JPH06228623A - Steelmaking method having small energy consumption - Google Patents

Steelmaking method having small energy consumption

Info

Publication number
JPH06228623A
JPH06228623A JP4200593A JP4200593A JPH06228623A JP H06228623 A JPH06228623 A JP H06228623A JP 4200593 A JP4200593 A JP 4200593A JP 4200593 A JP4200593 A JP 4200593A JP H06228623 A JPH06228623 A JP H06228623A
Authority
JP
Japan
Prior art keywords
cupola
converter
exhaust gas
scrap
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4200593A
Other languages
Japanese (ja)
Inventor
Hideji Takeuchi
秀次 竹内
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4200593A priority Critical patent/JPH06228623A/en
Publication of JPH06228623A publication Critical patent/JPH06228623A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To efficiently produce molten steel with a small quantity of energy, by using iron source of iron scrap, etc., as the main raw material. CONSTITUTION:At the time of obtaining the molten steel by the equipment combining a cupola 1, converter and scrap preheating device, combustion heat obtd. by burning CO generated in the cupola is given to the raw material of the iron scrap 7 in the furnace. Further, this heat is used for drying and preheating the charged raw material and also, the exhaust gas containing CO generated from the converter is recovered and supplied to a heat exchanger and the air for blasting into the cupola is made to be hot blast.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエネルギ−使用量の少な
い製鋼方法に係り、詳しくは、鉄スクラップ等の鉄源を
主な鉄原料とし、キュポラおよび転炉を用いて溶鋼を製
造する製鋼方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steelmaking method using a small amount of energy, more specifically, a steelmaking method for producing molten steel by using an iron source such as iron scrap as a main iron raw material and using a cupola and a converter. Pertain to.

【0002】[0002]

【従来の技術】鉄スクラップ等を鉄源とする製鋼方法
は、従来からア−ク電気炉を用いる方法が主流である。
この方法は、黒鉛の電極を介して熱スクラップに大電流
を通じて、スクラップに発生するジュ−ル熱により溶解
する。3本の黒鉛電極を用いて3相の交流を通ずる従来
の交流式電気炉に加えて、1本の黒鉛電極と炉底に設置
した鋼製の電極との間に直流を通ずる直流式電気炉が近
年盛んに利用され始めている。
2. Description of the Related Art As a steelmaking method using iron scrap or the like as an iron source, a method using an arc electric furnace has been the mainstream.
In this method, a large current is passed through a thermal scrap through a graphite electrode, and the scrap is melted by the heat generated in the scrap. In addition to a conventional AC electric furnace that uses three graphite electrodes to pass three-phase AC, a DC electric furnace that passes DC between one graphite electrode and a steel electrode installed at the bottom of the furnace Has been actively used in recent years.

【0003】また、転炉のみを用いて鉄スクラップを鉄
源として溶鋼を製造するプロセスも提案されている。こ
のプロセスでは、鉄スクラップを転炉に装入し、微粉炭
やコ−クスなどの化石燃料を酸素により燃焼させ、この
燃焼熱によりスクラップを溶解する。同一の転炉内で酸
素吹錬を継続し溶鋼を得る方法や、一方の転炉では溶銑
を製造しこれを別の転炉内で酸素にて脱炭して溶鋼を得
る方法が採用されている。
A process for producing molten steel using iron scrap as an iron source using only a converter has also been proposed. In this process, iron scrap is charged into a converter, fossil fuels such as pulverized coal and coke are burned with oxygen, and the heat of combustion melts the scrap. The method of obtaining molten steel by continuing oxygen blowing in the same converter, or the method of producing molten iron in one converter and decarburizing it with oxygen in another converter to obtain molten steel is adopted. There is.

【0004】従来より、鉄スクラップを溶解し鋳物用の
鋳鉄を製造する設備として例えばキュポラ等の堅型炉が
存在し、このキュポラと転炉を組み合わせて溶鋼を得る
方法も提案されている。例えば、特開昭61−8430
9号公報記載の方法ではキュポラと転炉を接続し、転炉
からの排ガスをキュポラのコ−クス充填部分に導き、キ
ュポラの羽口部分で発熱反応により燃焼させることによ
り、溶鋼製造の総合エネルギ−原単位を低減しようとす
るものである。
Conventionally, as a facility for melting iron scrap to produce cast iron for casting, there is a solid type furnace such as a cupola, and a method for obtaining molten steel by combining the cupola with a converter has been proposed. For example, Japanese Patent Laid-Open No. 61-8430
According to the method described in Japanese Patent Publication No. 9, the cupola and the converter are connected to each other, the exhaust gas from the converter is introduced into the coke filling portion of the cupola, and the exhaust gas is burned by the exothermic reaction at the tuyere portion of the cupola, thereby producing the total energy for producing molten steel. -It is intended to reduce the intensity.

【0005】また、キュポラと転炉あるいは平炉とを同
時にかつ独立に操業し、キュポラで溶製された溶銑を転
炉あるいは平炉で脱炭精錬する方法も従来技術として存
在するが、この場合には転炉排ガスをキュポラのコ−ク
ス原単位を低減するために利用しようとする考えはな
く、それぞれを独立して操業しているプロセスであっ
た。
There is also a conventional method in which the cupola and the converter or the open hearth are operated simultaneously and independently, and the molten pig iron produced in the cupola is decarburized and refined in the converter or the open hearth. There was no idea to use the converter exhaust gas to reduce the coke intensity of cupola, and each process was operating independently.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は鉄スクラ
ップ等を鉄源とした各種の製鋼方法で消費するエネルギ
−を比較したところ、従来技術である電気炉製鋼法は、
化石燃料を一次エネルギ−として発電した電力を主な溶
解エネルギ−としており、この時のエネルギ−変換効率
が高々40%であるため、総合的なエネルギ−原単位は
大きい。
The inventors of the present invention compared the energy consumed by various steelmaking methods using iron scrap or the like as an iron source, and found that the conventional electric furnace steelmaking method was
Electric power generated from fossil fuel as primary energy is the main melting energy, and the energy conversion efficiency at this time is at most 40%, so the total energy intensity is large.

【0007】一方、転炉にて鉄スクラップ等の鉄源を溶
解する転炉法は、電気炉製鋼法に比べてより多くのエネ
ルギ−を消費するプロセスである。確かに、転炉排ガス
に含まれるCOを回収し利用することにより、総合的な
エネルギ−原単位は小さくすることができる。しかし、
転炉排ガスの回収率には限界があり、高々85%程度で
あるし、この排ガス回収設備は複雑で高価であるため、
鉄スクラップ等を鉄源とする非常に大規模な製鉄所でな
ければ経済的なプロセスとはいえない。何よりも、この
プロセスはスクラップ1トンあたり、300kg/to
nの炭材を使用するので、多量のCO2が発生するため
地球環境保護のためには好ましくない。
On the other hand, the converter method for melting an iron source such as iron scrap in the converter consumes more energy than the electric furnace steelmaking method. Certainly, the total energy intensity can be reduced by recovering and utilizing CO contained in the converter exhaust gas. But,
There is a limit to the recovery rate of converter exhaust gas, which is at most about 85%. Since this exhaust gas recovery equipment is complicated and expensive,
It cannot be said that it is an economical process unless it is a very large-scale steel mill using iron scrap as an iron source. Above all, this process is 300 kg / ton per ton of scrap.
Since n carbonaceous materials are used, a large amount of CO 2 is generated, which is not preferable for global environment protection.

【0008】また、スクラップを溶解するのに適したキ
ュポラと転炉あるいは平炉との組み合わせによる製鋼方
法は、エネルギ−使用量の点では電気炉製鋼法や転炉法
に比べ優れた方法であるが、転炉からの排ガスを効率よ
く利用しているとはいえなかった。例えば、前述の特開
昭61−84309号公報に記載の方法ではキュポラと
転炉とを機械的に接続し、転炉からのCOを含む排ガス
を直接キュポラに導入することにより、エネルギ−使用
量の削減を提案している。
Further, the steelmaking method by combining a cupola suitable for melting scrap with a converter or open hearth is superior to the electric furnace steelmaking method and the converter method in terms of energy consumption. However, it cannot be said that the exhaust gas from the converter is being used efficiently. For example, in the method described in Japanese Patent Laid-Open No. 61-84309, the cupola and the converter are mechanically connected, and the exhaust gas containing CO from the converter is directly introduced into the cupola to reduce the energy consumption. Is proposed to reduce.

【0009】しかし、そもそもキュポラは連続操業をす
る溶解設備であるのに対し、転炉は本来バッチ式に運転
するプロセスである。特開昭61−84309号公報記
載の方法では、この矛盾を回避するために転炉を連続的
に操業するようにし、サイフォン式の溶鋼排出装置を設
置することを示している。この方法では、溶鋼を連続的
に排出するためには、転炉内溶湯を常に溶鋼状態まで脱
炭し貯蔵しておく必要があり、少なくとも1600℃以
上の溶鋼を貯蔵する必要がある。したがって、炉体から
の熱ロスが大きい、転炉耐火物の溶損が大きく経済的で
ない、などの理由で非現実的である。また、溶鋼を間欠
的に排出するためには、出鋼孔の部分に複雑な機構を設
ける必要があり、これも現実的でない。
However, in the first place, the cupola is a melting facility for continuous operation, whereas the converter is originally a batch-type process. In the method described in JP-A-61-84309, in order to avoid this contradiction, the converter is operated continuously and a siphon type molten steel discharging device is installed. In this method, in order to continuously discharge molten steel, it is necessary to always decarburize and store the molten metal in the converter to a molten steel state, and it is necessary to store molten steel at least at 1600 ° C or higher. Therefore, it is unrealistic because the heat loss from the furnace body is large, the melting loss of the converter refractory is large, and it is not economical. Further, in order to intermittently discharge the molten steel, it is necessary to provide a complicated mechanism at the tapping hole portion, which is also not realistic.

【0010】よって、キュポラと転炉とは連結(接続)
させず、各々単独で運転し、かつ両者間で使用エネルギ
−が最小となるような方法が望ましい。
Therefore, the cupola and the converter are connected (connected).
It is desirable to use a method in which each is operated independently and the energy used between them is minimized.

【0011】[0011]

【課題を解決するための手段】本発明は、前述の問題点
を解決し少量のエネルギ−により効率よくスクラップを
溶解し、溶鋼を得るためのプロセスに関するものであっ
て、鉄スクラップ等の鉄源をキュポラにて溶解し、得ら
れた溶湯を転炉にて精錬を行ない溶鋼を得る際に、キュ
ポラ操業ではキュポラから発生するCOを可能なかぎり
炉内にてCO2まで燃焼させてこの燃焼熱を炉内にて前
記原料鉄スクラップ等の鉄源に与えて排ガス温度を低下
させると共に、この低温排ガスを装入原料の乾燥・予熱
に利用する一方、転炉精錬操業では転炉から発生するC
Oを含む排ガスを回収してキュポラへ送風する空気を熱
風とするための熱交換機に供給することを特徴とするエ
ネルギ−使用量の少ない製鋼方法である。
The present invention relates to a process for solving the above-mentioned problems and efficiently melting scrap with a small amount of energy to obtain molten steel, which is an iron source such as iron scrap. Is melted in a cupola and the resulting molten metal is refined in a converter to obtain molten steel. In the cupola operation, CO generated from the cupola is burned to CO 2 in the furnace as much as possible, Is supplied to the iron source such as the raw material iron scrap in the furnace to lower the exhaust gas temperature, and the low temperature exhaust gas is used for drying and preheating the charged raw material, while in the converter refining operation, C generated from the converter
It is a steelmaking method with a small energy consumption, characterized in that exhaust gas containing O is recovered and the air to be blown to the cupola is supplied to a heat exchanger for making hot air.

【0012】以下本発明の手段たる構成ならびにその作
用について図面により詳しく説明する。
The structure and operation of the means of the present invention will be described in detail below with reference to the drawings.

【0013】図1は本発明を実施する際に用いられる各
設備の鉄およびガスの流れを示す説明図であり、図2は
図1のキュポラの要部を示す縦断面図である。図中の符
号1はキュポラ本体、2は熱風発生設備、3はキュポラ
排ガスの処理設備、4は溶銑保持炉、5は転炉、6は転
炉排ガスの未燃焼回収装置、7はスクラップ、8はコ−
クス、9はスクラップ予熱乾燥設備、10はガスホルダ
−、11は送風ダクト、12は排ガスダクトを示す。
FIG. 1 is an explanatory view showing the flow of iron and gas in each equipment used for carrying out the present invention, and FIG. 2 is a longitudinal sectional view showing the main part of the cupola of FIG. In the figure, reference numeral 1 is a cupola body, 2 is a hot air generating facility, 3 is a cupola exhaust gas treatment facility, 4 is a hot metal holding furnace, 5 is a converter, 6 is an unburned recovery device for converter exhaust gas, 7 is scrap, 8 Is
And 9 are scrap preheating drying equipment, 10 is a gas holder, 11 is a ventilation duct, and 12 is an exhaust gas duct.

【0014】図1においてキュポラ本体1の装入原料
は、鋼屑、銑屑、冷銑、還元鉄、あるいは鉄酸化物のい
ずれか一種類以上を鉄源とし、コ−クス、塊状石炭、微
粉炭、燃料ガス、あるいは炭素含有物のいずれか一種類
以上を熱源とする。キュポラ設備は、通常のキュポラが
使用可能であるが、本発明の目的を効率よく達成するに
は、例えば多段の羽口を設け、下部の羽口から吹き込ん
だ酸化性ガスとコ−クスなどの炭材との反応生成ガスで
あるCOを、上部の羽口から吹き込む酸化性ガスにより
CO2まで燃焼させる。更に、効率を高めるためには、
スクラップの充填高さを高くし、高温のCO2ガスとの
熱交換が十分に達成できる高さ(少なくとも2m)と
し、図2に示すようにコ−クスなどの炭材がスクラップ
充填層の途中から供給されるような特殊タイプのキュポ
ラを用いるのが最良である。この理由は、スクラップと
コ−クスが共存していると、高温のCO2ガスとコ−ク
スが反応し(ソリュ−ションロス反応)、再びCOガス
となって炉外へ排出され易いので、本発明の目的に合致
しないからである。
In FIG. 1, the material for charging the cupola body 1 is an iron source of at least one of steel scrap, pig iron scrap, cold pig iron, reduced iron, and iron oxide, and coke, agglomerated coal, and fine powder. At least one of charcoal, fuel gas, and carbon-containing material is used as a heat source. As the cupola equipment, a normal cupola can be used, but in order to efficiently achieve the object of the present invention, for example, a multi-stage tuyere is provided, and oxidizing gas and coke blown from the tuyere at the bottom are used. CO, which is a reaction product gas with the carbonaceous material, is burned to CO 2 by the oxidizing gas blown from the tuyere at the top. Furthermore, to increase efficiency,
The scrap filling height is made high so that heat exchange with high-temperature CO 2 gas can be sufficiently achieved (at least 2 m). As shown in FIG. 2, carbonaceous material such as coke is in the middle of the scrap filling layer. It is best to use a special type of cupola as supplied by The reason for this is that if scrap and coke coexist, the high temperature CO 2 gas reacts with the coke (solution loss reaction), and again becomes CO gas, which is easily discharged outside the furnace. This is because it does not meet the purpose of the invention.

【0015】図1中のキュポラ本体1から出湯される溶
銑は、溶銑保持炉4に一時的に貯蔵され、次工程の転炉
操業にマッチングさせて間欠的に払い出される。また、
この溶銑保持炉4内で温度・成分が均一化される。
The hot metal discharged from the cupola body 1 in FIG. 1 is temporarily stored in the hot metal holding furnace 4 and is intermittently discharged in conformity with the converter operation of the next process. Also,
In the hot metal holding furnace 4, the temperature and components are made uniform.

【0016】溶銑保持炉4から出湯された溶銑は、転炉
5へ装入され脱炭吹錬がなされる。溶銑中の硫黄濃度
([%S])の低い溶鋼が要求される場合には、転炉装
入前に石灰、ソ−ダ灰、カルシウムカ−バイト等の脱硫
剤により溶銑脱硫処理を行なう。
The hot metal discharged from the hot metal holding furnace 4 is charged into a converter 5 and decarburized and blown. When molten steel having a low sulfur concentration ([% S]) in the hot metal is required, hot metal desulfurization treatment is performed with a desulfurizing agent such as lime, soda ash, and calcium carbide before charging into the converter.

【0017】転炉5は通常の製鋼過程で使用される脱炭
吹錬用転炉が使用できる。特に、この転炉にも鉄スクラ
ップを鉄源として配合する場合や、吹錬の歩留まり向上
を期待する場合には、これも一般に使用される上底吹き
転炉を利用するのが望ましい。
As the converter 5, a decarburizing blowing converter used in a normal steelmaking process can be used. In particular, when iron scrap is also mixed as an iron source in this converter, or when improvement in the yield of blowing is expected, it is desirable to use a generally used top-bottom blowing converter.

【0018】排ガス回収設備6は、転炉5から発生する
COを含む排ガスを炉上方で空気により燃焼させにくい
構造となっているいわゆる未燃焼ガス回収設備6(例え
ばOG設備)が望ましい。転炉5から回収された排ガス
は、排ガスホルダ−に貯蔵され、各種用途に使用され
る。本発明の場合には、この回収されたCOガスをキュ
ポラ用熱風発生設備2に導き、COガスを主成分とする
転炉排ガスを燃料として空気により燃焼させ、キュポラ
本体1に送風する酸化性ガス、一般には空気または酸素
富化空気を加熱する。
The exhaust gas recovery equipment 6 is preferably a so-called unburned gas recovery equipment 6 (for example, OG equipment) having a structure in which exhaust gas containing CO generated from the converter 5 is not easily combusted with air above the furnace. The exhaust gas collected from the converter 5 is stored in the exhaust gas holder and used for various purposes. In the case of the present invention, the recovered CO gas is guided to the hot-air generation facility 2 for cupolas, the converter exhaust gas containing CO gas as a main component is burned with air as air, and the oxidizing gas is blown to the cupola body 1. , Generally heating air or oxygen-enriched air.

【0019】キュポラ本体1からの排ガスは、キュポラ
排ガスの処理設備3により除塵されるが、本発明の場合
には低温でかつCO2とN2を主成分とするガスであるた
め、燃料ガスとしての利用価値は少ない。しかし、少量
含まれるCOガスを燃焼して装入原料であるスクラップ
7の乾燥や予熱に使用したり、低温排ガスとは言え同じ
くスクラップの乾燥や予熱には使用できるので、これを
図1中のスクラップ予熱乾燥設備9に導く。
Exhaust gas from the cupola body 1 is dust-removed by the cupola exhaust gas treatment equipment 3, but in the case of the present invention, it is a gas containing CO 2 and N 2 as a main component at a low temperature, so that it is used as a fuel gas. Is not very useful. However, since a small amount of CO gas can be burned to be used for drying or preheating the scrap 7 which is a charging raw material, or even for low-temperature exhaust gas, it can be used for drying or preheating scrap as well. Lead to the scrap preheat drying equipment 9.

【0020】ここで示したように、キュポラ内で可能な
かぎりCO2まで燃焼し、かつ排ガス温度が低温になる
まで炉内で十分に熱交換することにより、キュポラ本体
1で使用するコ−クスなどの熱源の炭材原単位を後述す
るように顕著に低減することができる。大型キュポラで
は、キュポラからの排ガスは通常COを10%以上含
み、このガスを燃焼設備に導いて燃焼させ、送風用の空
気と熱交換することによりキュポラ本体1に送風する空
気を加熱する。この方法は、キュポラ単独で鋳鉄を製造
する場合には炭材原単位を低減するよい手段である。し
かし、本発明の対象としている、転炉との組み合わせに
よる溶鋼製造プロセスにとっては、転炉からの排ガス利
用ができない分だけエネルギ−的に不利である。
As shown here, the coke used in the cupola body 1 is burned to CO 2 in the cupola as much as possible and sufficiently exchanged heat in the furnace until the exhaust gas temperature becomes low. It is possible to remarkably reduce the carbon source unit of the heat source as described below. In a large cupola, the exhaust gas from the cupola usually contains 10% or more of CO, and this gas is guided to a combustion facility to be burned and heat exchanged with the air for blowing to heat the air blown to the cupola body 1. This method is a good means of reducing the carbonaceous material consumption rate when producing cast iron from cupola alone. However, the molten steel manufacturing process in combination with the converter, which is the object of the present invention, is disadvantageous in terms of energy because the exhaust gas from the converter cannot be used.

【0021】また、従来技術で示した転炉排ガスを直接
キュポラに導く方法では、前述したようにキュポラと転
炉との操業上のマッチングが取れず実際の操業が成り立
たない。また、無理にマッチングさせるためには転炉を
連続操業せざるを得ず、非現実的なプロセスとなる。
Further, in the method of directly introducing the converter exhaust gas to the cupola as shown in the prior art, the operation matching between the cupola and the converter cannot be obtained as described above, and the actual operation cannot be established. Also, in order to force matching, the converter must be operated continuously, which is an unrealistic process.

【0022】以上のように原料、燃料、排ガスの物質の
流れとエネルギ−の流れを十分に検討した本発明の場合
には、使用する炭材の原単位が大幅に低減され、したが
って鉄スクラップ1トンを溶解するのに必要なエネルギ
−が極小化され、発生するCO2ガスも他のプロセスと
比較して大幅に低減できる。
As described above, in the case of the present invention in which the material flow and the energy flow of the raw material, fuel and exhaust gas have been thoroughly examined, the basic unit of the carbonaceous material used is greatly reduced, and therefore the iron scrap 1 The energy required to dissolve tonnes is minimized and the CO 2 gas produced can be significantly reduced compared to other processes.

【0023】[0023]

【実施例】図1に示すキュポラ本体1、転炉5、スクラ
ップ予熱乾燥設備9の各設備を組み合わせて実施した本
発明による操業例について示す。使用した原料は鋼屑で
あり、15ton/hrの割合で装入した。これと同時
にコ−クスをまず鋼屑1ton当たり100kg配合し
て稼働を開始した。約2時間経過後、溶銑保持炉4に表
1に示す「キュポラ溶銑」の成分の溶銑が27ton貯
蔵されたので、これを取鍋に払い出した。払い出しの際
に、取鍋内に57kgのソ−ダ灰を前置きして脱硫を行
ない、表1の「装入溶銑」の成分を得た。
EXAMPLE An example of the operation according to the present invention, which is carried out by combining the respective equipments of the cupola body 1, the converter 5, and the scrap preheating drying equipment 9 shown in FIG. 1, will be described. The raw material used was steel scrap and was charged at a rate of 15 ton / hr. At the same time, 100 kg of coke was first mixed with 1 ton of steel scrap and the operation was started. After about 2 hours, 27 tons of hot metal as the component of "cupola hot metal" shown in Table 1 was stored in the hot metal holding furnace 4, and the hot metal was discharged into a ladle. At the time of discharging, 57 kg of soda ash was placed in front of the ladle for desulfurization to obtain the components of "charged hot metal" in Table 1.

【0024】酸素上吹き、不活性ガス底吹きが可能な3
0ton上底吹き転炉に、予め4tonの鉄スクラップ
を装入しておき、上記27tonの溶銑を装入して、転
炉脱炭吹錬を開始した。吹錬中に排ガスを未燃焼のまま
回収し、1130Nm3に相当するCOガスをガスホル
ダ−10に回収した。回収が開始すると同時に、このガ
スホルダ−10中のCOガスをキュポラ本体1の熱風発
生設備2に導き燃焼させ、送風温度600℃の熱風を得
た。表1には転炉の吹止め成分も併記する。
Oxygen top blowing, inert gas bottom blowing 3
4 ton of iron scrap was charged in advance to the 0 ton top-bottom blowing converter, 27 ton of the hot metal was charged therein, and the converter decarburization blowing was started. During the blowing, the exhaust gas was recovered in an unburned state, and CO gas corresponding to 1130 Nm 3 was recovered in the gas holder-10. Simultaneously with the start of recovery, the CO gas in the gas holder 10 was introduced into the hot air generating facility 2 of the cupola body 1 and burned to obtain hot air having a blowing temperature of 600 ° C. Table 1 also shows the blow-stop components of the converter.

【0025】[0025]

【表1】 [Table 1]

【0026】図2に示すキュポラによる操業では、送風
ダクト11から熱風の送風を開始すると、CO2まで燃
焼されかつ熱交換により低温となった排ガスダクト12
がキュポラ本体1から排出される。送風温度と量を調整
することにより、次第にコ−クス割合を低下することが
可能となる。キュポラ本体1の稼働開始後4時間経過し
た時点で、鋼屑1ton当たり65kgまでコ−クス割
合を低下しても安定して平均1520℃の溶銑を15t
on/hrの速度で得ることができた。
In the operation by the cupola shown in FIG. 2, when the blowing of hot air from the blowing duct 11 is started, the exhaust gas duct 12 is burned to CO 2 and has a low temperature due to heat exchange.
Are discharged from the cupola body 1. It is possible to gradually reduce the coke rate by adjusting the blowing temperature and amount. At 4 hours after the start of the operation of the cupola body 1, even if the coke ratio was reduced to 65 kg per ton of steel scrap, the molten iron having an average temperature of 1520 ° C was stably fed for 15 t.
It could be obtained at a rate of on / hr.

【0027】この時点でのキュポラ排ガス中のCO濃度
は2〜5%で、平均温度152℃であった。この排ガス
は空気と混合し、パイロットバ−ナ−の下で燃焼させ約
300℃の予熱用ガスを得た。この予熱用ガスをスクラ
ップ予熱乾燥設備9に導き、装入原料スクラップの乾燥
および予熱に用いた。この設備によって、装入直前の鉄
スクラップは平均で約170℃に加熱されていた。
At this point, the CO concentration in the cupola exhaust gas was 2 to 5%, and the average temperature was 152 ° C. This exhaust gas was mixed with air and burned under a pilot burner to obtain a preheating gas of about 300 ° C. This preheating gas was introduced to the scrap preheating drying facility 9 and used for drying and preheating the charging raw material scrap. With this equipment, the iron scrap just before charging was heated to about 170 ° C. on average.

【0028】以上のプロセスはキュポラの1キャンペ−
ンが終了した2ヶ月後まで連続的に続けられ、1500
0tonの溶鋼が得られた。このキャンペ−ンを平均し
た時の鋼屑1ton当たりのコ−クス使用量は67kg
であった。
The above process is one cupola of cupola.
It continues until two months after the end of the session, 1500
Molten steel of 0 ton was obtained. The amount of coke used per ton of steel scrap is 67 kg when averaging this campaign.
Met.

【0029】このコ−クス使用量は前述した従来技術
(特開昭61−84309号公報)より少なく経済的か
つCO2発生量の少ないプロセスであることが確認され
た。また、一般の電気炉と比較すると、一次エネルギ−
換算した溶鋼1ton当たりのエネルギ−原単位は約8
0%まで低減することができた。
It has been confirmed that the amount of coke used is less than that of the above-mentioned conventional technique (Japanese Patent Laid-Open No. 61-84309), and the process is economical and produces a small amount of CO 2 . In addition, the primary energy
Converted energy per 1 ton of molten steel is about 8
It could be reduced to 0%.

【0030】[0030]

【発明の効果】以上詳しく説明したように、本発明は鉄
スクラップ等の鉄源をキュポラにて溶解し、得られた溶
湯を転炉にて精錬を行ない溶鋼を得る際に、キュポラ操
業ではキュポラから発生するCOを可能なかぎり炉内に
てCO2まで燃焼させてこの燃焼熱を炉内にて原料鉄ス
クラップ等の鉄源に与えて排ガス温度を低下させると共
に、この低温排ガスを装入原料の乾燥・予熱に利用する
一方、転炉精錬操業では転炉から発生するCOを含む排
ガスを回収してキュポラへ送風する空気を熱風とするた
めの熱交換機に供給することを特徴とする。
As described above in detail, according to the present invention, when the iron source such as iron scrap is melted in the cupola and the obtained molten metal is refined in the converter to obtain the molten steel, the cupola is operated in the cupola operation. As much as possible, the CO generated from the furnace is burned up to CO 2 in the furnace, the combustion heat is given to the iron source such as raw material iron scrap in the furnace to lower the exhaust gas temperature, and the low temperature exhaust gas is charged as the charging raw material. In the converter refining operation, the exhaust gas containing CO generated from the converter is collected and supplied to a heat exchanger for converting the air blown to the cupola into hot air.

【0031】本発明では、キュポラ、転炉、スクラップ
予熱乾燥設備を組み合わせて、物質の流れ、熱の流れを
最適となるように、すなわち、転炉排ガスをキュポラの
熱風炉用燃料に用い、キュポラでは最大限の熱交換を行
ない、更に、キュポラ排ガスは装入原料の予熱に使うよ
うにしたため、非常にコ−クス原単位の小さな製鋼方法
を確立することができた。
In the present invention, a cupola, a converter, and a scrap preheating drying equipment are combined so that the material flow and the heat flow are optimized, that is, the converter exhaust gas is used as the fuel for the hot-blast stove of the cupola, and the cupola is used. Since the maximum heat exchange was performed and the exhaust gas from the cupola was used to preheat the charging raw material, it was possible to establish a steelmaking method with a very low coke consumption rate.

【0032】また、本発明は炭材の燃焼熱を直接利用し
ているため、電力による溶解と比較し、一次エネルギ−
原単位が低く、CO2発生量の少ない製鋼方法としても
優れたプロセスである。
Further, since the present invention directly utilizes the combustion heat of the carbonaceous material, the primary energy
It is an excellent process as a steelmaking method with low unit consumption and low CO 2 generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する際に用いられる各設備の鉄お
よびガスの流れを示す説明図である。
FIG. 1 is an explanatory diagram showing the flow of iron and gas in each facility used when carrying out the present invention.

【図2】図1のキュポラの要部を示す縦断面図である。FIG. 2 is a vertical sectional view showing a main part of the cupola of FIG.

【符号の説明】[Explanation of symbols]

1 キュポラ本体 2 熱風発生設備 3 キュポラ排ガスの処理設備 4 溶銑保持炉 5 転炉 6 転炉排ガスの未燃焼回収装置 7 スクラップ 8 コ−クス 9 スクラップ予熱乾燥設備 10 ガスホルダ− 11 送風ダクト 12 排ガスダクト 1 Cupola main body 2 Hot air generating equipment 3 Cupola exhaust gas treatment equipment 4 Hot metal holding furnace 5 Converter 6 Converter unburned gas recovery equipment 7 scrap 8 coke 9 scrap preheat drying equipment 10 gas holder 11 air duct 12 exhaust gas duct

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄スクラップ等の鉄源をキュポラにて溶
解し、得られた溶湯を転炉にて精錬を行ない溶鋼を得る
際に、 キュポラ操業ではキュポラから発生するCOを可能なか
ぎり炉内にてCO2まで燃焼させてこの燃焼熱を炉内に
て前記原料鉄スクラップ等の鉄源に与えて排ガス温度を
低下させると共に、この低温排ガスを装入原料の乾燥・
予熱に利用する一方、転炉精錬操業では転炉から発生す
るCOを含む排ガスを回収してキュポラへ送風する空気
を熱風とするための熱交換機に供給することを特徴とす
るエネルギ−使用量の少ない製鋼方法。
1. When melting an iron source such as iron scrap in a cupola and refining the resulting molten metal in a converter to obtain molten steel, in the cupola operation, CO generated from the cupola is kept in the furnace as much as possible. together by burning up CO 2 giving the combustion heat in the furnace iron source such as the raw material iron scrap to lower the exhaust gas temperature at the drying-in charging the raw material of this low temperature exhaust gas
While utilizing for preheating, in the converter refining operation, the exhaust gas containing CO generated from the converter is recovered and supplied to a heat exchanger for converting the air blown to the cupola into hot air. Less steelmaking method.
JP4200593A 1993-02-05 1993-02-05 Steelmaking method having small energy consumption Pending JPH06228623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4200593A JPH06228623A (en) 1993-02-05 1993-02-05 Steelmaking method having small energy consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4200593A JPH06228623A (en) 1993-02-05 1993-02-05 Steelmaking method having small energy consumption

Publications (1)

Publication Number Publication Date
JPH06228623A true JPH06228623A (en) 1994-08-16

Family

ID=12624080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4200593A Pending JPH06228623A (en) 1993-02-05 1993-02-05 Steelmaking method having small energy consumption

Country Status (1)

Country Link
JP (1) JPH06228623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052079A (en) * 2007-08-25 2009-03-12 Jfe Steel Kk Method for desulfurizing molten iron
CN109837359A (en) * 2019-04-04 2019-06-04 石家庄巨力科技股份有限公司 A kind of steel scrap continuous charging system
WO2021049125A1 (en) * 2019-09-10 2021-03-18 Jfeスチール株式会社 Method for producing molten iron with electric furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052079A (en) * 2007-08-25 2009-03-12 Jfe Steel Kk Method for desulfurizing molten iron
CN109837359A (en) * 2019-04-04 2019-06-04 石家庄巨力科技股份有限公司 A kind of steel scrap continuous charging system
WO2021049125A1 (en) * 2019-09-10 2021-03-18 Jfeスチール株式会社 Method for producing molten iron with electric furnace
JPWO2021049125A1 (en) * 2019-09-10 2021-09-30 Jfeスチール株式会社 Manufacturing method of molten iron by electric furnace
CN114174541A (en) * 2019-09-10 2022-03-11 杰富意钢铁株式会社 Method for manufacturing molten iron based on electric furnace

Similar Documents

Publication Publication Date Title
JP5552754B2 (en) Arc furnace operation method
WO2003062474A1 (en) Process for producing molten iron
JPH06228623A (en) Steelmaking method having small energy consumption
EP0326403B1 (en) Process for melting cold iron material
JP6476940B2 (en) Manufacturing method of molten steel
JPH0368082B2 (en)
EP0950117B1 (en) A method for producing metals and metal alloys
JP4479541B2 (en) Method for producing high chromium molten steel
US4772318A (en) Process for the production of steel from scrap
US4412862A (en) Method for the production of ferrochromium
JPH02200713A (en) Device and method for producing molten iron
JPH08291311A (en) Steel scrap melting method excellent in heat conductive efficiency
JPH01147009A (en) Melting and reducing method
JPH01162711A (en) Smelting reduction method
WO2023054345A1 (en) Molten iron production method
JPS60145307A (en) Reducing method of iron ore by melting
JPH0631686B2 (en) Exhaust gas heat recovery method and apparatus for melting furnace
RU2217505C1 (en) Method of processing nickel-bearing iron ore raw material
JPH1121607A (en) Operation of arc furnace
JP2022117935A (en) Molten iron refining method
JPH01191719A (en) Method for operating smelting reduction furnace
JP2666385B2 (en) Hot metal production method
JP2000008115A (en) Melting of cold iron source
JPS61272346A (en) Melting-reducing refining method for high manganese ferrous alloy
JP2968142B2 (en) How to operate a shared melting and refining furnace