JPH11315314A - Operation of smelting reduction equipment and smelting reduction equipment - Google Patents

Operation of smelting reduction equipment and smelting reduction equipment

Info

Publication number
JPH11315314A
JPH11315314A JP12257398A JP12257398A JPH11315314A JP H11315314 A JPH11315314 A JP H11315314A JP 12257398 A JP12257398 A JP 12257398A JP 12257398 A JP12257398 A JP 12257398A JP H11315314 A JPH11315314 A JP H11315314A
Authority
JP
Japan
Prior art keywords
furnace
exhaust gas
gas
smelting reduction
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12257398A
Other languages
Japanese (ja)
Inventor
Masahide Nagatomi
正秀 永冨
Hiroshi Ichikawa
宏 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP12257398A priority Critical patent/JPH11315314A/en
Publication of JPH11315314A publication Critical patent/JPH11315314A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To stably supply electric power even at the time of periodically interrupting the operation for repairing a furnace body refractory and to efficiently execute the reoperation after interrupting the furnace operation, in a smelting reduction furnace for directly producing molten iron by adding iron raw material, carbonaceous material and flux and blowing pure oxygen and/or oxygen-enriched gas. SOLUTION: In this operating method of the smelting reduction equipment provided with one set of the waste heat boiler 12 for recovering by vaporization the tensile heat and latent heat of combustion gas generated from plural furnace bodies 1a, 1b, an electric power generating equipment 18 and an exhaust gas treating equipment 32, the combustible gas generated from the furnace body during operating in plural furnace bodies 1a, 1b, is recovered by vaporizing the sensible heat and the latent heat through the waste heat boiler 12 and the electric power generating equipment 18 and converted into the electric power. In the furnace body during preparing the operation in plural furnace bodies bodies, 1a, 1b, fuel and air or oxygen air separately introduced and burnt to execute the preheat of refractory and also, the low calorific exhaust gas after preheating is not passed through the waste heat boiler 12 and the electric power generating equipment 18, but exhausted after directly executing the exhaust gas treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉本体器に鉄原
料、炭材、及び媒溶剤を添加し、純酸素及び/又は酸素
富化ガスを吹き込んで、溶銑又は溶銑を直接製造する溶
融還元設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a smelting reduction method in which iron raw material, carbonaceous material, and a solvent are added to a furnace body, and pure oxygen and / or an oxygen-enriched gas is blown into the molten iron or directly to produce molten iron. Equipment related.

【0002】[0002]

【従来技術】溶融還元は、炉本体内に鉄原料、炭材、及
び媒媒剤を添加し、純酸素及び/又は酸素営化ガスを吹
き込んで、スラグ中で鉄原料中の酸化鉄を還元し、溶銑
又は溶銑を直接製造する方法である。この方法では、溶
融還元炉から、1600〜1800℃程度の高温の燃焼
性ガスが生成される。
2. Description of the Related Art In the smelting reduction, an iron raw material, a carbonaceous material, and a medium are added to a furnace body, and pure oxygen and / or an oxygen-enhancing gas is blown into the furnace to reduce iron oxide in the iron raw material in a slag. , Hot metal or a method for directly manufacturing hot metal. In this method, a high-temperature combustible gas of about 1600 to 1800 ° C. is generated from the smelting reduction furnace.

【0003】一般にこの種の溶融還元方法は、炉本体内
に予備還元した鉄原料、炭材、及び媒溶剤を添加し、炉
本体から発生する燃焼性ガス中のCOガス、H2 ガスで
鉄鉱石を予備還元する2段法と、炉本体内に未還元の鉄
原料、炭材、及び媒溶剤を添加し、スラグ中で鉄原料中
の酸化鉄を還元し、炉本体から発生する燃焼性ガス中の
COガス、H2 ガスを廃熱ボイラー内で完全然熾させ、
燃焼性ガスの顕熱、潜熱を蒸気化して回収し、発電等を
行う1段法(例えば特開平1−502276号公報、特
開昭63−65011号公報、特開昭63−65007
号公報等)とに分類される。
Generally, in this type of smelting reduction method, a preliminarily reduced iron raw material, a carbonaceous material, and a solvent are added to a furnace main body, and CO gas and H 2 gas in a combustible gas generated from the furnace main body are used to remove iron ore. The two-stage method of pre-reducing stone, and the addition of unreduced iron material, carbonaceous material, and a solvent in the furnace body to reduce the iron oxide in the iron material in the slag, resulting in the combustibility generated from the furnace body CO gas and H 2 gas in the gas are completely heated in the waste heat boiler,
One-stage method of vaporizing and recovering the sensible heat and latent heat of the combustible gas and generating power (for example, JP-A-1-502276, JP-A-63-65011, JP-A-63-65007)
No., etc.).

【0004】2段法は、1段法に比ベエネルギー効率が
良い利点はあるものの、充填層方式及び流動層方式等の
予備還元炉が必要なため設備が複雑となり設備投資額が
高い、予備還元炉内での反応の均一性から鉄原料の形状
制限がある(例えば充填方式においては塊状の鉄原料し
か使用できず、流動層方式では粉状の鉄原料しか使用で
きない)等の欠点があることから、最近シンプルな1段
法が注目されつつある。
[0004] The two-stage method has the advantage of higher energy efficiency than the one-stage method, but requires a pre-reduction furnace of a packed-bed type, a fluidized-bed type, or the like, so that the equipment is complicated and the capital investment is high. There are drawbacks such as the limitation of the shape of the iron raw material due to the uniformity of the reaction in the reduction furnace (for example, only a bulk iron raw material can be used in the filling method, and only a powdery iron raw material can be used in the fluidized bed method). For this reason, a simple one-stage method has recently attracted attention.

【0005】また、この1段法においては、スラグ中で
発生するCOガス、H2 ガスをスラグ上部の炉内空間
(以後2次燃焼帯と呼ぶ)で燃焼する割合(以後炉内2
次燃焼率と呼び、炉内2次燃焼率=(CO2 %+H2
%)/(CO2 %+CO%+H2 O%+H2 %)と定義
する)を上昇させ、その燃焼熱をスラグに有効に伝える
ことで、エネルギー効率を向上させる。即ち炭材原単位
を低減させることが可能なこと、及び、その時には炭材
原単位を低減させる分だけ炉本体から発生する燃焼性ガ
スの熱量、即ち顕熱と潜熱の合計、が減少することは広
く知られている。この1段法においては、炉本体から発
生する大量の燃焼性ガスの顕熱、潜熱を蒸気化して回
収、発電して外部に電力を販売する。もしくは工場内の
他の設備で使用し、電力の購入量を低減することで、エ
ネルギー効率が2段法に劣る面を補償することが重要と
なる。
In this one-stage method, the rate of burning CO gas and H 2 gas generated in the slag in a furnace space above the slag (hereinafter referred to as a secondary combustion zone) (hereinafter referred to as furnace 2).
The secondary combustion rate in the furnace = (CO 2 % + H 2 O)
%) / (CO 2% + CO% + H 2 O% + H 2%) and defined) is raised and the combustion heat that convey useful slag, improve energy efficiency. That is, it is possible to reduce the carbon unit consumption, and at that time, the calorific value of the combustible gas generated from the furnace body, that is, the sum of sensible heat and latent heat, is reduced by the amount of the carbon unit consumption reduced. Is widely known. In this one-stage method, sensible heat and latent heat of a large amount of combustible gas generated from the furnace main body are vaporized, recovered, generated, and sold to the outside. Alternatively, it is important to compensate for the inefficiency of the two-stage method by reducing the amount of power purchased by using it in another facility in the factory.

【0006】ところが、溶融還元炉においては、炉本体
耐火物の補修等のため、定期的に例えば3ヶ月〜12ヶ
月に1回程度操業を中断する必要があり、その時期に発
電ができず、電力の安定供給の面で課題を有していた。
即ち、外部に電力を販売する場合には、売電価格が低く
なる。もしくは工場内の他の設備で使用する場合には、
工場内の他の設備の操業に支障をきたす課題を有してい
た。そこで、これらの課題を解決するために、複数基の
炉本体と、炉本体から発生する燃焼性ガスの顕熱、潜熱
を蒸気化して回収するための廃熱ボイラー及び発電設備
1基とをそれぞれ開閉自在になしたダクトで連結した構
造が、特開平9−202909号公報で提案されてい
る。
However, in a smelting reduction furnace, it is necessary to interrupt the operation periodically, for example, about once every three to twelve months, for repairing the refractory of the furnace body, and power cannot be generated at that time. There was a problem in the stable supply of power.
That is, when selling electric power to the outside, the selling price becomes low. Or if you want to use it on other equipment in the factory,
There was a problem that hindered the operation of other facilities in the factory. Therefore, in order to solve these problems, a plurality of furnace bodies and a waste heat boiler and a power generation facility for vaporizing and recovering sensible heat and latent heat of the combustible gas generated from the furnace bodies are respectively provided. Japanese Patent Application Laid-Open No. 9-202909 proposes a structure in which the doors are connected by a duct that can be freely opened and closed.

【0007】以下に、特開平9−202909号公報で
提案されている従来技術を図5〜図7に基づいて説明す
る。図5は、A炉B炉双方で操業時の炉状態及びガスフ
ローを示している。溶融還元炉はA炉、B炉の2炉を有
し、炉本体1-a,1-bは耐火物2-a,2-b、水冷パネル
3-a,3-bで内張りされており、炉本体1-a,1-bの上
部には、鉄原料,炭材、及び媒溶剤を添加する原料投入
口4-a,4-b及び炉本体から発生する燃焼性ガスを排出
するガス排出口5-a,5-bが配設されている。また、炉
本体1-a,1-bには下部羽口9-a,9-b及び上部羽口1
0-a,10-bが設けられている。炉本体1-a,1-bの底
部には溶銑7-a,7-bが溜まり、その上部に溶銑7-a,
7-bより比重の軽い溶融スラグ8-a,8-bが溜まってお
り、溶銑7-a,7-bは溶銑溜まり25-a,25-bの出銑
口20-a,20-bがに、溶融スラグ8-a,8-bはスラグ
溜まり26-a,26-bの出滓口21-a,21-bからそれ
ぞれ連続又は断続的に排出される。
A conventional technique proposed in Japanese Patent Application Laid-Open No. 9-202909 will be described below with reference to FIGS. FIG. 5 shows the furnace state and gas flow during operation in both the furnace A and the furnace B. The smelting reduction furnace has two furnaces, furnace A and furnace B. Furnace bodies 1-a and 1-b are lined with refractories 2-a and 2-b and water-cooled panels 3-a and 3-b. In the upper part of the furnace main bodies 1-a and 1-b, there are raw material input ports 4-a and 4-b for adding iron raw material, carbonaceous material and a solvent, and gas for discharging combustible gas generated from the furnace main body. Discharge ports 5-a and 5-b are provided. Furnace bodies 1-a and 1-b have lower tuyeres 9-a and 9-b and upper tuyeres 1-b.
0-a and 10-b are provided. Hot metal 7-a, 7-b accumulates at the bottom of the furnace bodies 1-a, 1-b, and hot metal 7-a, 7-b
Molten slags 8-a and 8-b having a lower specific gravity than 7-b are stored. Hot metal 7-a and 7-b are tap holes 20-a and 20-b of hot metal pools 25-a and 25-b. However, the molten slags 8-a and 8-b are continuously or intermittently discharged from the slag ports 21-a and 21-b of the slag reservoirs 26-a and 26-b, respectively.

【0008】A炉及びB炉で発生した高温の燃焼性ガス
は、炉本体1-a,1-bの上部のガス排出口5-a,5-bに
連結された排気ダクト6-a,6-b及び排気合流ダクト3
1を通して、廃熱ボイラー12に導かれ、燃焼性ガスの
顕熱、潜熱を蒸気化して回収された後、集塵機13、ブ
ロアー14、煙突15等の排ガス処理設備を通して系外
に排出される。一方、廃熱ボイラー12で燃焼性ガスの
顕熱、潜熱によって高圧蒸気化された蒸気は、蒸気配管
16を通ってタービン17及び発電器18に導かれ電力
に変換される。排気ダクト6-a,6-bにはそれぞれ排ガ
スダンパー19-a,19-bが設けられている。
[0008] The high-temperature combustible gas generated in the furnaces A and B is supplied to the exhaust ducts 6-a, 5-b connected to the gas discharge ports 5-a, 5-b at the top of the furnace bodies 1-a, 1-b. 6-b and exhaust merging duct 3
1, the waste gas is led to a waste heat boiler 12, where the sensible heat and latent heat of the combustible gas are vaporized and collected, and then discharged out of the system through exhaust gas treatment facilities such as a dust collector 13, a blower 14, and a chimney 15. On the other hand, the steam that has been turned into high pressure by the sensible heat and latent heat of the combustible gas in the waste heat boiler 12 is guided to a turbine 17 and a generator 18 through a steam pipe 16 and is converted into electric power. The exhaust ducts 6-a and 6-b are provided with exhaust gas dampers 19-a and 19-b, respectively.

【0009】図6は、A炉が操業時でB炉が操業中止時
の炉状態及びガスフローを示しているが、A炉で発生し
た高温の燃焼性ガスは、炉本体2-aの上部に配設された
ガス排出口5-a、排気ダクト6-a及び開状態の排ガスダ
ンパー19-aを通して、廃熱ボイラー12に導かれ、燃
焼性ガスの顕熱、潜熱を蒸気化して回収された後、集塵
機13、ブロアー14、煙突15等の排ガス処理設備3
2を通して系外に排出される。一方、廃熱ボイラー12
で燃焼性ガスの顕熱、潜熱によって高圧蒸気化された蒸
気は、蒸気配管16を通ってタービン17及び発電器1
8に導かれ電力に変換される。この時、排ガスダンパー
19-bは閉状態とされているので、B炉が操業中止状態
であっても、A炉の操業及び上記の燃焼性ガスの顕熱、
潜熱の蒸気化による回収等には、支障をきたさない。
FIG. 6 shows the furnace state and gas flow when the furnace A is in operation and the furnace B is out of operation. The high-temperature combustible gas generated in the furnace A is in the upper part of the furnace body 2-a. Through the gas exhaust port 5-a, the exhaust duct 6-a, and the open exhaust gas damper 19-a, which are led to the waste heat boiler 12, where the sensible heat and latent heat of the combustible gas are vaporized and collected. After that, exhaust gas treatment equipment 3 such as dust collector 13, blower 14, chimney 15, etc.
It is discharged out of the system through 2. On the other hand, the waste heat boiler 12
The high-pressure steam generated by the sensible heat and latent heat of the combustible gas passes through a steam pipe 16 and passes through a turbine 17 and a power generator 1.
8 and is converted into electric power. At this time, since the exhaust gas damper 19-b is in the closed state, even if the furnace B is in the operation stopped state, the operation of the furnace A and the sensible heat of
There is no hindrance to recovery of latent heat by vaporization.

【0010】この構造では、通常はA炉B炉双方で操業
し、A炉の補修等のための操業中止時にはB炉のみで操
業し、B炉の補修等のための操業中止時にはA炉のみで
操業する。
In this structure, usually, both the furnace A and the furnace B are operated, and when the operation for the repair of the furnace A is stopped, only the furnace B is operated, and when the operation for the repair of the furnace B is stopped, only the furnace A is operated. Operate in

【0011】さにに、通常のA炉B炉双方で操業時に
は、炉内2次燃焼率を上昇させ、1炉当たりの燃焼性ガ
スの熱量を低下させる。又、A炉又はB炉のみ1炉で操
業時には、炉内2次燃焼率を低下させ、1炉当たりの燃
焼性ガスの熱を倍増させることで、常に2炉合計の燃焼
性ガスの熱量を一定とすることにより、炉の状態に関係
なく常に一定の電力を供給できるようになっている。
In addition, when both the furnaces A and B are operated, the secondary combustion rate in the furnace is increased and the calorific value of the combustible gas per furnace is reduced. In addition, when only one of the furnaces A and B is operated by one furnace, the secondary combustion rate in the furnace is reduced, and the heat of the combustible gas per furnace is doubled, so that the calorific value of the combustible gas in the two furnaces is always increased. By making it constant, a constant electric power can always be supplied regardless of the state of the furnace.

【0012】[0012]

【発明が解決しようとする課題】しかるに、この構造で
あっても、なお以下の課題を有している。前述のよう
に、溶融還元炉においては、耐火物の補修等のため、定
期的に例えば3ヶ月〜12ヶ月に1回程度操業を中断す
る必要がある。図7に示すように、A炉が操業中で、B
炉が補修等のための操業中止時には、B炉の再操業準備
として、B炉本体1-bの耐火物2-bの予熱のために、B
炉本体1-bへ燃料である燃焼性ガス、酸素等を、例えば
下部羽口9-bより供給する必要があり、これがB炉本体
1−5の耐火物2−5付近で燃焼し、耐火物2-bの予熱
及び水冷パネル3-bの冷却水により抜熱されるため、B
炉本体1-bから低熱量な排ガスが発生する。従って、排
ガスダクト6-bの排ガスダンパー19-bは部分開状態と
して、排ガスの排出を行う必要がある。
However, this structure still has the following problems. As described above, in the smelting reduction furnace, it is necessary to interrupt the operation periodically, for example, about once every 3 to 12 months, for repair of refractories. As shown in FIG. 7, furnace A is in operation and B
When the furnace is shut down for repairs, etc., in preparation for re-operation of the B furnace, the B furnace is used to preheat the refractory 2-b of the B furnace body 1-b.
It is necessary to supply a combustible gas, oxygen, or the like, which is a fuel, to the furnace body 1-b from, for example, the lower tuyere 9-b, which burns near the refractory 2-5 of the B furnace body 1-5, and Since the heat is removed by the preheating of the object 2-b and the cooling water of the water cooling panel 3-b, B
Exhaust gas having a low calorific value is generated from the furnace body 1-b. Therefore, the exhaust gas damper 19-b of the exhaust gas duct 6-b must be partially opened to discharge the exhaust gas.

【0013】即ち、このA炉操業−B炉操業準備中の炉
状態においては、操業準備中のB炉本体1-bから発生す
る前述の低熱量の排ガスは、炉本体2-bの上部に配設さ
れたガス排出口5-bから排ガスダクト6-bの部分開状態
の排ガスダンパー19-bを通って、廃熱ボイラー12に
導かれ、A炉の高熱量の燃焼性ガスと合流し、通常より
低い熱量のガスとなった後、顕熱、潜熱を蒸気化して回
収され蒸気配管16を通ってタービン17及び発電機1
8に導かれ電力に変換される。従って、この時の発生電
力は、前述の合流排ガスの熱量が通常より低くなるた
め、通常のA炉B炉の2炉操業及びA炉又はB炉のみの
1炉操業時の発生電力と一定とならず、下回ることとな
る。
In other words, in the furnace state where the furnace A is being operated and the furnace B is being prepared for operation, the above-mentioned low calorie exhaust gas generated from the B furnace main body 1-b which is preparing for operation is placed above the furnace main body 2-b. From the provided gas discharge port 5-b, through the exhaust gas damper 19-b in a partially open state of the exhaust gas duct 6-b, it is led to the waste heat boiler 12, and merges with the high calorific combustion gas of the furnace A. After the gas has a lower calorific value than normal, the sensible heat and the latent heat are vaporized and collected, and the gas passes through the steam pipe 16 to be supplied to the turbine 17 and the generator 1.
8 and is converted into electric power. Accordingly, the generated power at this time is constant with the generated power during the normal operation of two furnaces of the furnace A and the furnace B and the operation of only one furnace of the furnace A or the furnace B alone, because the calorific value of the combined exhaust gas is lower than usual. Instead, it will be lower.

【0014】このため、この時期の発電量の安定が確保
できず、電力の安定供給の面で課題を有していた。即
ち、外部に電力を販売する場合には、売電価格が低くな
る。もしくは工場内の他の設備で使用する場合には、工
場内の他の設備の操業に支障をきたすという課題を有し
ていた。
[0014] For this reason, it was not possible to secure a stable power generation amount at this time, and there was a problem in terms of stable power supply. That is, when selling electric power to the outside, the selling price becomes low. Alternatively, when used in another facility in the factory, there is a problem that the operation of other facilities in the factory is hindered.

【0015】本発明は、以上のような問題点を解決する
ためになされたものであり、その目的とするところは、
溶融還元炉において、炉本体耐火物の補修等のための定
期的な炉操業中止後の再操業準備中においても、電力の
安定供給が可能となることを目的とし、更に炉操業中断
後の再操業を効率的に行わんとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems.
The purpose of the smelting reduction furnace is to enable the stable supply of electric power even during the preparation for re-operation after the periodic shutdown of the furnace operation for repairing the refractory of the furnace body, etc. The operation is to be carried out efficiently.

【0016】[0016]

【課題を解決するための手段】本発明の要旨は以下の通
りである。請求項1における溶融還元設備の操業方法
は、複数基の炉本体に対し、炉本体から発生する燃焼性
ガスの顕熱、潜熱を蒸気化して回収する廃熱ボイラー及
び発電設備及び排ガス処理設備を1基有する溶融還元設
備の操業方法において、前記複数基の炉本体のうち、操
業中の炉本体から発生する燃焼性ガスは前記廃熱ボイラ
ー及び発電設備を通して顕熱、潜熱を蒸気化して回収し
て電力変換し、一方前記複数基の炉本体のうち操業準備
をしている炉本体には、別途燃料と空気又は酸素を導入
して燃焼させて耐火物予熱を行うと共に、この予熱後の
低熱量な排ガスは、前記廃熱ボイラー及び発電設備を通
さずに直接排ガス処理後、排気することを特徴とする。
The gist of the present invention is as follows. The method for operating a smelting reduction facility according to claim 1 includes, for a plurality of furnace bodies, a waste heat boiler, a power generation facility, and an exhaust gas treatment facility for vaporizing and recovering sensible heat and latent heat of a combustible gas generated from the furnace body. In the method for operating a smelting reduction facility having one, the combustible gas generated from the operating furnace body among the plurality of furnace bodies is vaporized and recovered from sensible heat and latent heat through the waste heat boiler and the power generation equipment. On the other hand, the furnace body which is ready for operation among the plurality of furnace bodies is separately heated and preheated by introducing and burning fuel and air or oxygen. The exhaust gas having a calorific value is characterized in that the exhaust gas is directly exhausted and then exhausted without passing through the waste heat boiler and the power generation equipment.

【0017】また、請求項2における溶融還元設備は、
複数基の炉本体に対し、炉本体から発生する燃焼性ガス
の顕熱、潜熱を蒸気化して回収する廃熱ボイラー及び発
電設備及び排ガス処理設備を1基設け、該廃熱ボイラー
及び発電設備及び排ガス処理設備をダクトを介し前記複
数基の炉本体に連結した溶融還元設備において、前記複
数基の炉本体の溶銑溜まり上部及びスラグ溜まり上部
を、すべて連結ダクトで連通せしめ、該連結ダクトを前
記排ガス処理設備に通じる排ガスダクトに連通する如く
形成したことを特徴とする。
Further, the smelting reduction equipment according to claim 2 is:
For a plurality of furnace bodies, a waste heat boiler, a power generation facility, and an exhaust gas treatment facility for evaporating and recovering sensible heat and latent heat of combustible gas generated from the furnace body are provided, and the waste heat boiler, the power generation facility, In a smelting reduction facility in which an exhaust gas treatment facility is connected to the plurality of furnace bodies through a duct, the upper part of the hot metal pool and the upper part of the slag chamber of the plurality of furnace bodies are all connected by a connecting duct, and the connecting duct is connected to the exhaust gas. It is characterized in that it is formed so as to communicate with an exhaust gas duct leading to a processing facility.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施例を図1〜
図4に基づいて説明する。本実施例では炉内耐火物予熱
中の操業準備炉B本体から発生する低熱量の排ガスを、
溶銑溜まり及びスラグ溜まりを経由して、その上部から
連結ダクトを介して排ガス処理設備である集塵機上流側
の排ガスタクトヘ排出する2基の溶融還元炉と廃熱ボイ
ラー及び発電設備を1基有する溶融還元設備について説
明するが、本発明が3基以上の炉本体を有する溶融還元
設備についても適用されることは言うまでもない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
A description will be given based on FIG. In the present embodiment, the low calorific value exhaust gas generated from the operation preparation furnace B main body during the preheating of the refractory in the furnace,
The smelting reduction furnace, which has two smelting reduction furnaces, one waste heat boiler, and one power generation facility, which discharges the exhaust gas to the exhaust gas tact upstream of the dust collector, which is an exhaust gas treatment facility, from the upper part through the hot metal pool and the slag reservoir via a connection duct The equipment will be described, but it goes without saying that the present invention is also applied to a smelting reduction equipment having three or more furnace bodies.

【0019】図1は、本発明に係わる溶融還元設備のA
炉B炉双方で操業時の炉状態及びガスフロー、図2は、
A炉のみ1炉で操業時の炉状態及びガスフロー、図3
は、操業炉Aと耐火物予熱中の操業準備炉Bの炉状態及
びガスフローを示す。また、図4は、A炉、B炉の各操
業状態の変動に伴う、各炉の燃焼性ガス熱量と2炉合計
の燃焼性ガスの熱量の推移を示す。
FIG. 1 shows a smelting reduction facility A according to the present invention.
Furnace conditions and gas flow during operation in both furnace B, FIG.
Furnace condition and gas flow when operating only one furnace in A furnace, Fig. 3
Shows the furnace state and gas flow of the operation furnace A and the operation preparation furnace B during refractory preheating. FIG. 4 shows the transition of the calorific value of the combustible gas of each furnace and the calorific value of the combustible gas of the two furnaces in accordance with the change of each operation state of the furnace A and the furnace B.

【0020】まず、本発明に係わる溶融還元設備におけ
るA炉B炉の操業状態及びガスフローを図1、図2、図
3に基づいて説明すると、溶融還元炉はA炉、B炉の2
炉を有し、炉本体1-a、1-bは耐火物2-a,2-b、水冷
パネル3-a,3-bで内張りされており、炉本体1-a,1
-bの上部には、鉄原料、炭材、及び媒溶剤を添加する原
料投入口4-a,4-b及び炉本体から発生する燃焼性ガス
を排出するガス排出口5-a、5-b、排ガスダクト6-a,
6-bが配設されている。また、A炉の溶銑溜まり25-
a、スラグ溜まり26-aの上部、及びB炉の溶銑溜まり
25-b、スラグ溜まり26-bの上部はすべて連結ダクト
24で連通されている。そしてこの連結ダクト24と、
排ガス処理設備32である集塵機13に通じる集塵機1
3上流側の排ガスダクト29は、ダクト30により連通
されている。
First, the operating state and gas flow of the furnace A and the furnace B in the smelting reduction facility according to the present invention will be described with reference to FIGS. 1, 2 and 3.
It has a furnace, and the furnace bodies 1-a and 1-b are lined with refractories 2-a and 2-b and water-cooled panels 3-a and 3-b.
In the upper part of -b, a raw material input port 4-a, 4-b for adding an iron raw material, a carbon material, and a medium solvent, and a gas discharge port 5-a, 5-, for discharging a combustible gas generated from the furnace body. b, exhaust gas duct 6-a,
6-b is provided. In addition, the hot metal pool 25-
a, the upper part of the slag reservoir 26-a, the upper part of the hot metal reservoir 25-b of the B furnace, and the upper part of the slag reservoir 26-b are all connected by the connecting duct 24. And this connection duct 24,
Dust collector 1 leading to dust collector 13 which is exhaust gas treatment equipment 32
3 The exhaust gas duct 29 on the upstream side is communicated by a duct 30.

【0021】さらに、連結ダクト24において、A炉、
B炉の溶銑溜まり25-a,25-bの上部近傍、及びスラ
グ溜まり26-a,26-bの上部近傍に位置する部分にそ
れぞれ開閉可能なガスダンパー27-a,27-bが設けら
れ、また集塵機13の上流側の排ガスダクト29とダク
ト30との連結部付近には、開閉ダンパー28が設けら
れている。
Further, in the connecting duct 24, an A furnace,
Openable and closable gas dampers 27-a and 27-b are provided in portions near the upper portions of the hot metal pools 25-a and 25-b and the upper portions of the slag pools 26-a and 26-b of the B furnace. An opening / closing damper 28 is provided in the vicinity of the connection between the exhaust gas duct 29 and the duct 30 on the upstream side of the dust collector 13.

【0022】炉本体1-a,1-bの底部には溶銑7-a、7
-bが溜まり、その上部に溶銑7-a,7-bより比重の軽い
溶融スラグ8-a,8-bが溜まっており、溶銑7-a,7-b
は溶銑溜まり25-a,25-bの出銑口20-a,20-bか
ら、溶融スラグ8-a,8−5はスラグ溜まり26-a,2
6-bの出滓口21-a,21-bからそれぞれ連続又は断続
的に排出される。
At the bottom of the furnace bodies 1-a and 1-b, hot metal 7-a and 7-
-b is accumulated, and molten slags 8-a, 8-b having a lower specific gravity than the hot metal 7-a, 7-b are stored above the hot metal 7-a, 7-b.
From the tap holes 20-a, 20-b of the molten iron pools 25-a, 25-b, and the molten slags 8-a, 8-5 from the slag pools 26-a, 2-5.
6-b are discharged continuously or intermittently from the slag outlets 21-a and 21-b, respectively.

【0023】原料投入口4-a,4−5から投入された鉄
原料中の酸化鉄(FeO及びFe23 )は、同じく原
料投入口4-a,4-bから投入された炭材中炭素分によ
り、溶融スラグ8-a,8-b中で以下の式(1)、(2)
に示す反応により還元される。 FeO+C→Fe+CO(吸熱反応) …(1) Fe2 3 +3C→2Fe+3CO(吸熱反応)…(2)
The iron oxide (FeO and Fe 2 O 3 ) in the iron raw material supplied from the raw material input ports 4-a and 4-5 is converted into the carbon material supplied from the raw material input ports 4-a and 4-b. The following formulas (1) and (2) in the molten slags 8-a and 8-b depending on the medium carbon content
Is reduced by the reaction shown in FeO + C → Fe + CO (endothermic reaction) (1) Fe 2 O 3 + 3C → 2Fe + 3CO (endothermic reaction) (2)

【0024】また、原料投入口4-a,4-bから投入され
た炭材中炭素分の一部は、炉本体1-a,1-bを貫通して
溶融スラグ8-a,8-bに向けて配設された下部羽口9-
a、9-bを通じて溶融スラグ8-a、8-b中に吹き込まれ
る酸素と以下の式(3)に示す反応により酸化される。 C+1/2O2 →CO(発熱反応) …(3) この溶融還元炉のエネルギー効率即ち炭材原単位は、式
(1)、(2)、(3)の反応に必要な炭素分の合計に
よって決定される。
A part of the carbon content in the carbonaceous material supplied from the raw material input ports 4-a, 4-b penetrates the furnace bodies 1-a, 1-b, and the molten slags 8-a, 8-b. Lower tuyere 9-
The oxygen is blown into the molten slags 8-a and 8-b through a and 9-b and oxidized by a reaction represented by the following formula (3). C + 1 / 2O 2 → CO (exothermic reaction) (3) The energy efficiency of this smelting reduction furnace, that is, the basic unit of carbon material, is determined by the total amount of carbon necessary for the reactions of the formulas (1), (2) and (3). It is determined.

【0025】[0025]

【0026】さにに、上記式(1)、(2)、(3)に
より溶融スラグ8-a,8-b中で発生したCOガス及び炭
材中水素分は、炉本体1-a,1-bを貫通して2次燃焼帯
11-a,11-bに向けて配設された上部羽口10-a,1
0-bを通じて2次燃焼帯11中に吹き込まれる酸素と以
下の式(4)、(5)に示す反応により酸化される。 CO+1/2O2 →CO2 (発熱反応)…(4) H2 +1/2O2 →H2 O(発熱反応)…(5)
In addition, the CO gas and the hydrogen content in the carbonaceous material generated in the molten slags 8-a and 8-b according to the above equations (1), (2) and (3) are converted to the furnace body 1-a and The upper tuyere 10-a, 1 which penetrates 1-b and is disposed toward the secondary combustion zones 11-a, 11-b.
Oxygen is oxidized by the reaction shown in the following formulas (4) and (5) with oxygen blown into the secondary combustion zone 11 through O-b. CO + 1 / 2O 2 → CO 2 (exothermic reaction) (4) H 2 + 1 / 2O 2 → H 2 O (exothermic reaction) (5)

【0027】この式(4)、(5)の反応を炉内2次燃
焼と呼び、この2次燃焼の度合いの大小を以下の式
(6)で定義される炉内2次燃焼率で表すことと、この
2次燃焼率は上部羽口10-a,10-bを通じて2次燃焼
帯11-a,11-b中に吹き込まれる酸素の流量を増加す
ることで増加することは広く知られている。
The reactions of the equations (4) and (5) are referred to as in-furnace secondary combustion, and the degree of the degree of the secondary combustion is represented by the in-furnace secondary combustion rate defined by the following equation (6). It is widely known that the secondary combustion rate is increased by increasing the flow rate of oxygen blown into the secondary combustion zones 11-a and 11-b through the upper tuyeres 10-a and 10-b. ing.

【0028】 炉内2次燃焼率=(CO2 %+H2 O%)/(CO2 %+CO%+H2 O%+H2 %)…(6) 但し、(6)式中のCO2 %、CO%、H2 O%、H2
%は、ガス排出口5-a,5-bにおける燃焼性ガスの各成
分の体積分率を示す。
In-furnace secondary combustion rate = (CO 2 % + H 2 O%) / (CO 2 % + CO% + H 2 O% + H 2 %) (6) where: CO 2%, CO%, H2 O%, H2
% Indicates the volume fraction of each component of the combustible gas at the gas outlets 5-a and 5-b.

【0029】炉内2次燃焼率を上昇させると、2次燃焼
帯11-a,11-bにおける式(4)、(5)の反応熱の
一部が溶融スラグ8-a,8-bに伝達し、スラグ中の式
(3)の発熱反応に必要な炭素分を減少せしめること
で、炭材原単位が減少すると共に、燃焼性ガスの熱量が
減少することとなる。
When the secondary combustion rate in the furnace is increased, a part of the reaction heat of the equations (4) and (5) in the secondary combustion zones 11-a and 11-b is converted into the molten slags 8-a and 8-b. To reduce the amount of carbon necessary for the exothermic reaction of the formula (3) in the slag, thereby reducing the carbon unit consumption and the calorific value of the combustible gas.

【0030】図1は、A炉B炉双方で操業時の炉状態及
ぴガスフローを示しているが、A炉及びB炉で発生した
高温の燃焼性ガスは、A炉B炉の溶銑溜まり25-a,2
5-b、スラグ溜まり26-a,26-bの上部に連通した連
結ダクト24の、溜まりガスダンパー27-a,27-bが
閉状態であり、また、集塵機13の上流側の排ガスダク
ト29付近の、連結ダクト24の開閉ダンパー28が閉
状態であることより、炉本体1-a,1−5の上部に配設
されたガス排出口5-a,5-b、排ガスダクト6-a,6-
b、双方開状態の排ガスダンパー19-a,19-b及び排
気合流ダクト31を通して、廃熱ボイラー12に導か
れ、燃焼性ガスの顕熱、潜熱を蒸気化して回収された
後、排ガス処理設備32である集塵機13、ブロアー1
4、煙突15等を通して系外に排出される。一方、廃熱
ボイラー12で燃焼性ガスの顕熱、潜熱によって高圧蒸
気化された蒸気は、蒸気配管16を通ってタービン17
及び発電器18に導かれ電力に変換される。
FIG. 1 shows the furnace conditions and gas flows during operation in both the furnace A and the furnace B. The high-temperature combustible gas generated in the furnaces A and B is stored in the hot metal pool of the furnace A and the furnace B. 25-a, 2
5-b, the accumulation gas dampers 27-a and 27-b of the connection duct 24 communicating with the upper portions of the slag accumulation chambers 26-a and 26-b are closed, and the exhaust gas duct 29 on the upstream side of the dust collector 13 Since the opening / closing damper 28 of the connection duct 24 in the vicinity is in a closed state, the gas discharge ports 5-a and 5-b disposed above the furnace bodies 1-a and 1-5 and the exhaust gas duct 6-a , 6-
b, after being guided to the waste heat boiler 12 through the exhaust gas dampers 19-a, 19-b and the exhaust gas merging duct 31 which are both open, the sensible heat and latent heat of the combustible gas are vaporized and recovered, 32 dust collector 13 and blower 1
4. It is discharged outside the system through the chimney 15 and the like. On the other hand, the steam that has been turned into high-pressure steam by the sensible heat and latent heat of the combustible gas in the waste heat boiler 12 passes through the steam pipe 16 through the turbine 17.
And it is guided to the power generator 18 and converted into electric power.

【0031】図2は、A炉が操業時及びB炉が操業中断
時の炉状態及びガスフローを示しているが、A炉B炉の
溶銑溜まり25-a,25-b、スラグ溜まり26-a,26
-bの上部に連通した連結ダクト24の、ガスダンパー2
7-a,27-bが閉状態であり、また、集塵機13の上流
側の排ガスダクト29付近の、連結ダクト24の開閉ダ
ンパー28が閉状態であることより、A炉で発生した高
温の燃焼性ガスは、炉本体1-aの上部に配設されたガス
排出口5-a、排ガスダクト6-a、開状態の排ガスダンパ
ー19-a及び排気合流ダクト31を通して、廃熱ボイラ
ー12に導かれ、燃焼性ガスの顕熱、潜熱を蒸気化して
回収された後、排ガス処理設備32である集塵機13、
ブロアー14、煙突15等を通して系外に排出される。
FIG. 2 shows the furnace condition and gas flow when the furnace A is in operation and the furnace B is in operation. The molten metal pools 25-a and 25-b and the slag pool 26- in the furnace A and the furnace B are shown in FIG. a, 26
gas damper 2 of the connecting duct 24 communicating with the upper part of -b
7-a and 27-b are closed, and the open / close damper 28 of the connection duct 24 near the exhaust gas duct 29 on the upstream side of the dust collector 13 is closed. The reactive gas is guided to the waste heat boiler 12 through a gas discharge port 5-a, an exhaust gas duct 6-a, an open exhaust gas damper 19-a, and an exhaust merging duct 31 provided at the upper part of the furnace body 1-a. After the sensible heat and latent heat of the combustible gas are vaporized and collected, the dust collector 13, which is the exhaust gas treatment facility 32,
It is discharged out of the system through a blower 14, a chimney 15, and the like.

【0032】一方、廃熱ボイラー12で燃焼性ガスの顕
熱、潜熱によって高圧蒸気化された蒸気は、蒸気配管1
6を通ってタービン17及び発電器18に導かれ電力に
変換される。この時、排ガスダンパー19-bは閉状態と
されているので、B炉が操業中止状態であっても、A炉
の操業及び上記の燃焼性ガスの顕熱、潜熱の蒸気化によ
る回収等には、支障をきたさない。
On the other hand, the steam which has been turned into high-pressure steam by the sensible heat and latent heat of the combustible gas in the waste heat boiler 12
6 and is led to a turbine 17 and a generator 18 to be converted into electric power. At this time, since the exhaust gas damper 19-b is in a closed state, even if the furnace B is in an operation stopped state, the furnace A is operated and the above-mentioned flammable gas of flammable gas is recovered by vaporization of the latent heat. Does not cause a problem.

【0033】図3は、操業炉Aと炉内耐火物予熱中の操
業準備炉Bの炉状態及びガスフローを示している。A炉
の溶銑溜まり25-a、スラグ溜まり26-aの上部に連通
した連結ダクト24の、ガスダンパー27-aが閉状態で
あることより、A炉で発生した高温の燃焼性ガスは、炉
本体1-aの上部に配設されたガス排出口5-a、排ガスダ
クト6-a、開状態の排ガスダンパー19-a及び排気合流
ダクト31を通して、廃熱ボイラー12に導かれ、燃焼
性ガスの顕熱、潜熱を蒸気化して回収された後、排ガス
処理設備32である集塵機13、ブロアー14、煙突1
5等を通して系外に排出される。一方、廃熱ボイラー1
2で燃焼性ガスの顕熱、潜熱によって高圧蒸気化された
蒸気は、蒸気配管16を通ってタービン17及び発電器
18に導かれ電力に変換される。
FIG. 3 shows the furnace state and gas flow of the operation furnace A and the operation preparation furnace B during preheating of the refractory in the furnace. Since the gas damper 27-a of the connecting duct 24 communicating with the upper part of the hot metal pool 25-a and the slag chamber 26-a of the furnace A is in a closed state, the high-temperature combustible gas generated in the furnace A is not The gas is guided to the waste heat boiler 12 through the gas exhaust port 5-a, the exhaust gas duct 6-a, the exhaust gas damper 19-a in the open state, and the exhaust merging duct 31 provided at the upper portion of the main body 1-a, and the combustible gas is emitted. After the sensible heat and latent heat of the gas are vaporized and collected, the dust collector 13, the blower 14, and the chimney 1,
It is discharged out of the system through 5 and the like. On the other hand, waste heat boiler 1
The steam that has been converted into high pressure by the sensible heat and latent heat of the combustible gas in 2 is led to a turbine 17 and a generator 18 through a steam pipe 16 and is converted into electric power.

【0034】この時、操業準備炉Bは、炉本体1-bの耐
火物2-bの予熱のために、B炉本体1-bへ燃料である燃
焼性ガス、酸素等を、例えば下部羽口9-bより供給する
必要があり、これがB炉本体1-bの耐火物2-b付近で燃
焼して高温のガスとなり、反応槽22-bの下方の耐火物
2-bの予熱に供される。尚、この時、操業準備炉B用の
排ガスダンパー19-bは閉状態となっているので、炉内
耐火物2-b予熱中の操業準備炉Bで発生する予熱用の高
温のガスは、反応槽22-bの下方の耐火物2-bに供され
た後、溶銑溜まり25-b、スラグ溜まり26-b内に導か
れ、溜まり内の耐火物2-bの予熱に供される。
At this time, in order to preheat the refractory 2-b of the furnace main body 1-b, the operation preparation furnace B supplies the B furnace main body 1-b with a combustible gas such as fuel, oxygen, etc. It is necessary to supply from the port 9-b, which burns near the refractory 2-b of the B furnace body 1-b and becomes a high-temperature gas, and is used for preheating the refractory 2-b below the reaction tank 22-b. Provided. At this time, since the exhaust gas damper 19-b for the operation preparation furnace B is in a closed state, the high-temperature gas for preheating generated in the operation preparation furnace B during the preheating of the refractory 2-b in the furnace is: After being supplied to the refractory 2-b below the reaction tank 22-b, the refractory 2-b is led into the hot metal pool 25-b and the slag pool 26-b, and is used for preheating the refractory 2-b in the pool.

【0035】また、操業準備炉Bの溶銑溜まり25-b、
スラグ溜まり26-bの上部に連通している連結ダクト2
4におけるガスダンパー27-bが開状態で、かつ、連結
ダクト24における集塵機13の上流側の排気ダクト2
9付近の、開閉ダンパー28が開状態であることより、
B炉内の耐火物2-bの予熱に供された後の低熱量の排ガ
スは、溶銑溜まり25-b、スラグ溜まり26-bの上部の
それぞれの排出口から、連結ダクト24を経て、排ガス
処理設備32である集塵機13の上流側の排ガスダクト
29に排出され、そのまま集塵機13、ブロアー14、
煙突15を経て系外に排出される。従って、操業炉Aか
ら発生する高熱量の燃焼性ガスから分断できる。
Further, the hot metal pool 25-b of the operation preparation furnace B,
Connecting duct 2 communicating with the upper part of the slag reservoir 26-b
4 when the gas damper 27-b is in the open state, and the exhaust duct 2 on the upstream side of the dust collector 13 in the connecting duct 24.
9, the opening / closing damper 28 is in an open state.
The exhaust gas of low calorific value after being subjected to the preheating of the refractory 2-b in the furnace B passes through the connection duct 24 from the respective outlets of the hot metal pool 25-b and the upper part of the slag pool 26-b, The exhaust gas is discharged to the exhaust gas duct 29 on the upstream side of the dust collector 13 which is the processing equipment 32, and the dust collector 13, the blower 14,
It is discharged outside the system via the chimney 15. Therefore, it can be separated from the high-calorie combustible gas generated from the operation furnace A.

【0036】尚、操業準備炉Bの耐火物2-bの予熱に供
される高温のガスは、炉本体1-bの上部に配設されたガ
ス排出口5-bを通らず、溶銑溜まり25-b、スラグ溜ま
り26-bの上部より排出されるため、水冷パネル3-bの
冷却水による抜熱を低減できるとともに、溶銑溜まり2
5-b、スラグ溜まり26-bの予熱も可能となる。以上よ
り、B炉が炉内耐火物予熱等の操業準備状態であって
も、A炉の操業及び上記の燃焼性ガスの顕熱、潜熱の蒸
気化による回収等には、支障をきたさない。
The high-temperature gas used for preheating the refractory 2-b of the operation preparation furnace B does not pass through the gas discharge port 5-b provided at the upper part of the furnace main body 1-b, and the hot metal pool is not heated. 25-b, which is discharged from the upper part of the slag reservoir 26-b, the heat removal by the cooling water of the water cooling panel 3-b can be reduced, and the molten iron reservoir 2
5-b, preheating of the slag pool 26-b is also possible. As described above, even when the furnace B is in the operation preparation state such as the furnace preheating, the operation of the furnace A and the recovery of the flammable gas from the sensible heat and the latent heat by vaporization are not hindered.

【0037】以上、図1〜図3に示すA炉、B炉の各操
業状態の変動に伴う、各炉の燃焼性ガス熱量と2炉合計
の燃焼性ガスの熱量の推移を図4に示す。部は、図1
に示すA炉B炉双方操業状態での、燃焼性ガスの熱量で
ある。ここでは、双方の炉の炉内2次燃焼率を上昇させ
ることにより、1炉当たりの燃焼性ガスの熱量を低下さ
せ、2炉合計の燃焼性ガスの熱量を一定にしている。
部は、図2に示すA炉で操業、B炉が操業中止状態で
の、燃焼性ガスの熱量、または、図3に示すA炉で操
業、B炉が再操業準備(炉内耐火物予熱)状態での、燃
焼性ガスの熱量である。ここでは、操業準備炉Bの燃焼
ガス熱量がゼロとなるため、操業炉Aの炉内2次燃焼率
を低下させることにより、操業炉Aの燃焼性ガスの熱を
倍増させ、2炉合計の燃焼性ガスの熱量を一定にしてい
る。
FIG. 4 shows the change in the calorific value of the combustible gas of each furnace and the calorific value of the combustible gas of the two furnaces in accordance with the change of each operation state of the furnaces A and B shown in FIGS. . Fig. 1
Is the calorific value of the combustible gas in both the furnace A and the furnace B shown in FIG. Here, the calorific value of the combustible gas per furnace is decreased by increasing the in-furnace secondary combustion rate of both furnaces, and the calorific value of the combustible gas of the two furnaces is kept constant.
The unit is operated in the furnace A shown in FIG. 2 and the calorific value of the combustible gas in the state where the furnace B is stopped, or is operated in the furnace A shown in FIG. 3 and the furnace B is ready for re-operation (preheating of the refractory in the furnace). ) The amount of heat of the combustible gas in the state. Here, since the calorific value of the combustion gas of the operation preparation furnace B becomes zero, the heat of the combustible gas of the operation furnace A is doubled by lowering the in-furnace secondary combustion rate of the operation furnace A, and the total of the two furnaces is reduced. The calorific value of the combustible gas is kept constant.

【0038】以上により、図4の最下段図に示すように
2炉合計の燃焼性ガス熱量を常時一定に保つことが可能
となる。尚、B炉が操業中でA炉が操業準備中の場合は
炉問のガス流れが上述したガス流れと逆になるように各
ダンパーの切替を行う。
As described above, the total calorific value of the combustible gas in the two furnaces can be kept constant at all times as shown in the lowermost diagram in FIG. When the furnace B is operating and the furnace A is preparing for operation, the dampers are switched so that the gas flow in the furnace is opposite to the gas flow described above.

【0039】[0039]

【発明の効果】本発明の溶融還元炉においては、複数基
の炉本体の溶銑溜まり上部及びスラグ溜まり上部を、す
べて連結ダクトで連通し、この連結ダクトを排ガス処理
設備に通じる排ガスダクトに連通したことにより、操業
準備をしている炉本体における炉内耐火物の予熱後の低
熱量な排ガスは、廃熱ボイラー及び発電設備を通さずに
直接排ガス処理後、排気する。従って、操業準備をして
いる炉から発生する低熱量な排ガスを、操業中の炉から
発生する高熱の燃焼性ガスから分断でき、その結果、操
業準備を行っている炉がある場合でも、発電に供される
合計の燃焼性ガスの熱量を、常時一定とすることで、以
下の効果が期待できる。
In the smelting reduction furnace of the present invention, the upper part of the molten iron pool and the upper part of the slag pool of the plurality of furnace bodies are all connected by a connecting duct, and the connecting duct is connected to an exhaust gas duct connected to an exhaust gas treatment facility. As a result, the exhaust gas having a low calorific value after the preheating of the refractory in the furnace in the furnace body which is preparing for the operation is exhausted after the exhaust gas treatment directly without passing through the waste heat boiler and the power generation equipment. Therefore, the low calorific value exhaust gas generated from the furnace ready for operation can be separated from the high heat combustible gas generated from the furnace during operation. As a result, even if there is a furnace ready for operation, power generation The following effects can be expected by keeping the total calorific value of the combustible gas supplied to the above constant at all times.

【0040】(1)従来技術の課題であった1炉操業−
1炉操業準備の炉状態における廃熱発電量の低下を生じ
ることなく、電力供給量を一定にできる。 (2)電力発生量が一定となるため、外部に電力を販売
する場合には、売電価格が高くなる。 (3)電力発生量が一定となるため、電力を工場内の他
の設備で使用する場合には、工場内の他の設備の操業に
支障をきたさない。 (4)水冷パネルの冷却水抜熱量を低減でき、操業準備
炉の耐火物予熱用燃料が削減できる。 (5)溶銑溜まり、スラグ溜まり用の予熱バーナーが不
要となる。
(1) One furnace operation which was a problem of the prior art
The power supply amount can be kept constant without reducing the waste heat power generation amount in the furnace state in preparation for one furnace operation. (2) Since the amount of generated power is constant, when selling power to the outside, the power selling price increases. (3) Since the amount of generated power is constant, when the power is used by other facilities in the factory, it does not hinder the operation of other facilities in the factory. (4) The amount of heat removed from the cooling water of the water cooling panel can be reduced, and the fuel for refractory preheating of the operation preparation furnace can be reduced. (5) A preheating burner for storing molten iron and slag is not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】A炉B炉双方で操業時の炉状態及びガスフロー
を示す説明図。
FIG. 1 is an explanatory diagram showing a furnace state and a gas flow during operation in both a furnace A and a furnace B.

【図2】A炉のみ1炉で操業時の炉状態及びガスフロー
を示す説明図。
FIG. 2 is an explanatory diagram showing a furnace state and a gas flow when only one furnace A is operated.

【図3】操業炉Aと耐火物予熱中の操業準備炉8の炉状
態及びガスフローを示す説明図。
FIG. 3 is an explanatory view showing a furnace state and a gas flow of an operation furnace A and an operation preparation furnace 8 during refractory preheating.

【図4】A炉B炉の各操業状態の変動に伴う、各炉の燃
焼性ガス熱量と2炉合計の燃焼性ガスの熱量の推移を示
す図。
FIG. 4 is a diagram showing changes in the calorific value of the combustible gas in each furnace and the calorific value of the combustible gas in the two furnaces in accordance with the change in each operation state of the furnace A and the furnace B.

【図5】従来のA炉B炉双方で操業時の炉状態及びガス
フローを示す説明図。
FIG. 5 is an explanatory diagram showing a furnace state and a gas flow during operation in both the conventional furnace A and furnace B.

【図6】従来のA炉のみ1炉で操業時の炉状態及びガス
フローを示す説明図。
FIG. 6 is an explanatory diagram showing a furnace state and a gas flow when only one conventional furnace A is operated.

【図7】従来の操業炉Aと操業準備炉Bの炉状態及びガ
スフローを示す説明図。
FIG. 7 is an explanatory view showing a furnace state and a gas flow of a conventional operation furnace A and a conventional operation furnace B.

【符号の説明】[Explanation of symbols]

1:炉本体 2:耐火物 3:水冷パネル 4:原料投入口 5:ガス排出口 6:排ガスダクト 7:溶銑 8:溶融スラグ 9:下部羽口 10:上部羽口 11:2次燃焼帯 12:廃熱ボイラー 13:集塵機 14:ブロアー 15:煙突 16:蒸気配管 17:タービン 18:発電器 19:排ガスダンパー 20:出銑口 21:出滓口 22:反応槽 24:連結ダクト 25:溶銑溜まり 26:スラグ溜まり 27:ガスダンパー 28:開閉ダンパー 29:排ガスダクト 30:ダクト 31:排気合流ダクト 32:排ガス処理設備 追番-aはA炉、-bはB炉を示す。 1: Furnace body 2: Refractory 3: Water-cooled panel 4: Raw material input port 5: Gas discharge port 6: Exhaust gas duct 7: Hot metal 8: Molten slag 9: Lower tuyere 10: Upper tuyere 11: Secondary combustion zone 12 : Waste heat boiler 13: Dust collector 14: Blower 15: Chimney 16: Steam piping 17: Turbine 18: Generator 19: Exhaust gas damper 20: Tap hole 21: Slag port 22: Reaction tank 24: Connecting duct 25: Hot metal pool 26: Slag pool 27: Gas damper 28: Opening / closing damper 29: Exhaust gas duct 30: Duct 31: Exhaust junction duct 32: Exhaust gas treatment equipment Additional numbers -a indicate A furnace, and -b indicates B furnace.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数基の炉本体に対し、炉本体から発生
する燃焼性ガスの顕熱、潜熱を蒸気化して回収する廃熱
ボイラー及び発電設備及び排ガス処理設備を1基有する
溶融還元設備の操業方法において、前記複数基の炉本体
のうち、操業中の炉本体から発生する燃焼性ガスは前記
廃熱ボイラー及び発電設備を通して顕熱、潜熱を蒸気化
して回収して電力変換し、一方前記複数基の炉本体のう
ち操業準備をしている炉本体には、別途燃料と空気又は
酸素を導入して燃焼させて耐火物予熱を行うと共に、こ
の予熱後の低熱量な排ガスは、前記廃熱ボイラー及び発
電設備を通さずに直接排ガス処理後、排気することを特
徴とする溶融還元設備の操業方法。
1. A smelting reduction facility having a waste heat boiler, a power generation facility, and an exhaust gas treatment facility for vaporizing and recovering sensible heat and latent heat of combustible gas generated from a furnace body for a plurality of furnace bodies. In the operating method, of the plurality of furnace bodies, the combustible gas generated from the operating furnace body is sensible heat through the waste heat boiler and the power generation equipment, and the latent heat is vaporized to recover and convert the electric power. Among the plurality of furnace bodies, the furnace body that is ready for operation is separately heated and air or oxygen is introduced and burned to perform refractory preheating. A method for operating a smelting reduction facility, wherein exhaust gas treatment is performed directly after exhaust gas treatment without passing through a heat boiler and a power generation facility.
【請求項2】 複数基の炉本体に対し、炉本体から発生
する燃焼性ガスの顕熱、潜熱を蒸気化して回収する廃熱
ボイラー及び発電設備及び排ガス処理設備を1基設け、
該廃熱ボイラー及び発電設備及び排ガス処理設備をダク
トを介し前記複数基の炉本体に連結した溶融還元設備に
おいて、前記複数基の炉本体の溶銑溜まり上部及びスラ
グ溜まり上部を、すべて連結ダクトで連通せしめ、該連
結ダクトを前記排ガス処理設備に通じる排ガスダクトに
連通する如く形成したことを特徴とする溶融還元設備。
2. A waste heat boiler for evaporating and recovering the sensible heat and latent heat of the combustible gas generated from the furnace main body, a power generation facility, and an exhaust gas treatment facility are provided for a plurality of furnace bodies.
In a smelting reduction facility in which the waste heat boiler, the power generation facility, and the exhaust gas treatment facility are connected to the plurality of furnace bodies via ducts, the upper part of the hot metal pool and the upper part of the slag chamber of the plurality of furnace bodies are all connected by a connection duct. A smelting reduction facility wherein the connection duct is formed so as to communicate with an exhaust gas duct leading to the exhaust gas treatment facility.
JP12257398A 1998-05-01 1998-05-01 Operation of smelting reduction equipment and smelting reduction equipment Withdrawn JPH11315314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12257398A JPH11315314A (en) 1998-05-01 1998-05-01 Operation of smelting reduction equipment and smelting reduction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12257398A JPH11315314A (en) 1998-05-01 1998-05-01 Operation of smelting reduction equipment and smelting reduction equipment

Publications (1)

Publication Number Publication Date
JPH11315314A true JPH11315314A (en) 1999-11-16

Family

ID=14839258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12257398A Withdrawn JPH11315314A (en) 1998-05-01 1998-05-01 Operation of smelting reduction equipment and smelting reduction equipment

Country Status (1)

Country Link
JP (1) JPH11315314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075870A1 (en) * 2006-12-18 2008-06-26 Posco Apparatus for generating energy using a sensible heat during manufacturing of molten iron and method for generating energy using the same
CN108266745A (en) * 2018-03-24 2018-07-10 唐山山岛石油化学有限公司 The method of the efficient utilization and tail gas clean-up of furnace body vent gas treatment structure and its thermal energy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075870A1 (en) * 2006-12-18 2008-06-26 Posco Apparatus for generating energy using a sensible heat during manufacturing of molten iron and method for generating energy using the same
AU2007335276B2 (en) * 2006-12-18 2011-08-18 Posco Apparatus for generating energy using a sensible heat during manufacturing of molten iron and method for generating energy using the same
US8375718B2 (en) 2006-12-18 2013-02-19 Posco Apparatus for generating energy using a sensible heat during manufacturing of molten iron and method for generating energy using the same
CN108266745A (en) * 2018-03-24 2018-07-10 唐山山岛石油化学有限公司 The method of the efficient utilization and tail gas clean-up of furnace body vent gas treatment structure and its thermal energy

Similar Documents

Publication Publication Date Title
CN1926248B (en) Direct smelting plant and process
JPS58133309A (en) Method and apparatus for iron manufacture employing twin reactor
JP2016526606A (en) Gas desulfurization in pig iron production
KR20030020896A (en) Method and installation for the indirect reduction of particulate oxide-containing ores
JPH11315314A (en) Operation of smelting reduction equipment and smelting reduction equipment
JPH10152710A (en) Equipment for recovering waste heat or smelting reduction furnace
WO1997027336A1 (en) Melt reduction equipment and operating method
US4509177A (en) Electric arc-fired blast furnace system
US20050151307A1 (en) Method and apparatus for producing molten iron
US4985068A (en) Method and apparatus for smelting iron oxide
JPH11315313A (en) Operation of smelting reduction equipment and smelting reduction equipment
AU2005215826B2 (en) Direct smelting plant and process
LU500591B1 (en) Method for operating a metallurgical plant for producing iron products
KR20150082345A (en) A two-stage smelting process and apparatus
AU2005217667B2 (en) Direct smelting plant and process
JPH01162711A (en) Smelting reduction method
Chatterjee A critical appraisal of the present status of smelting reduction-Part I From blast furnace to Corex
JPH06228623A (en) Steelmaking method having small energy consumption
JPH01162710A (en) Method and apparatus for smelting reduction
JPH0726161B2 (en) Method for recovering valuable metals from by-products during stainless steel production
JPH09279214A (en) Smelting reduction equipment
AU600398B2 (en) Method of smelting reduction of ores containing metal oxides
JPH01149911A (en) Smelting reduction process
JP2001116465A (en) Molten metal-manufacturing facilities
JPH09316509A (en) Smelting reduction equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705