steam amount corrector 6 is used to shift the flow to a stable region.
2, and sends a control signal to the vent steam amount corrector 62.
The amount of correction of the vent steam amount is determined by
The opening degree of the control valve 38 is adjusted so that the flow rate is appropriate.

また、実際の運転状態では、前述の負荷変化率
演算器55、温度設定器54、再熱装置出口温度
検出器48による検出信号、制御信号によつて制
御される加熱蒸気量制御弁67と前記のベント蒸
気量制御弁38との開度調整に時間遅れが生ずる
可能性がある。したがつて、この場合にはベント
蒸気量制御弁38単独での伝熱管内部流れの流動
様式を的確に制御することが難しくなる場合もあ
り得る。この不都合を回避、解消するために、負
荷変化に応じて作動する加熱蒸気量制御弁67の
開度設定手段49に組み込まれた可変流量演算器
51からの制御信号63を流量変化率演算器56
に入力し、該流量変化率演算器56から制御信号
64を前記のベント蒸気量修正器62に与えるこ
とによつてベント蒸気量制御弁38と加熱蒸気量
制御弁67との関連を予測して再熱装置4の運転
状態を最適条件に制御する手段を用いる。一方、
制御信号64によつて、フローパターン判定手段
60においては、修正したベント蒸気量で適正な
流動様式になつているか否かをフローパターン判
定器61とベント蒸気量修正器62で繰返し制御
(61と62とのFeed Back制御)が実施可能な
ことを特徴としている。
In the actual operating state, the heating steam amount control valve 67 and the heating steam amount control valve 67, which are controlled by the aforementioned load change rate calculator 55, temperature setting device 54, detection signal from the reheating device outlet temperature detector 48, and control signal, There may be a time delay in adjusting the opening of the vent steam amount control valve 38. Therefore, in this case, it may become difficult to accurately control the flow pattern inside the heat exchanger tube using the vent steam amount control valve 38 alone. In order to avoid and eliminate this inconvenience, the control signal 63 from the variable flow rate calculator 51 incorporated in the opening setting means 49 of the heating steam amount control valve 67 that operates in response to load changes is transmitted to the flow rate change rate calculator 56.
By inputting the control signal 64 from the flow rate change rate calculator 56 to the vent steam amount corrector 62, the relationship between the vent steam amount control valve 38 and the heating steam amount control valve 67 is predicted. A means is used to control the operating state of the reheating device 4 to optimal conditions. on the other hand,
In response to the control signal 64, the flow pattern determining means 60 repeatedly controls the flow pattern determining device 61 and the vent steam amount corrector 62 to determine whether or not the corrected vent steam amount provides an appropriate flow pattern (61 and 62). 62) can be implemented.

上述の制御方式において、負荷変動がない場合
には流量変化率演算器56を用いる必要なく、負
荷変化率の大小によつて流量変化率演算器56を
バイパスして直接ベント蒸気制御弁38を制御す
る。したがつて負荷が定常な場合には、再熱装置
4内の伝熱性能、被加熱側蒸気の状態変化(例え
ば、入口湿り度の変化など)などに対応して伝熱
管内部流れを安定な流動様式に維持する制御が可
能となる。
In the above control method, when there is no load change, there is no need to use the flow rate change rate calculator 56, and the vent steam control valve 38 is directly controlled by bypassing the flow rate change rate calculator 56 depending on the magnitude of the load change rate. do. Therefore, when the load is steady, the internal flow of the heat transfer tube is stabilized in response to the heat transfer performance in the reheating device 4, changes in the state of the steam on the heated side (for example, changes in the humidity at the inlet), etc. Control to maintain the flow pattern becomes possible.

第6図と第7図には再熱装置の加熱蒸気量及び
ベント蒸気量を制御しない場合と本発明を適用し
て制御した場合との再熱装置の被加熱側蒸気温
度、ベント蒸気量、凝縮液量の負荷変化に対する
変化具合を比較したものである。従来のように、
加熱蒸気量を制御しない場合には、凝縮液量Gl
ベント蒸気量Ggとの関係は再熱装置の伝熱性能
により一義的に決められ、Gl/Ggの割合は負荷
上昇とともに増加する傾向となり、流動様式が不
安定になり易く、さらに被加熱側の蒸気温度Tの
変化も大きくなる。しかし、本発明の如き制御を
実施すれば、低負荷側において被加熱蒸気の加熱
に関与しない加熱蒸気を最少限に抑えることがで
き、プラント熱効率向上に大幅に寄与することが
可能であるとともに、凝縮液量Gl′とベント蒸気
量Gg′の割合も負荷変化に対して大幅に変ること
がないので再熱装置4の管束31内部流動の安定
化を図り得る。また、第5図に示したようにベン
ト蒸気は制御弁38、蒸気管39を介して後続す
る給水加熱器(図示せず)に導かれるが、タービ
ン内部からの抽気蒸気だけで給水を加熱するサイ
クルに比べ、プラントの熱効率を向上させること
が可能である。
FIG. 6 and FIG. 7 show the steam temperature on the heated side of the reheating device, the venting steam amount, This is a comparison of how the amount of condensed liquid changes with respect to load changes. As before,
When the amount of heated steam is not controlled, the relationship between the amount of condensate G l and the amount of vent steam G g is determined primarily by the heat transfer performance of the reheating device, and the ratio of G l /G g changes as the load increases. This tends to increase, the flow pattern tends to become unstable, and furthermore, the change in the steam temperature T on the heated side becomes large. However, if the control according to the present invention is implemented, it is possible to minimize the amount of heating steam that does not participate in heating the steam to be heated on the low load side, and it is possible to significantly contribute to improving the thermal efficiency of the plant. Since the ratio between the condensate amount G l ′ and the vent steam amount G g ′ does not change significantly with respect to load changes, the flow inside the tube bundle 31 of the reheating device 4 can be stabilized. Further, as shown in FIG. 5, the vent steam is led to the subsequent feed water heater (not shown) via the control valve 38 and steam pipe 39, but the feed water is heated only by the extracted steam from inside the turbine. Compared to cycles, it is possible to improve the thermal efficiency of the plant.

以上、本発明について実施例を具体的に説明し
たが、本発明によつて得られる効果を示すと次の
ようになる。
The embodiments of the present invention have been specifically described above, and the effects obtained by the present invention are as follows.

(1) 再熱装置の伝熱管内部における気相二相流の
流動不安定性を解消し、凝縮液の過冷却に伴な
う不具合を防止する信頼性の高い汽水分離再熱
装置の制御方法並びに制御装置が実現出来る。
(1) A highly reliable control method for a brackish water separation and reheating device that eliminates the flow instability of the gaseous two-phase flow inside the heat transfer tube of the reheating device and prevents problems associated with overcooling of the condensate. A control device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の対象となる汽水分離再熱装
置を備えた原子力発電プラントのサイクル構成
図、第2図は伝熱管内部におけるフローパターン
を判定するマツプ図、第3図はフローパターンを
表わす模式的図、第4図は凝縮を伴なう場合の加
熱蒸気湿り度変化を示す図、第5図は本発明を適
用した汽水分離再熱装置の制御装置を示す制御系
統図、第6図及び第7図は本発明を適用した場合
の蒸気量、凝縮液量の負荷に対する変化を表わし
た図である。 2……汽水分離再熱器、3……汽水分離装置、
4……再熱装置、48……温度検出器、31……
伝熱管管束、38……ベント蒸気量制御弁、49
……制御弁開度設定手段、50……可変温度演算
器、51……可変流量演算器、52……可変弁開
度演算器、53……比較器、54……温度設定
器、55……負荷変化率演算器、56……流量変
化率演算器、57……流量演算器、58……ベン
ト蒸気演算器、59……ドレン量演算器、60…
…フローパターン判定手段、61……フローパタ
ーン判定器、62……ベント蒸気量修正器、67
……加熱蒸気量制御弁。
Fig. 1 is a cycle configuration diagram of a nuclear power plant equipped with a brackish water separation and reheating device, which is the subject of the present invention, Fig. 2 is a map diagram for determining the flow pattern inside the heat transfer tube, and Fig. 3 is a diagram showing the flow pattern. FIG. 4 is a schematic diagram showing changes in wetness of heated steam when condensation is involved. FIG. 5 is a control system diagram showing a control device for a brackish water separation and reheating device to which the present invention is applied. 7 and 7 are diagrams showing changes in the amount of steam and the amount of condensed liquid with respect to the load when the present invention is applied. 2...Brackish water separation reheater, 3...Brackish water separation device,
4... Reheating device, 48... Temperature detector, 31...
Heat exchanger tube bundle, 38...Vent steam amount control valve, 49
...Control valve opening degree setting means, 50...Variable temperature calculator, 51...Variable flow rate calculator, 52...Variable valve opening degree calculator, 53...Comparator, 54...Temperature setting device, 55... ...Load change rate calculator, 56...Flow rate change rate calculator, 57...Flow rate calculator, 58...Vent steam calculator, 59...Drain amount calculator, 60...
... Flow pattern determination means, 61 ... Flow pattern determination device, 62 ... Vent steam amount corrector, 67
... Heating steam amount control valve.

Claims (1)

【特許請求の範囲】 1 再熱器を備えた汽水分離再熱装置の制御方法
において、加熱流体が前記再熱器を経て状態変化
した蒸気並びにドレンの流量をそれぞれ検出し、
これらの流量から前記再熱器の伝熱管を流下する
加熱流体の気液2相流の流動状況を演算により推
定し、該推定結果に基づいて前記再熱器の伝熱管
を流下するベント蒸気量を制御するようにした事
を特徴とする汽水分離再熱装置の制御方法。 2 再熱器を備えた汽水分離再熱装置の制御装置
において、前記再熱器を経た加熱流体である蒸気
及びドレンを導出させる蒸気配管並びにドレン配
管にそれぞれ流量検出器を設け、該流量検出器か
らの検出値に基づいて前記再熱器の伝熱管を流下
する加熱流体の気液2相流の流動状況を演算する
フローパターン演算装置を設け、該演算装置の演
算結果に基づいて前記蒸気配管に設置された制御
弁の開度を制御する流量制御装置を設けたことを
特徴とする汽水分離再熱装置の制御装置。
[Claims] 1. A method for controlling a brackish water separation and reheating device equipped with a reheater, which includes detecting the flow rates of steam and condensate in which the state of the heating fluid has changed after passing through the reheater,
From these flow rates, the flow condition of the gas-liquid two-phase flow of the heating fluid flowing down the heat transfer tube of the reheater is estimated by calculation, and based on the estimation result, the amount of vent steam flowing down the heat transfer tube of the reheater is calculated. 1. A method for controlling a brackish water separation and reheating device, characterized in that: 2. In a control device for a brackish water separation and reheating device equipped with a reheater, a flow rate detector is provided in each of the steam piping and the drain piping from which steam and drain, which are heated fluids that have passed through the reheater, are drawn out, and the flow rate detector A flow pattern calculation device is provided that calculates the flow condition of the gas-liquid two-phase flow of the heating fluid flowing down the heat transfer tube of the reheater based on the detected value from the steam pipe, and 1. A control device for a brackish water separation and reheating device, comprising a flow rate control device that controls the opening degree of a control valve installed in the control valve.
JP9984581A 1981-06-26 1981-06-26 Control method and its equipment of steam separating reheater Granted JPS582403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9984581A JPS582403A (en) 1981-06-26 1981-06-26 Control method and its equipment of steam separating reheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9984581A JPS582403A (en) 1981-06-26 1981-06-26 Control method and its equipment of steam separating reheater

Publications (2)

Publication Number Publication Date
JPS582403A JPS582403A (en) 1983-01-08
JPS637244B2 true JPS637244B2 (en) 1988-02-16

Family

ID=14258135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9984581A Granted JPS582403A (en) 1981-06-26 1981-06-26 Control method and its equipment of steam separating reheater

Country Status (1)

Country Link
JP (1) JPS582403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344363A (en) * 2002-05-30 2003-12-03 Ishikawajima Harima Heavy Ind Co Ltd Method of judging flow pattern of vapor-liquid two-phase flow

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158305A (en) * 1982-03-16 1983-09-20 Mitsubishi Heavy Ind Ltd Temperature control method for steam turbine
JP2008175072A (en) * 2007-01-16 2008-07-31 Mitsubishi Heavy Ind Ltd Drain treatment device of moisture separating heater
JP5292347B2 (en) * 2010-03-26 2013-09-18 株式会社日立製作所 Power plant and power plant operation method
CN110388239B (en) * 2019-07-23 2022-01-04 岭澳核电有限公司 Nuclear power station moisture separator reheater system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344363A (en) * 2002-05-30 2003-12-03 Ishikawajima Harima Heavy Ind Co Ltd Method of judging flow pattern of vapor-liquid two-phase flow

Also Published As

Publication number Publication date
JPS582403A (en) 1983-01-08

Similar Documents

Publication Publication Date Title
US5293842A (en) Method for operating a system for steam generation, and steam generator system
JP4540719B2 (en) Waste heat boiler
US3979914A (en) Process and apparatus for superheating partly expanded steam
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
JP2008032367A (en) Control method for once-through waste heat recovery boiler
US5983639A (en) Method and system for starting up a continuous flow steam generator
US4345438A (en) Deaerator level control
GB2099558A (en) Heat recovery steam generator
JPS6136121B2 (en)
US4487166A (en) Start-up system for once-through boilers
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
KR900018499A (en) Improved reheater piping and condensate cooler system
JPS637244B2 (en)
JP7217928B2 (en) Heat exchanger and its usage
US3362164A (en) Start-up system for forced flow vapor generator
CN110410817A (en) A kind of three-stage steam type airheater draining system
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
Jackson Vertical tube natural circulation evaporators
US3590787A (en) Startup system
CN209978084U (en) Four-section type steam air preheater drainage system
US3364903A (en) Steam generator with reheat temperature regulation
Jackson Nooter/Eriksen Inc., Fenton, MO, United States
JPS60196504A (en) Method of controlling moisture separating reheater
CN104613458B (en) The heat energy comprehensive utilization device of the therrmodynamic system containing steam boiler
JP2908085B2 (en) Waste heat recovery boiler