JP7217928B2 - Heat exchanger and its usage - Google Patents

Heat exchanger and its usage Download PDF

Info

Publication number
JP7217928B2
JP7217928B2 JP2018175675A JP2018175675A JP7217928B2 JP 7217928 B2 JP7217928 B2 JP 7217928B2 JP 2018175675 A JP2018175675 A JP 2018175675A JP 2018175675 A JP2018175675 A JP 2018175675A JP 7217928 B2 JP7217928 B2 JP 7217928B2
Authority
JP
Japan
Prior art keywords
temperature
superheated steam
heat
heat exchange
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018175675A
Other languages
Japanese (ja)
Other versions
JP2020046127A (en
Inventor
徹 外村
泰広 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2018175675A priority Critical patent/JP7217928B2/en
Priority to KR1020190102400A priority patent/KR20200033728A/en
Priority to CN201910788889.7A priority patent/CN110926241A/en
Priority to CN201921390241.6U priority patent/CN210689291U/en
Priority to TW108131288A priority patent/TW202012862A/en
Publication of JP2020046127A publication Critical patent/JP2020046127A/en
Application granted granted Critical
Publication of JP7217928B2 publication Critical patent/JP7217928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

本発明は、過熱水蒸気を用いた熱交換器、及び、熱交換器の使用方法に関するものである。 TECHNICAL FIELD The present invention relates to a heat exchanger using superheated steam and a method for using the heat exchanger.

製紙や繊維および化学薬品製造工場においては多くの熱処理工程があることから、大形蒸気ボイラーを設置して熱源としていることが多い。そしてそれは乾燥に使用する熱風等の流体加熱においても、熱交換器を通して流体加熱をおこなう場合が普通である(特許文献1)。 Due to the many heat treatment processes in paper, textile and chemical manufacturing plants, large steam boilers are often installed as a heat source. In addition, even in the case of heating a fluid such as hot air used for drying, it is common to heat the fluid through a heat exchanger (Patent Document 1).

熱風の場合においては150℃程度に空気を加熱して利用することが多いが、ボイラーから距離がある工場に高圧蒸気を流しても、配管における圧力低下があって130℃程度まで温度低下していることが多い。このことから、余剰蒸気があるにもかかわらず熱源として利用できない場合が多々見られる。 In the case of hot air, it is often used by heating the air to about 150°C, but even if high-pressure steam is flowed into a factory that is far from the boiler, the temperature will drop to about 130°C due to the pressure drop in the piping. There are many. For this reason, there are many cases where surplus steam cannot be used as a heat source even though there is surplus steam.

特開2013-224810号公報JP 2013-224810 A

この余剰蒸気を熱源として有効利用するには、圧力と温度が低下した蒸気を所望の温度に再加熱して過熱水蒸気とする方法があるが、過熱水蒸気を用いた熱交換器で空気などの流体を所望の温度に加熱する場合、飽和蒸気圧における水沸点以上の温度を得るには、基本的に過熱水蒸気の入排出温度を水沸点以上の温度にしなければならない。 In order to effectively utilize this surplus steam as a heat source, there is a method of reheating the steam whose pressure and temperature have been lowered to the desired temperature to produce superheated steam. When heating to a desired temperature, in order to obtain a temperature higher than the water boiling point at the saturated vapor pressure, the inlet/outlet temperature of the superheated steam must basically be a temperature higher than the water boiling point.

しかしこの方法では水沸点以上の温度の過熱水蒸気を排出することになってしまい、過熱水蒸気が持つ水蒸気潜熱を廃棄することになってしまう。 However, in this method, the superheated steam having a temperature higher than the boiling point of water is discharged, and the steam latent heat of the superheated steam is wasted.

そこで本発明は、上記問題点を解決すべくなされたものであり、過熱水蒸気が持つ水蒸気潜熱を有効利用して被加熱流体を加熱することをその主たる課題とするものである。 SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above problems, and its main object is to effectively utilize steam latent heat of superheated steam to heat a fluid to be heated.

すなわち本発明に係る熱交換器は、過熱水蒸気による流体加熱を行う熱交換器であって、被加熱流体が流れる熱交換用配管と、前記熱交換用配管の下流側部分を収容するとともに過熱水蒸気が供給される下流側容器と、前記熱交換用配管の上流側部分を収容するとともに前記下流側容器を通過した水蒸気が供給される上流側容器とを備え、前記熱交換用配管の下流側部分を流れる前記被加熱流体は、前記下流側容器に供給された過熱水蒸気の顕熱によって加熱され、前記熱交換用配管の上流側部分を流れる前記被加熱流体は、前記上流側容器に供給された水蒸気の潜熱によって加熱されることを特徴とする。 That is, the heat exchanger according to the present invention is a heat exchanger that heats a fluid with superheated steam, and includes a heat exchange pipe through which a fluid to be heated flows, a downstream portion of the heat exchange pipe, and superheated steam and an upstream container that houses the upstream portion of the heat exchange pipe and is supplied with steam that has passed through the downstream container, the downstream portion of the heat exchange pipe is heated by the sensible heat of the superheated steam supplied to the downstream container, and the heated fluid flowing through the upstream portion of the heat exchange pipe is supplied to the upstream container It is characterized by being heated by the latent heat of water vapor.

このようなものであれば、下流側容器に過熱水蒸気を供給して当該過熱水蒸気の顕熱により被加熱流体を所望の温度に加熱し、下流側容器から上流側容器に水蒸気を供給して当該水蒸気の潜熱により被加熱流体を加熱(予熱)するように構成しているので、過熱水蒸気が持つ水蒸気潜熱を有効利用して被加熱流体を加熱することができる。なお、上流側容器に供給される水蒸気は、潜熱を失って液化するものと液化せず水蒸気のまま排出されるものがあるが、液化した分の潜熱が有効利用されたことになる。 In such a case, superheated steam is supplied to the downstream container to heat the fluid to be heated to a desired temperature by the sensible heat of the superheated steam, and steam is supplied from the downstream container to the upstream container. Since the fluid to be heated is heated (preheated) by the latent heat of the steam, the latent heat of the superheated steam can be effectively used to heat the fluid to be heated. The steam supplied to the upstream container may be liquefied by losing its latent heat or may be discharged as steam without liquefying, but the liquefied latent heat is effectively used.

具体的には、前記下流側容器に供給される過熱水蒸気の温度及び量は、前記熱交換用配管の下流側部分を流れる前記被加熱流体が100℃以上の所望の温度となるように設定されるとともに、前記下流側容器から前記上流側容器に供給される水蒸気の温度が100℃以上となるように設定されていることが望ましい。 Specifically, the temperature and amount of superheated steam supplied to the downstream container are set so that the heated fluid flowing through the downstream portion of the heat exchange pipe reaches a desired temperature of 100° C. or higher. In addition, it is desirable that the temperature of steam supplied from the downstream container to the upstream container is set to 100° C. or higher.

ここで、被加熱流体を空気とした場合、水蒸気潜熱で加熱できるのは最高100℃迄であり、それ以上の温度に加熱するためには水蒸気顕熱で加熱することになる。過熱水蒸気が持つエネルギは潜熱が大きな割合を持つことになるが、本発明によって過熱水蒸気が利用できる潜熱の割合の計算値を図2に示す。なお、図2は、過熱水蒸気で20℃の空気を加熱する場合の潜熱利用率(%)である。 Here, when the fluid to be heated is air, the maximum temperature that can be heated by the latent heat of water vapor is 100° C., and the sensible heat of water vapor is used to heat the fluid to a temperature higher than that. The latent heat has a large proportion of the energy possessed by the superheated steam. FIG. 2 shows calculated values of the proportion of the latent heat that can be used by the superheated steam according to the present invention. In addition, FIG. 2 shows the latent heat utilization rate (%) in the case of heating air at 20° C. with superheated steam.

図2において、100%を超えるところは、水蒸気潜熱で100℃まで温度上昇させることが無理なことを示しており、供給する過熱水蒸気量を増加させ且つ温度を調整する等の制御が必要であることを示している。 In FIG. 2, the portion exceeding 100% indicates that it is impossible to raise the temperature to 100 ° C. with steam latent heat, and control such as increasing the amount of superheated steam to be supplied and adjusting the temperature is necessary. It is shown that.

上記の計算結果から言えることは、熱源の過熱水蒸気が高温であるほど潜熱の利用率が高くなることである。また、上流側容器に供給される過熱水蒸気温度はできる限り100℃以上且つ100℃に近い温度であることが潜熱の利用率を高めることになるので、上流側容器に供給される過熱水蒸気温度が100~110℃になるように熱交換器の設計を行う。 What can be said from the above calculation results is that the higher the temperature of the superheated steam of the heat source, the higher the latent heat utilization rate. In addition, the temperature of the superheated steam supplied to the upstream vessel should be at least 100° C. and as close to 100° C. as possible to increase the utilization rate of the latent heat. The heat exchanger is designed so that the temperature is 100-110°C.

前記熱交換用配管に流入する被加熱流体温度を検出する流入温度検出機構、前記熱交換用配管に流入する被加熱流体量を検出する流入量検出機構、又は前記熱交換用配管から流出する被加熱流体温度を検出する流出温度検出機構の少なくとも1つと、前記下流側容器に供給される過熱水蒸気温度を調整する過熱水蒸気温度調整機構、又は前記下流側容器に供給される過熱水蒸気量を調整する過熱水蒸気量調整機構の少なくとも1つと、前記少なくとも1つの検出機構の検出値に基づいて、前記調整機構の少なくとも1つにおける調整量を演算する演算機構とを備えることが望ましい。 An inflow temperature detection mechanism for detecting the temperature of the fluid to be heated flowing into the heat exchange pipe, an inflow amount detection mechanism for detecting the amount of the fluid to be heated flowing into the heat exchange pipe, or a heated fluid flowing out from the heat exchange pipe At least one outflow temperature detection mechanism for detecting the temperature of the heating fluid, a superheated steam temperature adjustment mechanism for adjusting the temperature of the superheated steam supplied to the downstream vessel, or an amount of superheated steam supplied to the downstream vessel is adjusted. It is desirable to have at least one superheated steam amount adjusting mechanism and a computing mechanism for calculating an adjustment amount for at least one of the adjusting mechanisms based on the detected value of the at least one detecting mechanism.

また、本発明に係る熱交換器の使用方法は、被加熱流体が流れる熱交換用配管と、前記熱交換用配管の下流側部分を収容するとともに過熱水蒸気が供給される下流側容器と、前記熱交換用配管の上流側部分を収容するとともに前記下流側容器を通過した水蒸気が供給される上流側容器とを備える熱交換器の使用方法であって、前記下流側容器に供給される過熱水蒸気の温度及び量を、前記熱交換用配管の下流側部分を流れる前記被加熱流体が100℃以上の所望の温度となるように設定するとともに、前記下流側容器から前記上流側容器に供給される水蒸気の温度が100℃以上となるように設定することを特徴とする。 Further, a method for using a heat exchanger according to the present invention includes a heat exchange pipe through which a fluid to be heated flows, a downstream container that houses a downstream portion of the heat exchange pipe and is supplied with superheated steam, A method of using a heat exchanger comprising an upstream container that houses an upstream portion of a heat exchange pipe and is supplied with steam that has passed through the downstream container, wherein superheated steam is supplied to the downstream container. The temperature and amount of is set so that the heated fluid flowing in the downstream portion of the heat exchange pipe reaches a desired temperature of 100 ° C. or higher, and is supplied from the downstream container to the upstream container The temperature of steam is set to 100° C. or higher.

このように構成した本発明によれば、過熱水蒸気が持つ水蒸気潜熱を有効利用して被加熱流体を加熱することができる。 According to the present invention configured in this manner, the fluid to be heated can be heated by effectively utilizing the steam latent heat of the superheated steam.

本発明の一実施形態に係る熱交換器の構成を模式的に示す図である。It is a figure which shows typically the structure of the heat exchanger which concerns on one Embodiment of this invention. 過熱水蒸気で20℃の空気を加熱する場合の潜熱利用率を示す図である。It is a figure which shows the latent-heat utilization rate in the case of heating 20 degreeC air with superheated steam.

以下に本発明に係る熱交換器の一実施形態について図面を参照して説明する。 An embodiment of a heat exchanger according to the present invention will be described below with reference to the drawings.

<1.装置構成>
本実施形態に係る熱交換器100は、熱源として過熱水蒸気を用いて空気などの流体を加熱するものである。なお、熱交換器100に用いる過熱水蒸気としては、大形ボイラーを有した工場の余剰蒸気を過熱水蒸気生成装置により再加熱することを想定しているが、過熱水蒸気装置の処理炉を通過した利用済の過熱水蒸気であってもよいし、当該利用済みの過熱水蒸気を再度加熱した過熱水蒸気であってもよい。
<1. Device configuration>
The heat exchanger 100 according to this embodiment heats a fluid such as air using superheated steam as a heat source. In addition, as the superheated steam used in the heat exchanger 100, it is assumed that the surplus steam in a factory having a large boiler is reheated by the superheated steam generator. It may be superheated steam that has already been used, or may be superheated steam that is obtained by reheating the used superheated steam.

具体的に熱交換器100は、図1に示すように、被加熱流体が流れる熱交換用配管2と、熱交換用配管2の下流側部分2aを収容するとともに過熱水蒸気が供給される下流側容器3と、熱交換用配管2の上流側部分2bを収容するとともに下流側容器3を通過した水蒸気が供給される上流側容器4とを備えている。 Specifically, as shown in FIG. 1, the heat exchanger 100 accommodates a heat exchange pipe 2 through which a fluid to be heated flows, a downstream portion 2a of the heat exchange pipe 2, and a downstream side to which superheated steam is supplied. It is provided with a container 3 and an upstream container 4 that accommodates the upstream portion 2b of the heat exchange pipe 2 and is supplied with steam that has passed through the downstream container 3 .

熱交換用配管2は、被加熱流体が導入される導入ポートP1と、被加熱流体が導出される導出ポートP2を有している。また、熱交換用配管2は、各容器3、4内において、熱交換面積を大きくするために蛇行した流路を形成している。なお、熱交換用配管の材質としては、オーステナイト系ステンレス鋼やインコネル合金等を用いることができる。 The heat exchange pipe 2 has an introduction port P1 through which the fluid to be heated is introduced, and an outlet port P2 through which the fluid to be heated is introduced. Further, the heat exchange pipe 2 forms a meandering flow path in each of the vessels 3 and 4 in order to increase the heat exchange area. Austenitic stainless steel, Inconel alloy, or the like can be used as the material of the heat exchange pipe.

下流側容器3は、熱交換用配管2の下流側部分2aを収容する1つの空間3Sを有しており、過熱水蒸気が供給される供給ポートP3と、ドレンを排出するドレンポートP4とを有している。なお、理想的には下流側容器3にはドレンポートP4は必要ないが、実際にはドレンが出る場合もあるので設けている。 The downstream container 3 has one space 3S that accommodates the downstream portion 2a of the heat exchange pipe 2, and has a supply port P3 to which superheated steam is supplied and a drain port P4 to discharge drain. are doing. Ideally, the downstream container 3 does not need the drain port P4, but it is provided because there are cases where the drain may actually come out.

上流側容器4は、熱交換用配管2の上流側部分2bを収容する1つの空間4Sを有しており、下流側容器3を通過した水蒸気が供給される供給ポートP5と、水蒸気又はドレンが排出される排出ポートP6とを有している。 The upstream container 4 has one space 4S that accommodates the upstream portion 2b of the heat exchange pipe 2, and includes a supply port P5 to which steam that has passed through the downstream container 3 is supplied, and steam or drain. and an ejection port P6 for ejection.

本実施形態では下流側容器3及び上流側容器4は、1つの容器を仕切壁5により仕切ることによって構成されている。そして、当該仕切壁5に下流側容器3及び上流側容器4を接続する接続路51が設けられており、当該接続路51が上流側容器4の供給ポートP5となる。なお、下流側容器3及び上流側容器4の材質としては、オーステナイト系ステンレス鋼やインコネル合金等を用いることができる。 In this embodiment, the downstream container 3 and the upstream container 4 are configured by partitioning one container with a partition wall 5 . A connection path 51 that connects the downstream container 3 and the upstream container 4 is provided in the partition wall 5 , and the connection path 51 serves as the supply port P<b>5 for the upstream container 4 . As materials for the downstream side container 3 and the upstream side container 4, austenitic stainless steel, Inconel alloy, or the like can be used.

この熱交換器100において、熱交換用配管2の下流側部分2aを流れる被加熱流体は、下流側容器3に供給された過熱水蒸気の顕熱によって加熱され、熱交換用配管2の上流側部分2bを流れる被加熱流体は、上流側容器4に供給された水蒸気の潜熱によって加熱されるように構成されている。 In this heat exchanger 100, the heated fluid flowing through the downstream portion 2a of the heat exchange pipe 2 is heated by the sensible heat of the superheated steam supplied to the downstream container 3, and the upstream portion of the heat exchange pipe 2 is heated. The heated fluid flowing through 2b is configured to be heated by the latent heat of steam supplied to the upstream container 4 .

具体的には、下流側容器3に供給される過熱水蒸気の温度Θs及び量Qsは、熱交換用配管2の下流側部分2aを流れる被加熱流体が100℃以上の所望の温度となるように設定されるとともに、下流側容器3から上流側容器4に供給される水蒸気の温度Θscが100℃以上となるように設定されている。 Specifically, the temperature Θs and the amount Qs of the superheated steam supplied to the downstream container 3 are set so that the heated fluid flowing through the downstream portion 2a of the heat exchange pipe 2 reaches a desired temperature of 100° C. or higher. It is set so that the temperature Θsc of steam supplied from the downstream container 3 to the upstream container 4 is 100° C. or higher.

<2.設計方法>
ここで、本実施形態の熱交換器100の設計方法について説明する。
<2. Design method>
Here, a method for designing the heat exchanger 100 of this embodiment will be described.

まず耐久性や製作コストの面から、過熱水蒸気処理装置又は過熱水蒸気供給装置(不図示)から熱交換器100へ供給する過熱水蒸気の最高温度Θsmを決定する。
次に、供給する過熱水蒸気が最高温度Θsmであり、90℃程度の空気(被加熱流体)が最大流入量Qamの場合に、被加熱流体を所望の最高流出温度Θmに加熱するために必要な過熱水蒸気量Qsmを設定する。
続いて、下流側容器3から上流側容器4に流入する水蒸気の温度Θscが100~110℃程度となるように、下流側容器3の熱交換用配管2の熱交換面積S1を設定する。
上流側容器4の熱交換用配管2は、100℃の水蒸気によって、流入温度Θa(例えば20℃)の被加熱流体を95~100℃に加熱するために必要な熱交換面積S2を設定する。
First, the maximum temperature Θsm of superheated steam supplied to the heat exchanger 100 from a superheated steam treatment device or a superheated steam supply device (not shown) is determined from the viewpoint of durability and manufacturing cost.
Next, when the superheated steam to be supplied has the maximum temperature Θsm and the air (heated fluid) of about 90° C. has the maximum inflow Qam, A superheated steam amount Qsm is set.
Subsequently, the heat exchange area S1 of the heat exchange pipe 2 of the downstream container 3 is set so that the temperature Θsc of steam flowing from the downstream container 3 into the upstream container 4 is about 100 to 110°C.
The heat exchange pipe 2 of the upstream vessel 4 is provided with a heat exchange area S2 required for heating the fluid to be heated at an inflow temperature Θa (for example, 20°C) to 95 to 100°C with steam of 100°C.

以上のように設計された熱交換器100は、定格である最大流入量Qamで最高流出温度Θmの場合、過熱水蒸気量Qsmで過熱水蒸気を最高温度Θsmとしたときに、潜熱利用率が最高となる。ちなみに熱交換用配管2から流出する流出温度Θの制御は、まず、出力空気が最大量Qamであり、かつ最高温度Θmとするために必要な供給過熱水蒸気の最高温度Θsm及び量Qsmを設定し、次に過熱水蒸気の温度Θsを調整することで精密な制御を行うことが考えられる。 In the heat exchanger 100 designed as described above, when the rated maximum inflow Qam and maximum outflow temperature Θm are used, the latent heat utilization rate is maximized when the amount of superheated steam is Qsm and the maximum temperature Θsm of the superheated steam. Become. By the way, the control of the outflow temperature Θ flowing out from the heat exchange pipe 2 first sets the maximum temperature Θsm and the amount Qsm of the superheated steam supplied so that the output air has the maximum amount Qam and the maximum temperature Θm. Then, it is conceivable to perform precise control by adjusting the temperature Θs of the superheated steam.

そして、本実施形態の熱交換器100は、流出温度(制御設定値)Θと、被加熱流体の流入温度Θaと、被加熱流体の流入量Qaとから、過熱水蒸気の最高温度Θsmにおける必要過熱水蒸気量Qsを演算する演算機構6を有している。この演算機能を有していれば、運転条件変更時においてもその運転条件における必要過熱水蒸気量Qsを設定することができ、熱交換器100における潜熱利用率が最高となる制御を行うことができる。 Then, the heat exchanger 100 of the present embodiment determines the required superheating at the maximum superheated steam temperature Θsm from the outflow temperature (control set value) Θ, the inflow temperature Θa of the heated fluid, and the inflow amount Qa of the heated fluid. It has a computing mechanism 6 that computes the amount of water vapor Qs. With this calculation function, it is possible to set the necessary superheated steam amount Qs under the operating conditions even when the operating conditions are changed, and control can be performed to maximize the latent heat utilization rate in the heat exchanger 100. .

このため、熱交換器100は、流入温度Θaを検出する流入温度検出機構7と、流入量Qaを検出する流入量検出機構8と、被加熱流体の流出温度Θを検出する流出温度検出機構9とを備えている。また、熱交換器100は、下流側容器3に供給される過熱水蒸気量Qsを調整する過熱水蒸気量調整機構10を備えている。そして、演算機構6は、各検出機構7~9の検出値に基づいて、過熱水蒸気量調整機構10における調整量を演算して、必要過熱水蒸気量Qsを制御する。その他、熱交換器100が、下流側容器3に供給される過熱水蒸気温度Θsを調整する過熱水蒸気温度調整機構を有しており、演算機構6が、各検出機構7~9の検出値に基づいて、過熱水蒸気温度調整機構における調整量を演算して、必要過熱水蒸気温度Θsを制御するようにしても良い。 Therefore, the heat exchanger 100 includes an inflow temperature detection mechanism 7 that detects the inflow temperature Θa, an inflow amount detection mechanism 8 that detects the inflow amount Qa, and an outflow temperature detection mechanism 9 that detects the outflow temperature Θ of the heated fluid. and The heat exchanger 100 also includes a superheated steam amount adjustment mechanism 10 that adjusts the amount of superheated steam Qs supplied to the downstream container 3 . Then, the calculation mechanism 6 calculates the adjustment amount in the superheated steam amount adjustment mechanism 10 based on the detection values of the detection mechanisms 7 to 9, and controls the required superheated steam amount Qs. In addition, the heat exchanger 100 has a superheated steam temperature adjustment mechanism that adjusts the superheated steam temperature Θs supplied to the downstream vessel 3, and the calculation mechanism 6 is based on the detection values of the detection mechanisms 7 to 9. Then, the adjustment amount in the superheated steam temperature adjusting mechanism may be calculated to control the required superheated steam temperature Θs.

<3.具体例>
具体例を示すと以下のようになる。
熱交換器100において、流入量Qa、流入温度20℃、流出温度300℃、過熱水蒸気量Qsm、過熱水蒸気温度600℃で運転されているときに、潜熱利用率は最高で22.8%である(図2参照)。
<3. Specific example>
A specific example is as follows.
When the heat exchanger 100 is operated with an inflow Qa, an inflow temperature of 20°C, an outflow temperature of 300°C, a superheated steam amount Qsm, and a superheated steam temperature of 600°C, the maximum latent heat utilization rate is 22.8%. (See Figure 2).

ここで、流出温度を150℃に変更して運転する場合を考えると、まず600℃の過熱水蒸気及び熱交換面積S1で、流入量Qaの90℃の空気が150℃にできる過熱水蒸気量Qsnを演算して設定する。このとき、潜熱利用率は最高91.1%となる。また、流出温度Θの微調整は、過熱水蒸気温度Θsの制御で行う。なお、運転条件の一部が固定的又は段階設定的であれば、その部分の検出機構は不要としてもよい。 Here, considering the case of operating with the outflow temperature changed to 150 ° C., first, with the superheated steam at 600 ° C. and the heat exchange area S1, the amount of superheated steam Qsn that can be made to 150 ° C. from the air with the inflow Qa of 90 ° C. Calculate and set. At this time, the maximum latent heat utilization rate is 91.1%. Fine adjustment of the outflow temperature Θ is performed by controlling the superheated steam temperature Θs. If some of the operating conditions are fixed or set stepwise, the detection mechanism for that part may not be necessary.

<4.熱交換器100の熱計算>
下記計算における空気比熱Aおよび過熱水蒸気比熱Sは、実際には温度によって若干値が変化するが、ここでは簡略化して同じとしている。
1.下流側容器3における熱計算
<4. Heat calculation of heat exchanger 100>
The specific heat of air A and the specific heat of superheated steam S in the following calculations actually vary slightly depending on the temperature, but are assumed to be the same here for simplification.
1. Thermal calculation in downstream vessel 3

(1)流出温度Θ :150℃
流入温度Θa:90℃
空気加熱熱量:(150-90)×A×Qa150≒60×A×Qa150
A:空気比熱、Qa150:空気量
(1) Outflow temperature Θ: 150°C
Inflow temperature Θa: 90°C
Air heating heat quantity: (150-90) x A x Qa 150 ≈ 60 x A x Qa 150
A: air specific heat, Qa 150 : air volume

(2)流出温度Θ :300℃
流入温度Θa:90℃
空気加熱熱量:(300-90)×A×Qa300≒210×A×Qa300
A:空気比熱、Qa300:空気量
(2) Outflow temperature Θ: 300°C
Inflow temperature Θa: 90°C
Air heating heat quantity: (300-90) x A x Qa 300 ≈ 210 x A x Qa 300
A: air specific heat, Qa 300 : air volume

(3)過熱水蒸気温度600℃、下流側容器3から上流側容器4への出口温度110℃、過熱水蒸気量Qsを一定とすると、過熱水蒸気の加熱量は約(600-110)×S×Qsとなる。ここで、Sは過熱水蒸気比熱である。 (3) When the superheated steam temperature is 600° C., the outlet temperature from the downstream side vessel 3 to the upstream side vessel 4 is 110° C., and the superheated steam amount Qs is constant, the heating amount of the superheated steam is about (600−110)×S×Qs. becomes. where S is the superheated steam specific heat.

このときに150℃および300℃に加熱する空気量の関係は約Qa300=(60/210)Qa150となる。 At this time, the relationship between the amounts of air heated to 150° C. and 300° C. is about Qa 300 =(60/210)Qa 150 .

したがって、Qa150で設計された熱交換器100に同じ量且つ同じ温度600℃である過熱水蒸気を入力して、空気量を60/210の量にすれば、300℃の出力空気を得ることができ、且つ、出口温度を110℃にすることができる。熱交換量は同じであるので、温度差の小さい150℃での熱交換面積S1を確保しておけば、300℃では十分に足りることになる。 Therefore, if the same amount of superheated steam with the same temperature of 600°C is input to the heat exchanger 100 designed with Qa 150 , and the amount of air is changed to 60/210, the output air of 300°C can be obtained. and the outlet temperature can be 110°C. Since the amount of heat exchange is the same, if the heat exchange area S1 is secured at 150° C. where the temperature difference is small, 300° C. will be sufficient.

(4)上記の流出温度150℃、空気量Qa150の運転に対し、空気量を0.5Qa150に変更した場合、過熱水蒸気温度600℃で出口温度110℃とするための必要過熱水蒸気量は約0.5Qsとなる。 (4) When the air volume is changed to 0.5 Qa 150 for the above operation with an outflow temperature of 150 ° C and an air volume of Qa of 150 , the required superheated steam volume to achieve an outlet temperature of 110 ° C at a superheated steam temperature of 600 ° C is It becomes about 0.5Qs.

熱交換量は半減するので熱交換面積S1は十分足りるが、流出空気が設定値0.5Qa150、150℃で制御される場合は、必要以上の熱交換はされないので、過熱水蒸気の出口温度は110℃となる。
(5)空気量を一定(Qa150=Qa300)、過熱水蒸気温度600℃、出口温度110℃とすると、過熱水蒸気量Qs150≒(60/210)Qs300となる。
Since the amount of heat exchange is halved , the heat exchange area S1 is sufficient. 110°C.
(5) Assuming that the air amount is constant (Qa 150 =Qa 300 ), the superheated steam temperature is 600° C., and the outlet temperature is 110° C., the superheated steam amount Qs 150 ≈(60/210)Qs 300 .

したがって、Qa300で設計された熱交換器100に同じ量かつ同じ温度である600℃の過熱水蒸気を入力して、過熱水蒸気量を60/210の量にすれば、150℃の出力空気を得ることができ、且つ、出口温度を110℃にすることができる。300℃の出力空気は150℃の出力空気に比べて熱量が大きいので、300℃の出力空気での熱交換面積S1を確保しておけば150℃では十分足りることになる。 Therefore, if the same amount and temperature of superheated steam of 600 ° C is input to the heat exchanger 100 designed with Qa 300 , and the amount of superheated steam is changed to 60/210, the output air of 150 ° C can be obtained. and the exit temperature can be 110°C. Since the output air at 300°C has a larger heat quantity than the output air at 150°C, 150°C is sufficient if the heat exchange area S1 for the output air at 300°C is secured.

2.上流側容器4における熱計算
図2の潜熱利用率に示すように、150℃の流出温度且つ600℃の過熱水蒸気温度では利用率91.1%、300℃の流出温度では22.8%なので、20℃の空気を90℃(計算上は100℃)まで加熱できることは明らかである。
2. Calculation of heat in the upstream vessel 4 As shown in the latent heat utilization rate in FIG. It is clear that air at 20°C can be heated to 90°C (calculated 100°C).

3.全体の熱流
上流側容器4では空気入口側付近の熱交換器温度が低くなるので、まず入口側付近から多くの飽和水蒸気の潜熱を受け始める。熱交換面積が十分足りている状態では、上流側容器4の熱交換器全体で熱交換が行われて、空気は100℃(計算上は90℃)付近まで温度上昇する。
3. Overall heat flow In the upstream vessel 4, the heat exchanger temperature near the air inlet side becomes low, so a large amount of latent heat of saturated steam begins to be received from near the inlet side. When the heat exchange area is sufficient, heat exchange is performed in the entire heat exchanger of the upstream container 4, and the temperature of the air rises to around 100°C (calculated to 90°C).

一方、下流側容器3においても熱交換面積は足りているので、設定した流出温度まで温度上昇させるための、600℃から110℃になる温度で熱量が得られる過熱水蒸気量を供給することで、過熱水蒸気の出口温度110℃を確保することができる。 On the other hand, since the downstream container 3 also has a sufficient heat exchange area, by supplying the amount of superheated steam that can obtain the amount of heat at a temperature from 600 ° C. to 110 ° C. in order to raise the temperature to the set outflow temperature, An outlet temperature of 110° C. for the superheated steam can be ensured.

<5.本実施形態の効果>
このように構成した熱交換器100によれば、下流側容器3に過熱水蒸気を供給して当該過熱水蒸気の顕熱により被加熱流体を所望の温度に加熱し、下流側容器3から上流側容器4に水蒸気を供給して当該水蒸気の潜熱により被加熱流体を加熱(予熱)するように構成しているので、過熱水蒸気が持つ水蒸気潜熱を有効利用して被加熱流体を加熱することができる。
<5. Effect of the present embodiment>
According to the heat exchanger 100 configured in this way, the superheated steam is supplied to the downstream container 3, and the sensible heat of the superheated steam heats the fluid to be heated to a desired temperature. 4 is supplied with steam to heat (preheat) the fluid to be heated by the latent heat of the steam, the latent heat of the superheated steam can be effectively used to heat the fluid to be heated.

<6.本発明の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<6. Modified Embodiment of the Present Invention>
It should be noted that the present invention is not limited to the above embodiments.

例えば、前記実施形態では下流側容器3及び上流側容器4が一体構成とされているが、それぞれ別の容器から構成したものであっても良い。 For example, although the downstream side container 3 and the upstream side container 4 are integrally constructed in the above-described embodiment, they may be constructed from separate containers.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications are possible without departing from the spirit of the present invention.

100・・・熱交換器
2 ・・・熱交換用配管
2a ・・・下流側部分
2b ・・・上流側部分
3 ・・・下流側容器
4 ・・・上流側容器
6 ・・・演算機構
7 ・・・流入温度検出機構
8 ・・・流入量検出機構
9 ・・・流出温度検出機構
10 ・・・過熱水蒸気量調整機構
Reference Signs List 100 Heat exchanger 2 Heat exchange pipe 2a Downstream portion 2b Upstream portion 3 Downstream container 4 Upstream container 6 Operation mechanism 7 ... Inflow temperature detection mechanism 8 ... Inflow detection mechanism 9 ... Outflow temperature detection mechanism 10 ... Superheated steam amount adjustment mechanism

Claims (2)

過熱水蒸気による流体加熱を行う熱交換器であって、
被加熱流体が流れる熱交換用配管と、
前記熱交換用配管の下流側部分を収容するとともに過熱水蒸気が供給される下流側容器と、
前記熱交換用配管の上流側部分を収容するとともに前記下流側容器を通過した水蒸気が供給される上流側容器と
前記熱交換用配管に流入する被加熱流体温度を検出する流入温度検出機構と、
前記熱交換用配管に流入する被加熱流体量を検出する流入量検出機構と、
前記熱交換用配管から流出する被加熱流体温度を検出する流出温度検出機構と、
前記下流側容器に供給される過熱水蒸気温度を調整する過熱水蒸気温度調整機構、又は前記下流側容器に供給される過熱水蒸気量を調整する過熱水蒸気量調整機構の少なくとも1つと、
前記流入温度検出機構、前記流入量検出機構及び流出温度検出機構の検出値に基づいて、前記調整機構の少なくとも1つにおける調整量を演算する演算機構とを備え
前記熱交換用配管の下流側部分を流れる前記被加熱流体は、前記下流側容器に供給された過熱水蒸気の顕熱によって加熱され、
前記熱交換用配管の上流側部分を流れる前記被加熱流体は、前記上流側容器に供給された水蒸気の潜熱によって加熱される、熱交換器。
A heat exchanger that heats a fluid with superheated steam,
a heat exchange pipe through which a fluid to be heated flows;
a downstream container that houses the downstream portion of the heat exchange pipe and is supplied with superheated steam;
an upstream container that houses the upstream portion of the heat exchange pipe and is supplied with steam that has passed through the downstream container ;
an inflow temperature detection mechanism for detecting the temperature of the fluid to be heated flowing into the heat exchange pipe;
an inflow detection mechanism for detecting the amount of heated fluid flowing into the heat exchange pipe;
an outflow temperature detection mechanism for detecting the temperature of the heated fluid flowing out of the heat exchange pipe;
At least one of a superheated steam temperature adjustment mechanism for adjusting the temperature of superheated steam supplied to the downstream container, or a superheated steam amount adjustment mechanism for adjusting the amount of superheated steam supplied to the downstream container;
a calculation mechanism for calculating an adjustment amount in at least one of the adjustment mechanisms based on the detected values of the inflow temperature detection mechanism, the inflow amount detection mechanism, and the outflow temperature detection mechanism ;
The heated fluid flowing through the downstream portion of the heat exchange pipe is heated by the sensible heat of the superheated steam supplied to the downstream container,
A heat exchanger, wherein the fluid to be heated flowing through the upstream portion of the heat exchange pipe is heated by latent heat of steam supplied to the upstream vessel.
請求項1に記載の熱交換器の使用方法であって、
前記下流側容器に供給される過熱水蒸気の温度及び量を、前記熱交換用配管の下流側部分を流れる前記被加熱流体が100℃以上の所望の温度となるように設定するとともに、前記下流側容器から前記上流側容器に供給される水蒸気の温度が100℃以上となるように設定する、熱交換器の使用方法。
A method of using the heat exchanger according to claim 1 ,
The temperature and amount of superheated steam supplied to the downstream vessel are set so that the heated fluid flowing in the downstream portion of the heat exchange pipe reaches a desired temperature of 100 ° C. or higher, and the downstream side A method of using a heat exchanger, wherein the temperature of steam supplied from a container to the upstream container is set to 100° C. or higher.
JP2018175675A 2018-09-20 2018-09-20 Heat exchanger and its usage Active JP7217928B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018175675A JP7217928B2 (en) 2018-09-20 2018-09-20 Heat exchanger and its usage
KR1020190102400A KR20200033728A (en) 2018-09-20 2019-08-21 Heat exchanger and using method thereof
CN201910788889.7A CN110926241A (en) 2018-09-20 2019-08-23 Heat exchanger and method of using same
CN201921390241.6U CN210689291U (en) 2018-09-20 2019-08-23 Heat exchanger
TW108131288A TW202012862A (en) 2018-09-20 2019-08-30 Heat exchanger and method for using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175675A JP7217928B2 (en) 2018-09-20 2018-09-20 Heat exchanger and its usage

Publications (2)

Publication Number Publication Date
JP2020046127A JP2020046127A (en) 2020-03-26
JP7217928B2 true JP7217928B2 (en) 2023-02-06

Family

ID=69856624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175675A Active JP7217928B2 (en) 2018-09-20 2018-09-20 Heat exchanger and its usage

Country Status (4)

Country Link
JP (1) JP7217928B2 (en)
KR (1) KR20200033728A (en)
CN (2) CN110926241A (en)
TW (1) TW202012862A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515852B1 (en) * 2021-01-07 2023-03-31 한국에너지기술연구원 Heat exchange pipe with hydrophilic pattern and Sensible heat and Latent Heat Separate type Heat exchanger
CN116123861B (en) * 2023-04-11 2023-06-23 山东桑瑞斯新能源股份有限公司 Waste heat recycling drying equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072321A (en) 2015-10-07 2017-04-13 株式会社東芝 Feed water heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152710A (en) * 1996-11-22 1998-06-09 Nippon Steel Corp Equipment for recovering waste heat or smelting reduction furnace
JP5945156B2 (en) 2012-04-20 2016-07-05 株式会社M&W Sewage sludge treatment equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072321A (en) 2015-10-07 2017-04-13 株式会社東芝 Feed water heater

Also Published As

Publication number Publication date
CN210689291U (en) 2020-06-05
CN110926241A (en) 2020-03-27
KR20200033728A (en) 2020-03-30
TW202012862A (en) 2020-04-01
JP2020046127A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
JP5630084B2 (en) Boiler water supply system
US20090260622A1 (en) Solar steam generator having a standby heat supply system
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
JP7217928B2 (en) Heat exchanger and its usage
WO2012114981A1 (en) Boiler plant and boiler plant operating method
RU2586802C2 (en) Combined cycle power plant (versions)
JP5008134B2 (en) Water supply preheating boiler
CN105464808B (en) Combustion and steam association system and its progress control method
SK29094A3 (en) Through-flow boiler
JP6986842B2 (en) How to operate a steam power plant and a steam power plant to implement this method
JP5591377B2 (en) Steam rankin plant
JP5723220B2 (en) Power plant
WO2014033837A1 (en) Waste heat recovery boiler, method for controlling waste heat recovery boiler, and combined cycle power generation plant using same
JP4893218B2 (en) Heat pump system for hot water supply
JP4115064B2 (en) Steam heating method for cryogenic fluid
JPS637244B2 (en)
JPH03267602A (en) Waste heat recovery heat exchanger
JP2009079845A (en) Feed water heater and power generation plant
EP2289150B1 (en) Solar steam generator having a standby heat supply system
JP7308719B2 (en) Exhaust heat recovery system
JP6355377B2 (en) Vacuum water heater
JP7172318B2 (en) steam generator
Skiles Improve the performance of your boiler system
JP2010159963A (en) Heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230118

R150 Certificate of patent or registration of utility model

Ref document number: 7217928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150