JPH10152710A - Equipment for recovering waste heat or smelting reduction furnace - Google Patents

Equipment for recovering waste heat or smelting reduction furnace

Info

Publication number
JPH10152710A
JPH10152710A JP8312457A JP31245796A JPH10152710A JP H10152710 A JPH10152710 A JP H10152710A JP 8312457 A JP8312457 A JP 8312457A JP 31245796 A JP31245796 A JP 31245796A JP H10152710 A JPH10152710 A JP H10152710A
Authority
JP
Japan
Prior art keywords
cooling panel
steam
water
waste heat
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8312457A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
宏 市川
Yukimasa Tanaka
幸政 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP8312457A priority Critical patent/JPH10152710A/en
Publication of JPH10152710A publication Critical patent/JPH10152710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an equipment which can increase waste heat power generation by utilizing the waste heat of a cooling panel practically difficult to recover and heating water at the outlet side of a steam condensor in a steam turbine, i.e., at the inlet side of an waste heat boiler, in the waste heat recovering equipment of a smelting reduction durance. SOLUTION: The exhaust heat recovering equipment of the smelting reduction furnace which directly produces molten iron or molten pig 6 by adding iron raw material, carbonaceous material and slag-making agent into the furnace body 1 lined on the cooling panel and blowing pure oxygen and/or oxygen- enriched gas and also, vaporizes supplied water with the waste heat boiler 10 by utilizing the heat of combustion gas discharged from the furnace body 1 to recover the steam in a vapor turbine 21. In such a case, a piping at the outlet side of the steam condenser 22 in the steam turbine is connected with the inlet side of the cooling panel and a piping 14 at the outlet side of the cooling panel is connected with the inlet side of a degassing device in the steam turbine and a system for supplying the warm draining water and/or the steam generated in the cooling panel into the deaerating device 24.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉本体に鉄原料、
炭材、及び造滓剤を添加し、純酸素及び/又は酸素富化
ガスを吹き込んで、溶鉄又は溶銑を直接製造する溶融還
元設備に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method of manufacturing a furnace using an iron raw material,
The present invention relates to a smelting reduction facility for directly producing molten iron or molten iron by adding a carbon material and a slag-making agent and blowing pure oxygen and / or an oxygen-enriched gas.

【0002】[0002]

【従来の技術】溶融還元は、炉本体内に鉄原料、炭材、
及び造滓剤を添加し、純酸素及び/又は酸素富化ガスを
吹き込んで、スラグ中で鉄原料中の酸化鉄を還元し、溶
鉄又は溶銑を直接製造する方法である。この方法では、
溶融還元炉から、1600〜1800℃程度の高温の燃
焼性ガスが生成される。
2. Description of the Related Art Smelting reduction involves the use of iron raw materials, carbon materials,
And a slag-making agent is added, and pure oxygen and / or oxygen-enriched gas is blown into the slag to reduce iron oxide in the iron raw material and directly produce molten iron or hot metal. in this way,
A high-temperature combustible gas of about 1600 to 1800 ° C. is generated from the smelting reduction furnace.

【0003】一般にこの種の溶融還元方法は、炉本体内
に予備還元した鉄原料、炭材、及び媒溶剤を添加し、炉
本体から発生する燃焼性ガス中のCOガス、H2 ガスで
鉄鉱石を予備還元する2段法(例えば特開昭57−12
0607号公報、特開昭61−96019号公報等参
照)と、炉本体内に未還元の鉄原料、炭材、及び媒溶剤
を添加し、スラグ中で鉄原料中の酸化鉄を還元し、炉本
体から発生する燃焼性ガス中のCOガス、H2 ガスを廃
熱ボイラー内で完全燃焼させ、燃焼性ガスの顕熱、潜熱
を蒸気化して回収し、発電等を行う1段法(例えば特開
平1−502276号公報、特開昭61−279608
号公報、特開昭60−9815号公報等参照)とに分類
される。
Generally, in this type of smelting reduction method, a preliminarily reduced iron raw material, a carbonaceous material, and a solvent are added to a furnace main body, and CO gas and H 2 gas in a combustible gas generated from the furnace main body are used to remove iron ore. Two-stage method for pre-reduction of stone (for example,
0607, JP-A-61-96019, etc.) and an unreduced iron raw material, a carbonaceous material, and a solvent in the furnace main body, and reduce iron oxide in the iron raw material in the slag, A one-stage method (e.g., power generation) in which CO gas and H 2 gas in the combustible gas generated from the furnace body are completely burned in a waste heat boiler, and the sensible heat and latent heat of the combustible gas are vaporized and collected. JP-A-1-502276, JP-A-61-279608
And JP-A-60-9815).

【0004】2段法は、1段法に比べエネルギー効率が
良い利点はあるものの、充填層方式及び流動層方式等の
予備還元炉が必要なため設備が複雑となり設備投資額が
高い。予備還元炉内での反応の均一性から鉄原料の形状
制限がある(例えば充填層方式においては塊状の鉄原料
しか使用できず、流動層方式では粉状の鉄原料しか使用
できない)等の欠点があることから、最近シンプルな1
段法が注目されつつある。
[0004] The two-stage method has the advantage of higher energy efficiency than the one-stage method, but requires a preliminary reduction furnace such as a packed-bed system or a fluidized-bed system, so that the equipment is complicated and the capital investment is high. Defects such as the limitation of the shape of the iron raw material due to the uniformity of the reaction in the pre-reduction furnace (for example, only a bulk iron raw material can be used in a packed bed system and only a powdered iron raw material can be used in a fluidized bed system) There is a simple one recently
The column method is attracting attention.

【0005】この1段法においては、炉本体から発生す
る大量の燃焼性ガスの顕熱、潜熱(溶融還元炉の総入熱
量の約50〜60%)を蒸気化して回収し、発電して外
部に電力を販売する、もしくは工場内の他の設備で使用
し、電力の購入量を低減することで、エネルギー効率が
2段法に劣る面を補償することが重要となる。
In this one-stage method, the sensible heat and latent heat (about 50 to 60% of the total heat input of the smelting reduction furnace) of a large amount of combustible gas generated from the furnace body are vaporized and recovered, and power is generated. It is important to compensate for the inefficiency of the two-stage method by selling electricity to the outside or using it at other facilities in the factory to reduce the amount of electricity purchased.

【0006】またこの1段法においては、スラグ中で発
生するCOガス、H2 ガスをスラグ上部の炉内空間(以
後2次燃焼帯と呼ぶ)で燃焼する割合(以後炉内2次燃
焼率と呼び、炉内2次燃焼率=(CO2 %+H2 O%)
/(CO2 %+CO%+H2O%+H2 %)と定義す
る)を上昇させ、その燃焼熱をスラグに有効に伝えるこ
とで、エネルギー効率を向上させる。即ち炭材原単位を
低減させることが可能なこと、及びその時には炭材原単
位を低減させる分だけ炉本体から発生する燃焼性ガスの
熱量、即ち顕熱と潜熱の合計が減少することは広く知ら
れている。
In this one-stage method, the rate at which CO gas and H 2 gas generated in the slag are burned in a furnace space above the slag (hereinafter referred to as a secondary combustion zone) (hereinafter, a secondary combustion rate in the furnace). And the secondary combustion rate in the furnace = (CO 2 % + H 2 O%)
/ (CO 2% + CO% + H 2 O% + H 2%) and defined) is raised and the combustion heat that convey useful slag, improve energy efficiency. In other words, it is widely possible to reduce the carbon unit consumption, and at that time, the calorific value of the combustible gas generated from the furnace body, that is, the total of the sensible heat and the latent heat, is reduced by the reduction of the carbon unit consumption. Are known.

【0007】ところが、従来の炉内面に耐火物を内張り
した構造(例えば特開昭61−279608号公報、特
開昭60−9815号公報等)であると、炉内2次燃焼
率を上昇した場合に、2次燃焼帯の雰囲気温度が上昇
し、耐火物の損耗が極端に増加し、溶銑製造コストが極
端に増加する、もしくは耐火物の補修頻度が増加し、連
続操業に支障をきたすという課題があった。
However, in the conventional structure in which a refractory is lined on the inner surface of the furnace (for example, Japanese Patent Application Laid-Open Nos. 61-279608 and 60-9815), the secondary combustion rate in the furnace is increased. In this case, the temperature of the atmosphere in the secondary combustion zone rises, the wear of refractories increases extremely, and the cost of hot metal production increases extremely, or the repair frequency of refractories increases, which hinders continuous operation. There were challenges.

【0008】そこで、これらの課題を解決するために、
炉内面の2次燃焼帯及びスラグに面した範囲に温水冷却
による冷却パネルを内張りした構造が、特開昭61−1
23697号公報及び特開平1−502276号公報で
提案されている。しかるに、この方法では、冷却水の核
沸騰による局部的冷却能低下による冷却パネルの破裂等
を防止するために、また、通常の工業用水(硬水)を使
用する場合には、石灰分が析出し、冷却パネル内面に付
着し、冷却能力を低下させることを防止するために、冷
却水の出側温度を約70℃以下にする必要があり、この
冷却パネルの廃熱が溶融還元炉の総入熱量の約6〜10
%と大きいにもかかわらず、この冷却パネルの廃熱回収
が事実上困難という課題があった。
Therefore, in order to solve these problems,
A structure in which a cooling panel by hot water cooling is lined in a region facing the secondary combustion zone and the slag on the inner surface of the furnace is disclosed in JP-A-61-1.
23697 and JP-A-1-502276. However, in this method, in order to prevent the rupture of the cooling panel due to local deterioration of the cooling capacity due to the nucleate boiling of the cooling water, and when ordinary industrial water (hard water) is used, lime precipitates. In order to prevent the cooling water from adhering to the inner surface of the cooling panel and lowering the cooling capacity, the outlet temperature of the cooling water needs to be about 70 ° C. or less. About 6 to 10 of calorie
%, There is a problem that it is practically difficult to recover waste heat from the cooling panel.

【0009】また、前記冷却パネルを自然循環式ボイラ
ーで構成し、前記冷却パネルの廃熱を蒸気として回収
し、発電する方法も考えられたが、発電効率を向上しよ
うとすると、ボイラー内の蒸気圧力を約140kg/cm2
まで上昇する必要が生じ、冷却パネルの水漏れの危険性
が増し、溶融還元設備の安定操業に支障をきたす課題が
あった。また、前記冷却パネルの廃熱を約9kg/cm2
下の低圧蒸気として回収した場合には、その需要が少な
く、余剰気味になっていた。
Further, a method has been considered in which the cooling panel is constituted by a natural circulation boiler, and the waste heat of the cooling panel is recovered as steam to generate power. However, in order to improve the power generation efficiency, the steam in the boiler has to be improved. Pressure about 140kg / cm 2
To increase the risk of water leaking from the cooling panel, which hinders stable operation of the smelting reduction facility. Further, when the waste heat of the cooling panel was recovered as low-pressure steam of about 9 kg / cm 2 or less, the demand was small, and the excess was somewhat surplus.

【0010】以下、従来技術の一例を図4に基づいて詳
細に説明する。図4は、溶融還元炉の廃熱回収設備にお
ける従来技術の一例のフロー図である。炉本体1は耐火
物2、冷却パネル3で内張りされており、炉本体1の上
部には、鉄原料、炭材、及び造滓剤を添加する原料投入
口4及び炉本体から発生する燃焼性ガスを排出するガス
排出口5が配設されている。炉本体1の底部には溶銑6
が溜まり、その上部に溶銑6より比重の軽いスラグ7が
溜まっており、溶銑6は出銑口8から、スラグ7は出滓
口9からそれぞれ連続又は断続的に排出される。
Hereinafter, an example of the prior art will be described in detail with reference to FIG. FIG. 4 is a flowchart of an example of a conventional technique in a waste heat recovery facility of a smelting reduction furnace. The furnace main body 1 is lined with a refractory 2 and a cooling panel 3. At the upper part of the furnace main body 1, a raw material input port 4 for adding an iron raw material, a carbon material, and a slag-making agent, and the combustibility generated from the furnace main body A gas outlet 5 for discharging gas is provided. At the bottom of the furnace body 1 is hot metal 6
The slag 7 having a specific gravity lower than that of the hot metal 6 is stored at an upper portion thereof. The hot metal 6 is continuously or intermittently discharged from the tap hole 8 and the slag 7 is discharged from the slag port 9.

【0011】原料投入口4から投入された鉄原料中の酸
化鉄(FeO及びFe2 3 )は、同じく原料投入口4
から投入された炭材中炭素分により、スラグ7中で以下
の式(1),(2)に示す反応により還元される。 FeO + C→ Fe+ CO (吸熱反応) ・・・・・・(1) Fe2 3 +3C→2Fe+3CO (吸熱反応) ・・・・・・(2)
The iron oxide (FeO and Fe 2 O 3 ) in the iron raw material supplied from the raw material input port 4
Is reduced in the slag 7 by the reaction represented by the following formulas (1) and (2). FeO + C → Fe + CO (endothermic reaction) (1) Fe 2 O 3 + 3C → 2Fe + 3CO (endothermic reaction) (2)

【0012】また、原料投入口4から投入された炭材中
炭素分の一部は、炉本体1を貫通してスラグ7に向けて
配設された下部羽口11を通じてスラグ7中に吹き込ま
れる酸素と以下の式(3)に示す反応により酸化され
る。 C+1/2O2 →CO (発熱反応) ・・・・・・(3)
Further, a part of the carbon content in the carbonaceous material supplied from the raw material input port 4 is blown into the slag 7 through the lower tuyere 11 which penetrates through the furnace body 1 and is disposed toward the slag 7. It is oxidized by oxygen and a reaction represented by the following formula (3). C + 1 / 2O 2 → CO (exothermic reaction) (3)

【0013】また原料投入口4から投入された炭材中炭
素分の一部は、同じく原料投入口4から投入された鉄原
料、炭材、及び造滓剤中の水分と以下の式(4)に示す
反応をする。 H2 O+C→H2 +CO (吸熱反応) ・・・・・・(4)
A part of the carbon content in the carbonaceous material input from the material input port 4 is determined by the following formula (4) ). H 2 O + C → H 2 + CO (Endothermic reaction) (4)

【0014】この溶融還元炉のエネルギー効率、即ち炭
材原単位は、式(1),(2),(3),(4)の反応
に必要な炭素分の合計によって決定される。従って、原
料投入口4から投入された鉄原料、炭材、及び造滓剤中
の水分が増加すると、式(3)で消費される炭素分が増
加すると共に、式(3)の吸熱量が増加するので、それ
を補償するために式(4)の発熱量を増加せざるを得な
くなり、結果として式(1),(2),(3),(4)
の反応に必要な炭素分の合計が増加し、炭材原単位が増
加する。又、それに伴い、式(4)及び後で説明する式
(5),(6)に必要な酸素量が増加することで、酸素
原単位も増加する。
The energy efficiency of this smelting reduction furnace, that is, the basic unit of carbon material, is determined by the total amount of carbon necessary for the reactions of the formulas (1), (2), (3) and (4). Therefore, when the water content in the iron raw material, the carbonaceous material, and the slag-making agent input from the raw material input port 4 increases, the carbon content consumed in the expression (3) increases, and the endothermic amount in the expression (3) decreases. Since it increases, the calorific value of equation (4) must be increased to compensate for it, and as a result, equations (1), (2), (3), and (4)
The total amount of carbon required for the reaction increases, and the carbon unit consumption increases. In addition, along with this, the oxygen amount required for the expression (4) and the expressions (5) and (6) described later increases, so that the oxygen intensity decreases.

【0015】更に、上記式(1),(2),(3),
(4)によりスラグ7中で発生したCOガス、H2 ガス
及び炭材中水素分は、炉本体1を貫通して2次燃焼帯1
0に向けて配設された上部羽口12を通じて2次燃焼帯
10中に吹き込まれる酸素と以下の式(5),(6)に
示す反応により酸化される。 CO+1/2O2 →CO2 (発熱反応) ・・・・・・(5) H2 +1/2O2 →H2 O (発熱反応) ・・・・・・(6)
Further, the above equations (1), (2), (3),
The CO gas, the H 2 gas, and the hydrogen content in the carbonaceous material generated in the slag 7 by (4) pass through the furnace body 1 and pass through the secondary combustion zone 1.
Oxygen is blown into the secondary combustion zone 10 through the upper tuyere 12 arranged toward zero and is oxidized by a reaction represented by the following formulas (5) and (6). CO + 1 / 2O 2 → CO 2 (exothermic reaction) (5) H 2 + 1 / 2O 2 → H 2 O (exothermic reaction) (6)

【0016】この式(5),(6)の反応を炉内2次燃
焼と呼び、この2次燃焼の度合いの大小を以下の式
(7)で定義される炉内2次燃焼率で表すことと、この
2次燃焼率は上部羽口12を通じて2次燃焼帯10中に
吹き込まれる酸素の流量を増加することで増加すること
は広く知られている。炉内2次燃焼率を上昇させると、
2次燃焼帯10における式(5),(6)の反応熱の一
部がスラグ7に伝達する。 炉内2次燃焼率=(CO2 %+H2 O%)/(CO2 %+CO%+H2 O% +H2 %) ・・・・・・(7) 但し、(7)式中のCO2 %,CO%,H2 O%,H2
%は、ガス排出口6における燃焼性ガスの各成分の体積
分率を示す。
The reactions of the equations (5) and (6) are referred to as in-furnace secondary combustion, and the degree of the degree of the secondary combustion is represented by the in-furnace secondary combustion rate defined by the following equation (7). It is widely known that the secondary combustion rate is increased by increasing the flow rate of oxygen blown into the secondary combustion zone 10 through the upper tuyere 12. When the secondary combustion rate in the furnace is increased,
Part of the reaction heat of the equations (5) and (6) in the secondary combustion zone 10 is transmitted to the slag 7. In-furnace secondary combustion rate = (CO 2 % + H 2 O%) / (CO 2 % + CO% + H 2 O% + H 2 %) (7) where CO 2 in equation (7) %, CO%, H 2 O %, H 2
% Indicates the volume fraction of each component of the combustible gas at the gas outlet 6.

【0017】一方、炉本体1で発生した高温の燃焼性ガ
スは、炉本体1の上部に配設されたガス排出口5を通し
て廃熱ボイラー16に導かれ、燃焼性ガスの顕熱、潜熱
を蒸気化して回収された後、排ガスダクト15、集塵機
17、ブロアー18、煙突19等を通して系外に排出さ
れる。
On the other hand, the high-temperature combustible gas generated in the furnace main body 1 is guided to the waste heat boiler 16 through the gas discharge port 5 provided in the upper part of the furnace main body 1, and converts the sensible heat and latent heat of the combustible gas. After being vaporized and collected, it is discharged out of the system through an exhaust gas duct 15, a dust collector 17, a blower 18, a chimney 19 and the like.

【0018】一方、廃熱ボイラー16で燃焼性ガスの顕
熱、潜熱によって高圧蒸気化された蒸気は、蒸気配管2
0を通って蒸気タービン21に導かれ蒸気タービン21
を駆動し、その駆動軸に接続された発電機31によって
電力に変換される。蒸気タービン21によってエネルギ
ーを回収された蒸気は、復水器22で約40℃に冷却さ
れて水になり、復水ポンプ29を介して低圧給水加熱器
23に送られる。
On the other hand, the steam which has been turned into high pressure steam by the sensible heat and latent heat of the combustible gas in the waste heat boiler 16
0 to the steam turbine 21
And is converted into electric power by a generator 31 connected to the drive shaft. The steam whose energy has been recovered by the steam turbine 21 is cooled to about 40 ° C. by the condenser 22 to become water, and sent to the low-pressure feedwater heater 23 via the condenser pump 29.

【0019】低圧給水加熱器23には、蒸気タービン2
1から抽気された蒸気が抽気配管28−aを介して送ら
れ、前記の水と熱交換して前記の水を約85℃に加熱し
た後、加熱された水は脱気器24に送られる。
The low-pressure feed water heater 23 includes a steam turbine 2
The steam extracted from 1 is sent through the extraction pipe 28-a and heat-exchanges with the water to heat the water to about 85 ° C., and then the heated water is sent to the deaerator 24. .

【0020】脱気器24には、蒸気タービン21から抽
気された蒸気が抽気配管28−bを介して送られ、前記
の水に吹き込まれ、前記の水を約140℃に加熱すると
共に、水中に溶存した酸素等を除いた後、加熱された水
はボイラー給水ポンプ25で廃熱ボイラー出側の蒸気圧
力(例えば約120kg/cm2 )まで昇圧された後、高圧
給水加熱器26に送られる。
The steam extracted from the steam turbine 21 is sent to the deaerator 24 through an extraction pipe 28-b, blown into the water, and heats the water to about 140 ° C. After removing the oxygen and the like dissolved in the water, the heated water is pressurized to the steam pressure (for example, about 120 kg / cm 2 ) on the outlet side of the waste heat boiler by the boiler water supply pump 25 and then sent to the high pressure water heater 26. .

【0021】高圧給水加熱器26には、蒸気タービン2
1から抽気された蒸気が抽気配管28−cを介して送ら
れ、前記の水と熱交換して前記の水を約200℃に加熱
した後、加熱された水は廃熱ボイラー16に送られる。
The high pressure feed water heater 26 has a steam turbine 2
The steam extracted from 1 is sent through the extraction pipe 28-c and exchanges heat with the water to heat the water to about 200 ° C., and then the heated water is sent to the waste heat boiler 16 .

【0022】このように、タービン効率を高めるため
に、廃熱ボイラー16入側の水を蒸気タービン21から
の抽気蒸気によって加熱しているわけであるが、この抽
気蒸気の熱量は、蒸気タービン入り側の蒸気熱量の約1
5〜20%に達する。従って、この廃熱ボイラー入側の
水の加熱を他の廃熱を利用して行い、蒸気タービン21
からの抽気蒸気量を減少すれば、その分だけ発電量を増
加することができる。
As described above, in order to increase the turbine efficiency, the water on the inlet side of the waste heat boiler 16 is heated by the extracted steam from the steam turbine 21. The amount of heat of this extracted steam is About 1 of the steam calorie of the side
Reaches 5-20%. Therefore, the water on the inlet side of the waste heat boiler is heated by using other waste heat, and the steam turbine 21 is heated.
If the amount of extracted steam from the gas is reduced, the amount of power generation can be increased accordingly.

【0023】[0023]

【発明が解決しようとする課題】本発明は、以上のよう
な課題を解決するためになされたものであり、その目的
とするところは、冷却パネルに内張りされた炉本体に鉄
原料、炭材、及び造滓剤を添加し、純酸素及び/又は酸
素富化ガスを吹き込んで、溶鉄又は溶銑を直接製造する
設備において、回収が事実上困難であった冷却パネルの
廃熱を利用して、蒸気タービンの復水器出側、即ち廃熱
ボイラー入側の水を加熱することで、廃熱発電量を増加
することが可能な設備を提供することである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a furnace body lined with a cooling panel with an iron raw material and a carbon material. , And adding a slag-making agent, blowing pure oxygen and / or an oxygen-enriched gas, and in a facility for directly producing molten iron or hot metal, utilizing the waste heat of a cooling panel, which was practically difficult to recover, An object of the present invention is to provide a facility capable of increasing the amount of waste heat power generation by heating water on the condenser outlet side of the steam turbine, that is, on the waste heat boiler inlet side.

【0024】[0024]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、冷却パネルに内張りされた炉本体に鉄
原料、炭材、及び造滓剤を添加し、純酸素及び/又は酸
素富化ガスを吹き込んで、溶鉄又は溶銑を直接製造する
と共に、該炉体から排出される燃焼性ガスの熱を利用し
て廃熱ボイラーで供給水を蒸気化し、蒸気タービンで回
収する設備において、前記蒸気タービンの復水器出側配
管を前記冷却パネルの入側に接続し、前記冷却パネルの
出側配管を前記蒸気タービンの脱気器入側に接続したこ
とにより、前記冷却パネルで発生した温排水及び/又は
蒸気を前記脱気器に供給するようになしたことを特徴と
するものである。もしくは、前記蒸気タービンの脱気器
と前記冷却パネルの入側配管を送水ポンプを介して接続
し、前記冷却パネルの出側配管を前記脱気器に接続した
ことにより、前記冷却パネルで発生した温排水又は蒸
気、又は蒸気と水の混合体を前記脱気器に供給するよう
になしたことを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides a furnace body lined with a cooling panel, which comprises adding an iron raw material, a carbonaceous material, and a slag-making agent to pure oxygen and / or slag. Injecting an oxygen-enriched gas to directly produce molten iron or hot metal, and using the heat of the combustible gas discharged from the furnace body to vaporize feed water with a waste heat boiler and recover it with a steam turbine By connecting a condenser outlet pipe of the steam turbine to an inlet of the cooling panel and connecting an outlet pipe of the cooling panel to a deaerator inlet of the steam turbine, The hot waste water and / or steam is supplied to the deaerator. Alternatively, the degasser of the steam turbine and the inlet pipe of the cooling panel are connected via a water pump, and the outlet pipe of the cooling panel is connected to the deaerator, thereby causing the cooling panel. It is characterized in that hot waste water or steam or a mixture of steam and water is supplied to the deaerator.

【0025】本発明の溶融還元炉の廃熱回収設備におい
ては、冷却パネルの廃熱を利用して、蒸気タービンの復
水器出側、即ち廃熱ボイラー入側の水を加熱すること
で、以下の作用がある。 排ガス廃熱のみならず、回収が事実上困難であった
冷却パネルの廃熱を有効活用できる。 冷却パネルの廃熱が、溶融還元炉の総入熱量の約6
〜10%、排ガス廃熱が、総入熱量の約50〜60%で
あることから、排ガス廃熱のみを回収し冷却パネル廃熱
を回収しない場合に比較して、蒸気タービンによる発電
量が10〜20%増加する。
In the waste heat recovery equipment of the smelting reduction furnace of the present invention, the waste heat of the cooling panel is used to heat the water on the outlet side of the condenser of the steam turbine, ie, on the inlet side of the waste heat boiler. The following operations are provided. It is possible to effectively utilize not only the waste heat of the exhaust gas but also the waste heat of the cooling panel, which was practically difficult to recover. The waste heat of the cooling panel is about 6% of the total heat input of the smelting reduction furnace.
Since the exhaust gas waste heat is about 50 to 60% of the total heat input, the amount of power generated by the steam turbine is 10% as compared with the case where only the exhaust gas waste heat is collected and the cooling panel waste heat is not collected. ~ 20% increase.

【0026】 冷却パネル内の水又は水蒸気の圧力が
4kg/cm2 以下であり、冷却パネルの漏れの危険性が少
ない。 冷却パネルを通常の工業用水(硬水)ではなく、ボ
イラー水(純水)によって冷却するので、石灰分の析
出、パネル内面への付着による冷却能低下の心配がな
い。 冷却パネルを通常の工業用水ではなく、ボイラー水
によって冷却するので、工業用水冷却設備を設置する必
要がない。
The pressure of water or steam in the cooling panel is 4 kg / cm 2 or less, and there is little risk of leakage of the cooling panel. Since the cooling panel is cooled by boiler water (pure water) instead of ordinary industrial water (hard water), there is no risk of lime precipitation and cooling ability deterioration due to adhesion to the panel inner surface. Since the cooling panel is cooled by boiler water instead of ordinary industrial water, there is no need to install industrial water cooling equipment.

【0027】[0027]

【発明の実施の形態】以下、本発明請求項1の第1の実
施例を、図1における溶融還元炉の廃熱回収設備のフロ
ー図に基づいて説明する。本実施例においては、廃熱ボ
イラー出口の蒸気圧力が約120kg/cm2 の廃熱ボイラ
ー及び蒸気タービンを例にとって説明しているが、本発
明が、圧力及び温度条件の異なる場合にも適用されるこ
とは言うまでもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The first embodiment of the present invention will be described below with reference to the flow chart of the waste heat recovery equipment of the smelting reduction furnace in FIG. In the present embodiment, a waste heat boiler and a steam turbine in which the steam pressure at the outlet of the waste heat boiler is about 120 kg / cm 2 are described as an example, but the present invention is also applied to a case where pressure and temperature conditions are different. Needless to say.

【0028】廃熱ボイラー16で燃焼性ガスの顕熱、潜
熱によって高圧蒸気化された蒸気は、蒸気配管20を通
って蒸気タービン21に導かれ蒸気タービン21を駆動
し、その駆動軸に接続された発電機31によって電力に
変換される。蒸気タービン21によってエネルギーを回
収された蒸気は、復水器22で約40℃に冷却されて水
になり、復水ポンプ29及び冷却パネル入側配管13を
介して炉本体1に内張りされた冷却パネル3に送られ
る。
The high-pressure steam generated by the sensible heat and latent heat of the combustible gas in the waste heat boiler 16 is guided to a steam turbine 21 through a steam pipe 20 to drive the steam turbine 21 and is connected to a drive shaft thereof. Is converted into electric power by the generator 31. The steam whose energy has been recovered by the steam turbine 21 is cooled to about 40 ° C. by the condenser 22 to become water, and the cooling lined in the furnace main body 1 via the condenser pump 29 and the cooling panel inlet pipe 13. It is sent to panel 3.

【0029】冷却パネル3において前記の水を約60〜
85℃に加熱した後、加熱された水は脱気器24に送ら
れる。この場合、冷却パネル3中を流れる水は、ボイラ
ー水(純水)であり、石灰分を殆ど含んでいないため、
70℃以上に加熱されても石灰分の析出、冷却パネル内
面への付着による冷却能低下の心配はない。
In the cooling panel 3, the above-mentioned water is
After heating to 85 ° C., the heated water is sent to a deaerator 24. In this case, the water flowing through the cooling panel 3 is boiler water (pure water) and contains almost no lime,
Even when heated to 70 ° C. or more, there is no concern about lime precipitation and a decrease in cooling ability due to adhesion to the inner surface of the cooling panel.

【0030】脱気器24には、蒸気タービン21から抽
気された蒸気が抽気配管28−bを介して送られ、前記
の水に吹き込まれ、前記の水を約140℃に加熱すると
共に、水中に溶存した酸素等を除いた後、加熱された水
はボイラー給水ポンプ25で廃熱ボイラー出側の蒸気圧
力(例えば約120kg/cm2 )まで昇圧された後、高圧
給水加熱器26に送られる。
The steam extracted from the steam turbine 21 is sent to the deaerator 24 through an extraction pipe 28-b, blown into the water, and heats the water to about 140 ° C. After removing the oxygen and the like dissolved in the water, the heated water is pressurized to the steam pressure (for example, about 120 kg / cm 2 ) on the outlet side of the waste heat boiler by the boiler water supply pump 25 and then sent to the high pressure water heater 26. .

【0031】高圧給水加熱器26には、蒸気タービン2
1から抽気された蒸気が抽気配管28−cを介して送ら
れ、前記の水と熱交換して前記の水を約200℃に加熱
した後、加熱された水は廃熱ボイラー16に送られる。
The high pressure feed water heater 26 has a steam turbine 2
The steam extracted from 1 is sent through the extraction pipe 28-c and exchanges heat with the water to heat the water to about 200 ° C., and then the heated water is sent to the waste heat boiler 16 .

【0032】更に、本発明請求項1の第2の実施例を、
図2における溶融還元炉の廃熱回収設備のフロー図に基
づいて説明する。廃熱ボイラー16で燃焼性ガスの顕
熱、潜熱によって高圧蒸気化された蒸気は、蒸気配管2
0を通って蒸気タービン21に導かれ蒸気タービン21
を駆動し、その駆動軸に接続された発電機31によって
電力に変換される。蒸気タービン21によってエネルギ
ーを回収された蒸気は、復水器22で約40℃に冷却さ
れて水になり、復水ポンプ29を介して脱気器24に送
られる。
Further, the second embodiment of the present invention is as follows.
This will be described based on the flowchart of the waste heat recovery equipment of the smelting reduction furnace in FIG. The high-pressure steam generated by the sensible heat and latent heat of the combustible gas in the waste heat boiler 16 is supplied to the steam pipe 2.
0 to the steam turbine 21
And is converted into electric power by a generator 31 connected to the drive shaft. The steam whose energy has been recovered by the steam turbine 21 is cooled to about 40 ° C. by the condenser 22 to become water, and sent to the deaerator 24 via the condenser pump 29.

【0033】この復水ポンプ29と脱気器24間のボイ
ラー水配管27から、冷却パネル入側配管13を分岐し
て接続し、水の一部は冷却パネル水量制御弁30で水量
を制御して炉本体1に内張りされた冷却パネル3に送ら
れる。
From the boiler water pipe 27 between the condensate pump 29 and the deaerator 24, the cooling panel inlet side pipe 13 is branched and connected, and a part of the water is controlled by the cooling panel water amount control valve 30 to control the water amount. To the cooling panel 3 lined with the furnace body 1.

【0034】冷却パネル3は低圧ボイラーで構成されて
おり、冷却パネル3において前記の水を低圧蒸気化され
た後、その蒸気又は蒸気と水の混合体は冷却パネル出側
配管14を介して脱気器24に送られる。この場合、冷
却パネル3内の蒸気圧力は脱気器24内の圧力(例えば
3.5kg/cm2 )程度であり、冷却パネル3の水漏れの
可能性は少なく、溶融還元設備の安定操業に支障をきた
すことはない。
The cooling panel 3 is composed of a low-pressure boiler. After the water is vaporized at a low pressure in the cooling panel 3, the steam or a mixture of steam and water is removed through a cooling panel outlet pipe 14. It is sent to the porcelain 24. In this case, the steam pressure in the cooling panel 3 is about the pressure in the deaerator 24 (for example, 3.5 kg / cm 2 ), and there is little possibility that the cooling panel 3 leaks water. There is no hindrance.

【0035】脱気器24には、前記の低圧蒸気が冷却パ
ネル出側配管14を介して送られ、前記の復水ポンプ2
9から脱気器24に直接送られる水に吹き込まれ、前記
の水を約140℃に加熱すると共に、水中に溶存した酸
素等を除いた後、加熱された水はボイラー給水ポンプ2
5で廃熱ボイラー出側の蒸気圧力(例えば約120kg/
cm2 )まで昇圧された後、高圧給水加熱器26に送られ
る。
The low-pressure steam is sent to the deaerator 24 through the cooling panel outlet pipe 14, and the condensate pump 2
9 is blown into the water sent directly to the deaerator 24, which heats the water to about 140 ° C. and removes oxygen and the like dissolved in the water, and then the heated water is supplied to the boiler feed pump 2
In step 5, the steam pressure at the outlet side of the waste heat boiler (for example, about 120 kg /
After being pressurized to cm 2 ), it is sent to the high pressure feed water heater 26.

【0036】高圧給水加熱器26には、蒸気タービン2
1から抽気された蒸気が抽気配管28−cを介して送ら
れ、前記の水と熱交換して前記の水を約200℃に加熱
した後、加熱された水は廃熱ボイラー16に送られる。
The high pressure feed water heater 26 has a steam turbine 2
The steam extracted from 1 is sent through the extraction pipe 28-c and exchanges heat with the water to heat the water to about 200 ° C., and then the heated water is sent to the waste heat boiler 16 .

【0037】更に、本発明の請求項2の1実施例を、図
3における溶融還元炉の廃熱回収設備のフロー図に基づ
いて説明する。廃熱ボイラー16で燃焼性ガスの顕熱、
潜熱によって高圧蒸気化された蒸気は、蒸気配管20を
通って蒸気タービン21に導かれ蒸気タービン21を駆
動し、その駆動軸に接続された発電機31によって電力
に変換される。蒸気タービン21によってエネルギーを
回収された蒸気は、復水器22で約40℃に冷却されて
水になり、復水ポンプ29を介して脱気器24に送られ
る。
Further, an embodiment of the present invention will be described with reference to the flow chart of the waste heat recovery equipment of the smelting reduction furnace in FIG. Sensible heat of combustible gas in waste heat boiler 16,
The steam that has been converted into high-pressure steam by the latent heat is guided to a steam turbine 21 through a steam pipe 20 to drive the steam turbine 21 and is converted into electric power by a generator 31 connected to the drive shaft. The steam whose energy has been recovered by the steam turbine 21 is cooled to about 40 ° C. by the condenser 22 to become water, and sent to the deaerator 24 via the condenser pump 29.

【0038】この脱気器24から、冷却パネル入側配管
13を分岐して接続し、水の一部は冷却パネル送水ポン
プ32で冷却パネル3の圧力損失分だけ昇圧され、冷却
パネル水量制御弁30で水量を制御されて炉本体1に内
張りされた冷却パネル3に送られる。
From the deaerator 24, the cooling panel inlet pipe 13 is branched and connected. A part of the water is boosted by the cooling panel water pump 32 by the pressure loss of the cooling panel 3, and the cooling panel water amount control valve is provided. At 30, the amount of water is controlled and sent to the cooling panel 3 lined with the furnace body 1.

【0039】冷却パネル3は低圧ボイラーで構成されて
おり、冷却パネル3において前記の水を低圧蒸気化され
た後、その蒸気又は蒸気と水の混合体は冷却パネル出側
配管14を介して再び脱気器24に送られる。この場
合、冷却パネル3内の蒸気圧力は脱気器24内の圧力
(例えば3.5kg/cm2 )程度であり、冷却パネル3の
水漏れの可能性は少なく、溶融還元設備の安定操業に支
障をきたすことはない。
The cooling panel 3 is composed of a low-pressure boiler. After the above-mentioned water is converted into low-pressure steam in the cooling panel 3, the steam or a mixture of steam and water is again passed through the cooling panel outlet pipe 14. It is sent to the deaerator 24. In this case, the steam pressure in the cooling panel 3 is about the pressure in the deaerator 24 (for example, 3.5 kg / cm 2 ), and there is little possibility that the cooling panel 3 leaks water. There is no hindrance.

【0040】また、脱気器24から冷却パネル3に送ら
れる水は脱気器24内の圧力(例えば約3.5kg/c
m2 )における飽和水であり、冷却パネル3から脱気器
24に送られる蒸気または蒸気と水の混合体は脱気器2
4内の圧力(例えば約3.5kg/cm2 )における飽和蒸
気又は飽和蒸気と飽和水の混合体であることから、冷却
パネル3の入側の水の温度と出側の蒸気の温度は、冷却
パネル3の熱負荷の変動に係わらず、ほぼ同じである。
従って、冷却パネル3の熱応力の変動が殆どなく、冷却
パネル3の長寿命化が期待できる。
The water sent from the deaerator 24 to the cooling panel 3 is supplied to the pressure inside the deaerator 24 (for example, about 3.5 kg / c).
m 2 ), the steam or the mixture of steam and water sent from the cooling panel 3 to the deaerator 24
Since it is a saturated steam or a mixture of saturated steam and saturated water at a pressure in the inside of the cooling panel 4 (for example, about 3.5 kg / cm 2 ), the temperature of the water on the inlet side of the cooling panel 3 and the temperature of the steam on the outlet side are: It is almost the same irrespective of the fluctuation of the heat load of the cooling panel 3.
Therefore, the thermal stress of the cooling panel 3 hardly fluctuates, and a longer life of the cooling panel 3 can be expected.

【0041】脱気器24には、前記の低圧蒸気が冷却パ
ネル出側配管14を介して送られ、前記の復水ポンプ2
9から脱気器24に直接送られる水に吹き込まれ、前記
の水を約140℃に加熱すると共に、水中に溶存した酸
素等を除いた後、加熱された水はボイラー給水ポンプ2
5で廃熱ボイラー出側の蒸気圧力(例えば約120kg/
cm2 )まで昇圧された後、高圧給水加熱器26に送られ
る。
The low-pressure steam is sent to the deaerator 24 via the cooling panel outlet pipe 14, and the condensate pump 2
9 is blown into the water sent directly to the deaerator 24, which heats the water to about 140 ° C. and removes oxygen and the like dissolved in the water, and then the heated water is supplied to the boiler feed pump 2
In step 5, the steam pressure at the outlet side of the waste heat boiler (for example, about 120 kg /
After being pressurized to cm 2 ), it is sent to the high pressure feed water heater 26.

【0042】高圧給水加熱器26には、蒸気タービン2
1から抽気された蒸気が抽気配管28−cを介して送ら
れ、前記の水と熱交換して前記の水を約200℃に加熱
した後、加熱された水は廃熱ボイラー16に送られる。
The high pressure feed water heater 26 has a steam turbine 2
The steam extracted from 1 is sent through the extraction pipe 28-c and exchanges heat with the water to heat the water to about 200 ° C., and then the heated water is sent to the waste heat boiler 16 .

【0043】前述の請求項1の第1の実施例において
は、冷却パネル3を温水冷却し、その温排水を脱気器2
4に送る例、請求項1の第2の実施例及び請求項2の1
実施例においては、冷却パネル3を蒸気冷却し、その低
圧蒸気を脱気器24に吹き込む例を説明したが、本発明
が、その双方を兼ね合わせた例、即ち冷却パネル3の一
部を温水冷却しその温排水を脱気器24に送ると共に、
冷却パネル3の他の一部を蒸発冷却しその低圧蒸気を脱
気器24に吹き込み、前述の温排水を加熱する例につい
ても適用されることは言うまでもない。
In the first embodiment of the present invention, the cooling panel 3 is cooled with hot water, and the hot waste water is discharged to the deaerator 2.
4, the second embodiment of claim 1 and the first of claim 2
In the embodiment, the example in which the cooling panel 3 is steam-cooled and the low-pressure steam is blown into the deaerator 24 has been described. However, the present invention combines both of them, that is, a part of the cooling panel 3 is heated with hot water. While cooling and sending the warm wastewater to the deaerator 24,
Needless to say, the present invention is also applicable to an example in which the other part of the cooling panel 3 is evaporated and cooled, and the low-pressure steam is blown into the deaerator 24 to heat the hot waste water.

【0044】[0044]

【発明の効果】以上説明したように、本発明の溶融還元
炉の廃熱回収設備においては、冷却パネルの廃熱を利用
して、蒸気タービンの復水器出側、即ち廃熱ボイラー入
側の水を加熱することで、以下の効果が期待できる。
As described above, in the waste heat recovery equipment for a smelting reduction furnace according to the present invention, the waste heat of the cooling panel is used to utilize the waste heat of the steam turbine, that is, the waste heat boiler inlet. By heating the water, the following effects can be expected.

【0045】 排ガス廃熱のみならず、回収が事実上
困難であった冷却パネルの廃熱を有効活用できる。 従来技術においては、低圧給水加熱器23及び脱気
器24で、タービン21からの抽気蒸気によって加熱し
ていたボイラー16入側の水を、本発明においては、水
冷パネル3の廃熱で加熱することで、タービン21から
の抽気蒸気を減少することにより、その分だけ発電量を
増加することができる。冷却パネルの廃熱が、溶融還元
炉の総入熱量の約6〜10%、排ガス廃熱が、総入熱量
の約50〜60%であることから、排ガス廃熱のみを回
収し冷却パネル廃熱を回収しない場合に比較して、蒸気
タービンによる発電量が10〜20%増加する。
It is possible to effectively utilize not only the waste heat of the exhaust gas but also the waste heat of the cooling panel, which has been practically difficult to recover. In the prior art, the water on the inlet side of the boiler 16 which has been heated by the extracted steam from the turbine 21 by the low-pressure feed water heater 23 and the deaerator 24 is heated by the waste heat of the water cooling panel 3 in the present invention. As a result, the amount of power generation can be increased by reducing the amount of steam extracted from the turbine 21. The waste heat of the cooling panel is about 6 to 10% of the total heat input of the smelting reduction furnace, and the waste gas waste heat is about 50 to 60% of the total heat input. The amount of power generated by the steam turbine increases by 10 to 20% as compared with the case where heat is not recovered.

【0046】 冷却パネル内の水又は水蒸気の圧力が
4kg/cm2 以下であり、冷却パネルの漏れの危険性が少
ない。 冷却パネルを通常の工業用水(硬水)ではなく、ボ
イラー水(純水)によって冷却するので、石灰分の析
出、パネル内面への付着による冷却能低下の心配がな
い。
The pressure of water or steam in the cooling panel is 4 kg / cm 2 or less, and there is little risk of leakage of the cooling panel. Since the cooling panel is cooled by boiler water (pure water) instead of ordinary industrial water (hard water), there is no risk of lime precipitation and cooling ability deterioration due to adhesion to the panel inner surface.

【0047】冷却パネルを通常の工業用水ではなく、
ボイラー水によって冷却するので、工業用水冷却設備を
設置する必要がない。 冷却パネルの熱応力の変動が殆どなく、冷却パネル
3の長寿命化が期待できる。
The cooling panel is not a normal industrial water,
Cooling by boiler water eliminates the need to install industrial water cooling equipment. There is almost no change in the thermal stress of the cooling panel, and a longer life of the cooling panel 3 can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明(請求項1)に係わる溶融還元炉の廃熱
回収設備の第1の実施例のフローを示す図。
FIG. 1 is a view showing a flow of a first embodiment of a waste heat recovery facility of a smelting reduction furnace according to the present invention (claim 1).

【図2】本発明(請求項1)に係わる溶融還元炉の廃熱
回収設備の第2の実施例のフローを示す図。
FIG. 2 is a diagram showing a flow of a second embodiment of the waste heat recovery equipment of the smelting reduction furnace according to the present invention (claim 1).

【図3】本発明(請求項2)に係わる溶融還元炉の廃熱
回収設備の1実施例のフローを示す図。
FIG. 3 is a diagram showing a flow of one embodiment of a waste heat recovery facility of a smelting reduction furnace according to the present invention (claim 2).

【図4】従来技術の溶融還元炉の廃熱回収設備のフロー
を示す図。
FIG. 4 is a diagram showing a flow of a waste heat recovery facility of a conventional smelting reduction furnace.

【符号の説明】[Explanation of symbols]

1:炉本体 2:耐火物 3:冷却パネル 4:原料投入口 5:ガス排出口 6:溶銑 7:スラグ 8:出銑口 9:出滓口 10:2次燃焼帯 11:下部羽口 12:上部羽口 13:冷却パネル入側配管 14:冷却パネル出側配管 15:排ガスダクト 16:廃熱ボイラー 17:集塵機 18:ブロアー 19:煙突 20:蒸気配管 21:蒸気タービン 22:復水器 23:低圧給水加熱器 24:脱気器 25:ボイラー給水ポンプ 26:高圧給水加熱器 27:ボイラー水配管 28:抽気配管 29:復水ポンプ 30:冷却パネル水量制御弁 31:発電機 1: Furnace body 2: Refractory 3: Cooling panel 4: Raw material input port 5: Gas discharge port 6: Hot metal 7: Slag 8: Tap hole 9: Slag port 10: Secondary combustion zone 11: Lower tuyere 12 : Upper tuyere 13: Cooling panel inlet side pipe 14: Cooling panel outlet side pipe 15: Exhaust gas duct 16: Waste heat boiler 17: Dust collector 18: Blower 19: Chimney 20: Steam pipe 21: Steam turbine 22: Condenser 23 : Low pressure feed water heater 24: Deaerator 25: Boiler feed water pump 26: High pressure feed water heater 27: Boiler water pipe 28: Bleed pipe 29: Condensate pump 30: Cooling panel water flow control valve 31: Generator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷却パネルに内張りされた炉本体に鉄原
料、炭材、及び造滓剤を添加し、純酸素及び/又は酸素
富化ガスを吹き込んで、溶鉄又は溶銑を直接製造すると
共に、該炉体から排出される燃焼性ガスの熱を利用して
廃熱ボイラーで供給水を蒸気化し、蒸気タービンで回収
する設備において、前記蒸気タービンの復水器出側配管
を前記冷却パネルの入側に接続し、前記冷却パネルの出
側配管を前記蒸気タービンの脱気器入側に接続せしめ
て、前記冷却パネルで発生した温排水及び/又は蒸気を
前記脱気器に供給する系を設けたことを特徴とする溶融
還元炉の廃熱回収設備。
1. An iron raw material, a carbon material, and a slag-making agent are added to a furnace body lined with a cooling panel, and pure oxygen and / or an oxygen-enriched gas is blown to directly produce molten iron or molten iron. In a facility in which feed water is vaporized by a waste heat boiler using heat of the combustible gas discharged from the furnace body and recovered by a steam turbine, a condenser outlet pipe of the steam turbine is connected to an inlet of the cooling panel. And a system for supplying hot waste water and / or steam generated in the cooling panel to the deaerator by connecting an outlet pipe of the cooling panel to a deaerator inlet of the steam turbine. Waste heat recovery equipment for a smelting reduction furnace.
【請求項2】 冷却パネルに内張りされた炉本体に鉄原
料、炭材、及び造滓剤を添加し、純酸素及び/又は酸素
富化ガスを吹き込んで、溶鉄又は溶銑を直接製造すると
共に、該炉体から排出される燃焼性ガスの熱を利用して
廃熱ボイラーで供給水を蒸気化し、蒸気タービンで回収
する設備において、前記蒸気タービンの脱気器と前記冷
却パネルの入側配管を送水ポンプを介して接続し、前記
冷却パネルの出側配管を前記脱気器に接続せしめて、前
記冷却パネルで発生した蒸気又は蒸気と水の混合体を前
記脱気器に供給する系を設けたことを特徴とする溶融還
元炉の廃熱回収設備。
2. An iron raw material, a carbon material, and a slag-making agent are added to a furnace body lined with a cooling panel, and pure oxygen and / or an oxygen-enriched gas is blown to directly produce molten iron or molten iron. In equipment for vaporizing supply water with a waste heat boiler using heat of the combustible gas discharged from the furnace body and recovering with a steam turbine, a deaerator of the steam turbine and an inlet pipe of the cooling panel are connected. A system for connecting the outlet pipe of the cooling panel to the deaerator, and supplying steam or a mixture of steam and water generated in the cooling panel to the deaerator is provided. Waste heat recovery equipment for a smelting reduction furnace.
JP8312457A 1996-11-22 1996-11-22 Equipment for recovering waste heat or smelting reduction furnace Pending JPH10152710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8312457A JPH10152710A (en) 1996-11-22 1996-11-22 Equipment for recovering waste heat or smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8312457A JPH10152710A (en) 1996-11-22 1996-11-22 Equipment for recovering waste heat or smelting reduction furnace

Publications (1)

Publication Number Publication Date
JPH10152710A true JPH10152710A (en) 1998-06-09

Family

ID=18029431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8312457A Pending JPH10152710A (en) 1996-11-22 1996-11-22 Equipment for recovering waste heat or smelting reduction furnace

Country Status (1)

Country Link
JP (1) JPH10152710A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075870A1 (en) * 2006-12-18 2008-06-26 Posco Apparatus for generating energy using a sensible heat during manufacturing of molten iron and method for generating energy using the same
KR100972196B1 (en) * 2007-12-24 2010-07-23 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing molten iron
CN101886881A (en) * 2010-06-01 2010-11-17 鹤壁地恩地新材料科技有限公司 New process for heat energy comprehensive utilization of magnesium slag in metal magnesium reduction furnace
CN102305549A (en) * 2011-07-08 2012-01-04 东北大学 Sintering ring cold machine waste heat high-efficiency power generating system and utilization method thereof
CN102607287A (en) * 2012-04-10 2012-07-25 上海瑞恩能源投资有限公司 Ferro-nickel smelting process waste heat generating system
CN104654815A (en) * 2015-02-06 2015-05-27 陈翔 Mosaic ceramic kiln waste heat power generation comprehensive utilization system
KR101534128B1 (en) * 2014-11-28 2015-07-06 주식회사 포스코 Processing method for raw material, Processing apparatus for raw material and Manufacturing facilities for molten pig iron
CN109628668A (en) * 2019-01-24 2019-04-16 韶关市曲江盛大冶金渣环保科技开发有限公司 Steel slag cracking and residual neat recovering system
JP2020046127A (en) * 2018-09-20 2020-03-26 トクデン株式会社 Heat exchanger and using method of the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075870A1 (en) * 2006-12-18 2008-06-26 Posco Apparatus for generating energy using a sensible heat during manufacturing of molten iron and method for generating energy using the same
AU2007335276B2 (en) * 2006-12-18 2011-08-18 Posco Apparatus for generating energy using a sensible heat during manufacturing of molten iron and method for generating energy using the same
US8375718B2 (en) 2006-12-18 2013-02-19 Posco Apparatus for generating energy using a sensible heat during manufacturing of molten iron and method for generating energy using the same
KR100972196B1 (en) * 2007-12-24 2010-07-23 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing molten iron
CN101886881A (en) * 2010-06-01 2010-11-17 鹤壁地恩地新材料科技有限公司 New process for heat energy comprehensive utilization of magnesium slag in metal magnesium reduction furnace
CN102305549A (en) * 2011-07-08 2012-01-04 东北大学 Sintering ring cold machine waste heat high-efficiency power generating system and utilization method thereof
CN102607287A (en) * 2012-04-10 2012-07-25 上海瑞恩能源投资有限公司 Ferro-nickel smelting process waste heat generating system
KR101534128B1 (en) * 2014-11-28 2015-07-06 주식회사 포스코 Processing method for raw material, Processing apparatus for raw material and Manufacturing facilities for molten pig iron
CN104654815A (en) * 2015-02-06 2015-05-27 陈翔 Mosaic ceramic kiln waste heat power generation comprehensive utilization system
CN104654815B (en) * 2015-02-06 2018-08-24 陈翔 Mosaic ceramic kiln cogeneration utilization system
JP2020046127A (en) * 2018-09-20 2020-03-26 トクデン株式会社 Heat exchanger and using method of the same
CN109628668A (en) * 2019-01-24 2019-04-16 韶关市曲江盛大冶金渣环保科技开发有限公司 Steel slag cracking and residual neat recovering system

Similar Documents

Publication Publication Date Title
US20220235426A1 (en) Method and system for producing steel or molten-iron-containing materials with reduced emissions
WO2009037587A2 (en) Method and apparatus for the direct reduction of iron ores utilizing gas from a melter-gasifier
EP0129167A2 (en) Coal gasification composite power generating plant
JP2004309067A (en) Method of using blast furnace gas
WO2005083130A1 (en) Direct smelting plant and process
JPH10152710A (en) Equipment for recovering waste heat or smelting reduction furnace
KR20150100740A (en) Energy recovery from fumes from a melting furnace with a gas turbine and heat exchangers
AU2012228448B2 (en) Metallurgical plant with efficient waste-heat utilization
RU2476600C2 (en) Method for coal gasification and production of iron, and system used for that purpose
TW436522B (en) Process for the produciton of pig iron
RU97111041A (en) METHOD FOR PRODUCING A SPONGE IRON AND INSTALLATION FOR IMPLEMENTING THIS METHOD
BRPI0710809A2 (en) process and direct casting plant for the production of molten metal from a metalliferous feed material
RU2553160C2 (en) Energy extraction from gases in blast-furnace unit
KR910008141B1 (en) Method of smetting reduction of ores containing metal oxides
JPH1182057A (en) Gasification-integrated combined power plant
KR100250719B1 (en) Melt reduction equipment and operating method
JP2007197803A (en) Method for recovering waste heat from tuyere in blast furnace
JPH09272909A (en) Smelting reduction plant
JPS6069221A (en) Combined power plant utilizing gasified coal
AU2005217667B2 (en) Direct smelting plant and process
JPH11315314A (en) Operation of smelting reduction equipment and smelting reduction equipment
JP3161615B2 (en) Humidifying blast furnace air
JPS63171816A (en) Utilization of oxygen blast furnace gas
JPH09316509A (en) Smelting reduction equipment
KR20150082345A (en) A two-stage smelting process and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425