JPS60145307A - Reducing method of iron ore by melting - Google Patents

Reducing method of iron ore by melting

Info

Publication number
JPS60145307A
JPS60145307A JP58249040A JP24904083A JPS60145307A JP S60145307 A JPS60145307 A JP S60145307A JP 58249040 A JP58249040 A JP 58249040A JP 24904083 A JP24904083 A JP 24904083A JP S60145307 A JPS60145307 A JP S60145307A
Authority
JP
Japan
Prior art keywords
furnace
gas
iron ore
reduction
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58249040A
Other languages
Japanese (ja)
Other versions
JPS6143406B2 (en
Inventor
Masakazu Nakamura
正和 中村
Yoichi Hayashi
洋一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58249040A priority Critical patent/JPS60145307A/en
Publication of JPS60145307A publication Critical patent/JPS60145307A/en
Publication of JPS6143406B2 publication Critical patent/JPS6143406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Abstract

PURPOSE:To reduce iron ore and to produce efficiently and directly molten iron by preheating iron ore and reducing preliminarily the iron ore with the waste gas from a melt reduction furnace then blowing the iron ore to the melt reduction furnace, blowing carbonaceous material and oxygen thereto and heating the iron bath. CONSTITUTION:Iron ore is preheated in a preheating furnace 1 and is fed into a preliminary reduction furnace 2 where the iron ore is subjected to reduction to some extent to decrease the content of iron oxide and thereafter the iron ore is bottom-blown together with a carbonaceous material, oxygen, slag forming agent, etc. through blow ports 4, 5 into a melt reduction furnace 3. Secondary oxygen is top-blown through a blow port 6 into the furnace to burn a part of the combustible gas generated by the gasification reaction of the carbonaceous material, thereby reducing the iron ore and heating the iron bath. The molten iron is thus obtd. The high-temp. gas formed in this stage is passed through a heat exchanger 8, by which heat is recovered. The gas is further mixed with part of the gas recovered from the furnace 2 and the geseous mixture is passed through a decarbonizing device 10 where the degree of oxidation of the gaseous mixture (H2O+CO2)/(H2+H2O+CO+CO2) is adjusted to 0.07-0.15. The gas is heated in a heater 11 and is introduced into the furnace 2 to make the preliminary reduction ratio therein 0.60-0.75.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鉄鉱石を加熱溶解しながら還元し、直接溶鉄
を得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for directly obtaining molten iron by reducing iron ore while heating and melting it.

(従来技術) 鉄鉱石を還元し、溶鉄を製造するには、通常高炉による
方法や、シャフト炉によって還元したのち電気炉に溶解
する方法が行われているが、これらは基本的にはガス還
元を行ったのちに溶解するという方法に基いている。
(Prior art) To reduce iron ore and produce molten iron, there are usually methods using a blast furnace or methods in which iron ore is reduced in a shaft furnace and then melted in an electric furnace, but these methods basically involve gas reduction. It is based on the method of dissolving after performing

一方、鉄鉱石を加熱溶解しながら還元しようとする試み
も溶融還元法として各種の手段が行われている。その一
つは加熱の手段として電力を用いるものであり、アーク
炉やプラズマ炉が利用されている。しかし電力を用いる
方法は、発電効率を考慮すると、−次エネルギー所要量
が高く、エネルギー源を海外に依存している我が国の現
状では現実的では力い。他方、−次エネルギー特に石炭
など炭材の燃焼熱を直接利用して製鉄を行う試みも彦さ
れているが、溶融状態の酸化鉄の極めて高い反応性によ
り、耐火材料の侵食が著しく、そのため成功例がない。
On the other hand, various attempts have been made to reduce iron ore while heating it and melting it as a smelting reduction method. One of them uses electric power as a heating means, and arc furnaces and plasma furnaces are used. However, considering power generation efficiency, the method of using electric power requires a high amount of secondary energy, and is not practical in our country's current dependence on overseas energy sources. On the other hand, attempts have been made to make iron by directly using secondary energy, especially the heat of combustion of carbonaceous materials such as coal. There are no examples.

また炭材が持つ潜熱の利用効率を上げるためには雰囲気
の酸化度を上昇させることが必要であるが、これは鉄鉱
石の還元という目的に反する。
Furthermore, in order to increase the utilization efficiency of the latent heat possessed by carbonaceous materials, it is necessary to increase the degree of oxidation of the atmosphere, but this is contrary to the purpose of reducing iron ore.

このように上記の各手段は、エネルギーの利用効率が悪
く、燃料原単位が高いことが、このプロセスの欠点と結
論される。
As described above, it can be concluded that the disadvantages of this process are that the above-mentioned methods have poor energy utilization efficiency and high fuel consumption.

また特開昭58−1.13307号公報には、本発明と
同様に鉄鉱石を予備還元した後溶融炉に装入して還元す
る方法が示されている。しかしこの方法は、溶融炉内に
コークスが充填されており、還元および溶解はコークス
充填層内で行われる。これは高炉の炉内下部で生じてい
る現象と全く同じである。また予備還元は、この溶融炉
から発生した高温回収ガスにより行うことに1っている
か、この過程は高炉の上部で起きている現象と同一であ
る。すなわちこの方法は高炉を上下に分割したプロセス
と云える。
Further, JP-A-58-1.13307 discloses a method in which iron ore is pre-reduced and then charged into a melting furnace and reduced in the same manner as the present invention. However, in this method, the melting furnace is filled with coke, and reduction and melting are performed within the coke packed bed. This is exactly the same phenomenon that occurs in the lower part of a blast furnace. Preliminary reduction is performed using the high-temperature recovered gas generated from the melting furnace, and this process is the same as the phenomenon occurring in the upper part of the blast furnace. In other words, this method can be said to be a process in which the blast furnace is divided into upper and lower parts.

しかしこの方法では、溶解炉に充填すべきコークスが必
要であり、コークス炉を省略することができ力い。また
羽口部においてコークス充填層へ燃料および酸素を吹込
むことに々つているが、コークス充填層の通気性には限
界があり、吹込量ひいては生産性に制約を受けることに
在る。
However, this method requires coke to be charged into a melting furnace, and the coke oven can be omitted. Furthermore, although fuel and oxygen are often blown into the coke-filled bed at the tuyeres, there is a limit to the permeability of the coke-filled bed, which limits the amount of injection and therefore the productivity.

(発明の目的) 本発明は、上記のよう々炭材を直接用いた溶融還元の問
題点を解決し効率のよい操業を行うことを目的とするも
のである。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems of melting and reducing directly using carbonaceous materials and to perform efficient operations.

(発明の構成・作用) このような目的を達成するために本発明においては、先
ず溶融還元炉から排出される還元性ガスの有効利用をは
かるため、該ガスを利用して鉄鉱石の予備還元を行うこ
とを特徴とする。す々わちこ九によシ同時に溶融還元炉
に装入される以前にある程度の還元を行い、溶融還元炉
内内容物の酸化鉄含有量を少くし、耐火物の侵食性を著
しく減少させることができるのである。また本発明の第
二の特徴は、エネルギーの利用効率を高めるために、溶
融還元炉の上部に酸素または空気を導入し鉄鉱石の還元
および炭材の部分燃焼によ多発生した燃焼性ガス(この
ガスは同時に還元性を有する)を燃焼させ、発生した熱
によシ還元生成された鉄浴の加熱を行うことである。
(Structure and operation of the invention) In order to achieve such an object, the present invention first aims to effectively utilize the reducing gas discharged from the smelting reduction furnace, so that the gas is used to pre-reduce iron ore. It is characterized by doing the following. At the same time, a certain degree of reduction is performed before being charged into the smelting reduction furnace to reduce the iron oxide content of the contents in the smelting reduction furnace and to significantly reduce the corrosivity of the refractory. This is possible. The second feature of the present invention is that, in order to improve energy utilization efficiency, oxygen or air is introduced into the upper part of the smelting-reduction furnace. This gas also has a reducing property) is combusted, and the generated heat is used to heat the iron bath produced by reduction.

す々わち本発明は、鉄鉱石を予熱し、さらに予備還元炉
によシ予備還元したのち、炭材、酸素、造滓剤とともに
底吹きする溶融炉に吹込み、さらに該溶融炉の上部に、
酸素または空気を吹込み、還元および炭材のガス化反応
によって生じた燃焼性ガスの一部を燃焼させ、炉中の還
元された鉄浴を加熱するとともに、生成した高温ガスを
、熱交換機を通過させ熱回収したのち、予備還元炉から
回収したガスの一部と混合し、脱炭酸処理後、所定温度
に加熱し、該ガスの酸化度 〔(H20+C02)/(H2+H20+CO+CO□
)〕を0.07〜015に調節して予備還元炉に導入し
、かつ予備還元炉における予備還元率を0.60乃至0
.75とすることを特徴とするものである。
In short, in the present invention, iron ore is preheated, further pre-reduced in a pre-reducing furnace, and then blown into a bottom-blowing melting furnace together with carbonaceous material, oxygen, and a slag-forming agent, and then heated in the upper part of the melting furnace. To,
Oxygen or air is injected to combust part of the combustible gas generated by the reduction and gasification reactions of carbonaceous materials, and the reduced iron bath in the furnace is heated, and the generated high-temperature gas is transferred to a heat exchanger. After passing through and recovering heat, it is mixed with a part of the gas recovered from the preliminary reduction furnace, and after decarbonation treatment, it is heated to a predetermined temperature, and the oxidation degree of the gas [(H20+C02)/(H2+H20+CO+CO□
)] was adjusted to 0.07-015 and introduced into the pre-reduction furnace, and the pre-reduction rate in the pre-reduction furnace was adjusted to 0.60-0.
.. 75.

以下図面により本発明の詳細な説明する。第1(5) 図は本発明方法の概要を示す欽明図で、1は鉄鉱石の予
熱炉、2は予備還元炉、3は溶融還元炉で、炭拐、酸素
、造滓剤等の吹込口4、予備還元した鉄鉱石の吹込口5
、部分燃焼用の二次酸素の吹込口6、ガス排出ロア等を
設けである。8は溶融還元炉3から排出された高温ガス
を熱交換する廃熱ボイラー等の熱交換機、9はガスホル
ダー、10は脱炭酸装置、11は加熱機、12はクーラ
ーである。
The present invention will be explained in detail below with reference to the drawings. Figure 1 (5) is a diagram showing the outline of the method of the present invention. 1 is an iron ore preheating furnace, 2 is a preliminary reduction furnace, and 3 is a smelting reduction furnace. Port 4, pre-reduced iron ore injection port 5
, a secondary oxygen inlet 6 for partial combustion, a gas exhaust lower, etc. are provided. 8 is a heat exchanger such as a waste heat boiler that exchanges heat with the high temperature gas discharged from the melting reduction furnace 3; 9 is a gas holder; 10 is a decarboxylation device; 11 is a heater; and 12 is a cooler.

本発明方法によシ鉄鉱石の還元を行うには、先ず鉄鉱石
を予熱炉1に装入し予熱したのち予備還元炉2に装入す
る。この予備還元炉2は流動層またはシャフト炉等を用
い、鉄鉱石を部分的に還元する。本発明は後述するよう
に、この予備還元の部分に特徴がある。予備還元された
鉄鉱石は炭材。
To reduce iron ore according to the method of the present invention, iron ore is first charged into a preheating furnace 1 and preheated, and then charged into a prereduction furnace 2. This preliminary reduction furnace 2 uses a fluidized bed, a shaft furnace, or the like to partially reduce the iron ore. As will be described later, the present invention is characterized by this preliminary reduction. Pre-reduced iron ore is a carbonaceous material.

酸素、造滓剤などとともに溶融還元炉3の底部から炉内
に吹込まれ還元が行われる。さらに該溶融還元炉3の上
部には酸素の吹込口6よシ酸素捷たは空気を吹込まれ、
還元および吹込まれた炭材の部分燃焼によ多発生した燃
焼性ガスを燃焼させ、(6) 発生した熱により還元された鉄浴を加熱する。一方眼溶
融還元炉3において生成された高温ガスは排出ロアから
排出され、廃熱?イラー等の熱交換機8によシ熱交換さ
れ、予備還元炉2から回収されたガスの一部と混合され
、さらに混合されたガスの一部は脱炭酸装置10によシ
脱炭酸され、酸化度を0.07〜0.15の範囲に調節
された後、加熱機11により加熱さi”して予備還元炉
2に導入される。々お熱交換機8によシ高温ガスと熱交
換され発生した高圧蒸気は発電等に利用される。
It is blown into the furnace from the bottom of the melting reduction furnace 3 together with oxygen, a slag forming agent, etc., and reduction is performed. Furthermore, oxygen or air is blown into the upper part of the melting reduction furnace 3 through an oxygen inlet 6,
Burn the combustible gas generated by partial combustion of the reduced and injected carbonaceous materials, and (6) heat the reduced iron bath with the generated heat. On the other hand, the high-temperature gas generated in the eye smelting reduction furnace 3 is discharged from the exhaust lower, and is used as waste heat. The heat is exchanged by a heat exchanger 8 such as a filter, and mixed with a part of the gas recovered from the preliminary reduction furnace 2. A part of the mixed gas is further decarboxylated by a decarbonator 10 and oxidized. After the temperature is adjusted to a range of 0.07 to 0.15, it is heated by a heating device 11 and introduced into the preliminary reduction furnace 2. The high-pressure steam generated is used for power generation, etc.

本発明は、この予備還元炉に導入するガスの酸化度を0
.07〜o、15vc調節することおよび予備還元炉に
おける予備還元率を0.60乃至0.75にすることを
特徴とするものであるが、以下その理由を曲間する。
The present invention reduces the degree of oxidation of the gas introduced into this preliminary reduction furnace to 0.
.. This method is characterized by adjusting the voltage to 0.07~15vc and setting the preliminary reduction rate in the preliminary reduction furnace to 0.60 to 0.75.The reasons for this will be explained below.

第2図は鉄鉱石をガス還元した場合の、還元の進行状況
を時間の推移に対して表示したものである。この図から
明らかなように鉄鉱石のガス還元速度は還元率60〜7
0%までは速いが、これを超えると速度が低下する。こ
の事実は70%以下の還元においてはガスの利用効率が
高く、プロセスとして有利であることを示すものである
。ところが現在実用化されている直接製鉄法は還元鉄を
電気炉を用いて溶解するシステムを採用しておシ溶解部
分における電力原単位を低下させるために、予備還元は
100チに近い還元率を指向している。
FIG. 2 shows the progress of reduction over time when iron ore is gas-reduced. As is clear from this figure, the gas reduction rate of iron ore is 60-7
It is fast up to 0%, but speed decreases above this. This fact shows that the gas utilization efficiency is high when the reduction is 70% or less, which is advantageous as a process. However, the direct iron manufacturing method that is currently in practical use uses a system that melts reduced iron using an electric furnace, and in order to reduce the electricity consumption rate in the melting part, the preliminary reduction has a reduction rate of close to 100. oriented.

しかし第2図から明らかなように特に90%を越える還
元には多大の時間を要し、ガス還元の観点からは、この
ような高還元率が不利であることは云う迄も力い。さら
に高価な電力を使用することは、二重に不利々条件を負
うことに彦る。
However, as is clear from FIG. 2, it takes a long time to achieve a reduction of more than 90%, and it goes without saying that such a high reduction rate is disadvantageous from the viewpoint of gas reduction. Using more expensive power is doubly penalizing.

1だ第3図に装入鉱石の予備還元率を変えた場合の溶融
還元炉の所要石炭量の変化を示す。この図から明らかな
ように、低予備還元率の場合には、溶融還元炉における
還元率が高くなるため所要熱量が多く、炭材原単位が高
くなるが、一方発生する還元性ガス量は多く々る。他方
、予備還元率が高くなると、溶融還元炉における炭材の
消費量は低下するが、同時に発生ガス量が低下する。ま
た予備還元炉における必要還元性ガス量を予備還元率に
対して表示すると第3図のようになる。予備還元工程に
おける還元性ガス所要量は、低還元率では少いが、還元
率の上昇とともに増加し、100%に近い還元率で1は
大量のガスを必要とする。
Figure 3 shows the change in the amount of coal required for the smelting reduction furnace when the preliminary reduction rate of the charged ore is changed. As is clear from this figure, when the preliminary reduction rate is low, the reduction rate in the smelting reduction furnace is high, so the required amount of heat is large and the carbon material consumption rate is high, but on the other hand, the amount of reducing gas generated is large. That's it. On the other hand, when the preliminary reduction rate increases, the amount of carbon material consumed in the smelting reduction furnace decreases, but at the same time, the amount of generated gas decreases. Further, when the required amount of reducing gas in the pre-reduction furnace is displayed with respect to the pre-reduction rate, it is as shown in FIG. 3. The amount of reducing gas required in the preliminary reduction step is small at low reduction rates, but increases as the reduction rate increases, and a large amount of gas is required at reduction rates close to 100%.

また、第4図は溶融還元炉によ多発生するガスおよび予
備還元用の還元ガスの酸化度が変化した場合の発生ガス
1゛および還元用ガス量の変化を示すものである。
Furthermore, FIG. 4 shows changes in the amount of generated gas 1' and reducing gas amount when the degree of oxidation of the gas frequently generated in the melting reduction furnace and the reducing gas for preliminary reduction changes.

さて、溶融還元炉においては鉄浴に吹込まれた炭材は酸
素により通常次のよう力反応が行われて部分的に酸化さ
れ熱を発生する。
Now, in a smelting reduction furnace, the carbonaceous material blown into the iron bath usually undergoes the following force reaction with oxygen and is partially oxidized to generate heat.

C+HO2= Co −1−261<cavrnotし
かし、ここで発生したCOガスは68 ]<cat^t
の潜熱を有しており、このCOガスは予備還元のための
還元性ガスとしては有用であるが、溶融還元炉のエネル
ギー効率としては不利である。そこで第4図に示すよう
に、発生ガスの酸化度を上昇させることによシ、COの
一部をさらにCO2まで燃焼させ、この燃焼熱を鉄浴の
加熱に利用することがエネルギー効率を高める意味で有
利である。
C+HO2= Co -1-261<cavrnot However, the CO gas generated here is 68 ]<cat^t
Although this CO gas is useful as a reducing gas for preliminary reduction, it is disadvantageous in terms of the energy efficiency of the smelting reduction furnace. Therefore, as shown in Figure 4, by increasing the degree of oxidation of the generated gas, a part of the CO is further combusted to CO2, and this combustion heat is used to heat the iron bath to increase energy efficiency. advantageous in a sense.

(9) たたしこの酸化度を上げ過ぎるとco2除去の工程に負
担がかかり、全体のコストアップになるため、ここでの
酸化度の上置は0.35程度である。
(9) If the oxidation degree of the scallop is increased too much, it will put a burden on the CO2 removal process and increase the overall cost, so the oxidation degree here is set at about 0.35.

また予備還元工程においては、ガスの酸化度が上昇する
と、還元の駆動力が減少するためガスの所要lが増加す
る。−力木発明のような溶融還元炉において発生した石
炭由来のガスはCO酸成分多く、これを高温に加熱する
と、 2 Co→CO2+C の反応により炭素が析出して操業不能になることが知ら
れており、本発明の還元温度900℃においては、その
酸化度を10%以下にすることができ々い。
In addition, in the preliminary reduction step, when the degree of oxidation of the gas increases, the driving force for reduction decreases, so the required amount of gas increases. - It is known that the coal-derived gas generated in a smelting reduction furnace like the one invented by Rikiki has a high CO acid content, and that when this is heated to high temperatures, carbon precipitates due to the reaction 2Co→CO2+C, making it impossible to operate. Therefore, at the reduction temperature of 900° C. of the present invention, it is difficult to reduce the degree of oxidation to 10% or less.

以上紐間したように溶融還元炉のエネルギー効率を高め
るためには排出ガスの酸化度を高めることが有利であシ
、また予備還元におけるガス所要量を少くするためには
ガスの酸化度を低くすることが望ましい。そこで本発明
においてはこの二つの工程の間に脱炭酸装置を設置して
溶融還元炉から排出された酸化贋の高いガスからCO2
および(10) N20を除去した後予備還元に用いるのである。すなわ
ち還元ガス所要量が急増する予備還元率75係以上を避
け、また溶融還元所要エネルギーが多くなる(ガスが余
剰となる)低予備還元率の範囲を回避した操業条件によ
り操業を行うことを特徴とするものでちる。
As mentioned above, it is advantageous to increase the oxidation degree of the exhaust gas in order to increase the energy efficiency of the smelting reduction furnace, and to reduce the amount of gas required for preliminary reduction, it is advantageous to increase the oxidation degree of the gas. It is desirable to do so. Therefore, in the present invention, a decarboxylation device is installed between these two steps, and CO2 is removed from the highly oxidized gas discharged from the melting reduction furnace.
and (10) used for preliminary reduction after removing N20. In other words, it is characterized by operating under operating conditions that avoid a preliminary reduction rate of 75 or higher, where the required amount of reducing gas increases rapidly, and avoid a low preliminary reduction rate range, where the required energy for smelting reduction increases (gas becomes surplus). It is a thing that is called.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

第1表に示す性状の石炭および第2表に示す性状の鉄鉱
石を準備した。
Coal having properties shown in Table 1 and iron ore having properties shown in Table 2 were prepared.

(11) 定常運転においては、1時間当シ、還元率65係、予備
還元した鉄鉱石1270k17を、温度1500℃、C
濃度3係の鉄浴に、98チ02351Nm、806kt
?の石炭および196 kgの石灰石とともに溶融炉の
底部に設けた羽口よシ吹込んだ。同時に二次炉焼用とし
て、同じく98係酸i25ONm’i鉄浴の上部よシソ
フトブローしたところ、1700℃のガス1690 N
m’のガスが発生した。その組成はN2: 11 % 
、 Co : 58ヂ・。
(11) In steady operation, 1270k17 of pre-reduced iron ore was heated at a temperature of 1500°C and a reduction rate of 65% for 1 hour.
In the iron bath of concentration 3, 98 chi 02351Nm, 806kt
? of coal and 196 kg of limestone were injected through a tuyere located at the bottom of the melting furnace. At the same time, for secondary furnace firing, soft blowing was performed from the top of the same 98% acid i25ONm'i iron bath, and 1690N of gas at 1700°C was found.
m' gas was generated. Its composition is N2: 11%
, Co: 58ji.

C02:16%、N20:14俤、N2:1%であ多ダ
スト量は84に!9であった。
C02:16%, N20:14t, N2:1% and the amount of dust is 84! It was 9.

さらにこの高温ガスを炉頂に設置した排熱ディシーによ
り熱回収を行い冷却除湿した後、コンプレッサーによ、
!l) 3 kg7’cm2の圧力に昇圧し、予備還元
工程からの循環がス637 Nm’と混合し、そのうち
1525Nm3f分岐した上でさらに8kg/Qn2の
圧力に昇圧した上で脱炭酸ガス装置に送って炭酸ガスの
除去および除湿を行った後4.5 kg/cm2に圧力
を落し、先に分岐した残りのガスと混合したところN2
: 13チ、 Co : 75%、CO2:8係。
This high-temperature gas is then cooled and dehumidified by recovering heat using an exhaust heat dissipator installed at the top of the furnace.
! l) The pressure was increased to 3 kg/Qn2, and the circulation from the pre-reduction step was mixed with 637 Nm' of gas, of which 1525 Nm3f was branched, further increased to a pressure of 8 kg/Qn2, and sent to the decarbonation gas equipment. After removing carbon dioxide gas and dehumidifying it, the pressure was reduced to 4.5 kg/cm2, and when mixed with the remaining gas that had been branched earlier, N2
: 13, Co: 75%, CO2: 8.

(13) HO: 2% 、N2:2qbのがス1590 Nm 
が得られた。この酸化度0.102のガスをガス加熱炉
において900℃に加熱した後、予備還元炉に吹込んだ
。この予備還元炉には炉頂から850℃に予熱した15
00に57のへマタイト鉱石(粒径2關以下)が供給さ
れ、前記ガスと反応して流動還元が行われ、還元率65
チの半還元鉱1270kgが得られた。なおこのとき予
備還元炉から排出されたガスのうち循環ガスとして還元
工程ヘリサイクルされる前記637 Nm を分岐した
残シは、鉄鉱石の予熱用燃料および発電用燃料として系
外に排出される。因みにこのときの排出ガス量は86O
Nm。
(13) HO: 2%, N2: 2qb gas 1590 Nm
was gotten. This gas having an oxidation degree of 0.102 was heated to 900° C. in a gas heating furnace and then blown into a preliminary reduction furnace. This pre-reduction furnace has 15
57 hematite ore (particle size of 2 or less) is supplied to 00, and reacts with the gas to perform fluidized reduction, resulting in a reduction rate of 65.
1,270 kg of semi-reduced ore was obtained. At this time, of the gas discharged from the preliminary reduction furnace, the residue obtained by branching off the 637 Nm, which is recycled to the reduction process as circulating gas, is discharged outside the system as fuel for preheating iron ore and fuel for power generation. By the way, the amount of exhaust gas at this time was 86O
Nm.

発熱量は1840 kcat/Nm テあった。The calorific value was 1840 kcat/Nm.

また溶融還元炉からは、C: 3 %の溶鉄が1時間当
、D103Qkg生産された。このとき発生したスラグ
は237kl?、塩基度(CaO/S10□)=1.3
1 スラグ中のFeO濃度は5qbであった。また5時
間の実験操業における炉材の侵食は顕著ではなかった。
Further, from the smelting reduction furnace, 103Q kg of D1/hour was produced with C: 3% molten iron. The slag generated at this time was 237kl? , basicity (CaO/S10□)=1.3
1 The FeO concentration in the slag was 5 qb. Furthermore, corrosion of the furnace material during the 5-hour experimental operation was not significant.

なお比較のため予備還元炉入口ガスの酸化度を0.06
に設定したところ、運転開始後約15分で(14) 排出ガスの除塵器に炭素が析出し始め、やがて運転不能
となった。また酸化度’に0.20に設定したところ、
還元速度の低下が著しく在った。従って、このよう々条
件で引続き運転すると単位当シの鉱石を所定の還元率に
還元するためには多大のガス−i*し、装着の大型化、
ガス循環のための動力増など、釉々の不利な点が現われ
る◎ (発明の効果) 以上説明したように本発明は、中程度の還元率というガ
ス還元におけるガス利用率の有利な予備還元条件を用い
、また底吹きによって供給された鉄浴中溶解炭素による
半還元鉄鉱石の高速還元、燃料の熱効率を向上するため
の鉄浴上での二次燃焼等の各プロセスを組合せ、さらに
予備還元炉に導入するガスの酸化度i0.07〜0.1
5の範囲に調節し、かつ予備還元炉における予備還元率
を0.60乃至0.75とすることにょシ、極めて高い
生産性を確保することができる。
For comparison, the oxidation degree of the preliminary reduction furnace inlet gas was set to 0.06.
However, approximately 15 minutes after the start of operation (14), carbon began to precipitate in the exhaust gas dust remover, and eventually operation became impossible. Also, when the oxidation degree was set to 0.20,
There was a significant decrease in the reduction rate. Therefore, if the operation continues under these conditions, a large amount of gas will be required to reduce a unit of ore to the specified reduction rate, and the installation will become larger.
Disadvantages of glazes such as increased power for gas circulation appear.◎ (Effects of the invention) As explained above, the present invention provides preliminary reduction conditions that are advantageous in terms of gas utilization rate in gas reduction, which is a medium reduction rate. It also combines various processes such as high-speed reduction of semi-reduced iron ore with dissolved carbon in the iron bath supplied by bottom blowing, secondary combustion on the iron bath to improve the thermal efficiency of the fuel, and further pre-reduction. Oxidation degree of gas introduced into the furnace i0.07-0.1
By adjusting the reduction rate within the range of 0.5 and setting the preliminary reduction rate in the preliminary reduction furnace to 0.60 to 0.75, extremely high productivity can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実例を示す説明図、第2図は鉄鉱
石をがス還元したときの還元率と反応時間との関係を示
す図、第3図は鉄鉱石の予備還元率の変化が石炭所要量
、ガス発生量、予備還元ガス量に及ぼす影響を示す図、
第4図は溶融還元炉発生ガスおよび予備還元ガスの酸化
度と発生ガス量および予備還元用ガスの変化を示す図で
ある。 1:予熱炉、2:予備還元炉、3:溶融還元炉、4:吹
込口(炭材、酸素、造滓剤等)、5:吹込口(鉄鉱石)
、6:吹込口(二次酸素)、7:ガス排出口、8:熱交
換機、9:ガスホルダー、10:脱炭酸装置、11:加
熱機、12:クーラ第2 図 反応的間(mlnj 中 、 20θO 乞 lθρθ θ 第3図 「 第4面 θ θ、2 θ、4 θ6 θ8 !θ予備還元率 U −−− θ θ、2 θ、4 θ6 θ8 ニラレイイ11長メン1ラテ、ざ椿と 41
Figure 1 is an explanatory diagram showing an example of the method of the present invention, Figure 2 is a diagram showing the relationship between the reduction rate and reaction time when iron ore is gas-reduced, and Figure 3 is a diagram showing the preliminary reduction rate of iron ore. Diagrams showing the effects of changes on coal requirements, gas generation, and pre-reduction gas amounts;
FIG. 4 is a diagram showing changes in the degree of oxidation of the smelting reduction furnace generated gas and preliminary reducing gas, the amount of generated gas, and the preliminary reducing gas. 1: Preheating furnace, 2: Pre-reduction furnace, 3: Melting reduction furnace, 4: Inlet (charcoal material, oxygen, slag forming agent, etc.), 5: Inlet (iron ore)
, 6: Inlet (secondary oxygen), 7: Gas outlet, 8: Heat exchanger, 9: Gas holder, 10: Decarboxylation device, 11: Heater, 12: Cooler ,20θO

Claims (2)

【特許請求の範囲】[Claims] (1)鉄鉱石を予熱し、さらに予備還元炉により予備還
元したのち、炭拐、酸素、造滓剤とともに底吹きする溶
融還元炉に吹込み、さらに該溶融還元炉の上部に、酸素
または空気を吹込み、還元および炭材のガス化反応によ
って生じた燃焼性ガスの一部を燃焼させ、炉中の還元さ
れた鉄浴を加熱するとともに、生成した高温ガスを、熱
交換機を通過させ熱回収したのち、予備還元炉から回収
したガスの一部と混合し、脱炭酸処理後、所定温度に加
熱い該ガスの酸化度〔()(20−+C02y(H2+
H20+C0−I−CO2〕を0.07〜0.15に調
節して予備還元炉に導入し、かつ予備還元炉における予
備還元率を0.60乃至0.75とすることを特徴とす
る鉄鉱石の溶融還元方法・
(1) After preheating iron ore and pre-reducing it in a pre-reduction furnace, it is blown into a bottom-blowing smelting reduction furnace together with charcoal, oxygen, and a slag-forming agent. A part of the combustible gas produced by the reduction and gasification reaction of carbonaceous material is combusted, heating the reduced iron bath in the furnace, and the generated high-temperature gas is passed through a heat exchanger to generate heat. After recovery, it is mixed with a part of the gas recovered from the preliminary reduction furnace, and after decarbonation treatment, it is heated to a predetermined temperature to reduce the oxidation degree of the gas [()(20-+C02y(H2+)
H20+C0-I-CO2] is adjusted to 0.07 to 0.15 and introduced into a preliminary reduction furnace, and the preliminary reduction rate in the preliminary reduction furnace is set to 0.60 to 0.75. Melting reduction method
(2)予備還元炉が流動層またはシャフト炉である特許
請求の範囲第1項記載の鉄鉱石の溶融還元方法。
(2) The method for melting and reducing iron ore according to claim 1, wherein the preliminary reduction furnace is a fluidized bed or a shaft furnace.
JP58249040A 1983-12-30 1983-12-30 Reducing method of iron ore by melting Granted JPS60145307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58249040A JPS60145307A (en) 1983-12-30 1983-12-30 Reducing method of iron ore by melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249040A JPS60145307A (en) 1983-12-30 1983-12-30 Reducing method of iron ore by melting

Publications (2)

Publication Number Publication Date
JPS60145307A true JPS60145307A (en) 1985-07-31
JPS6143406B2 JPS6143406B2 (en) 1986-09-27

Family

ID=17187105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249040A Granted JPS60145307A (en) 1983-12-30 1983-12-30 Reducing method of iron ore by melting

Country Status (1)

Country Link
JP (1) JPS60145307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286107A (en) * 1985-10-03 1987-04-20 ミドレツクス インタ−ナシヨナルビ−.ブイ.ロツテルダム Method and apparatus for producing molten iron
US4936908A (en) * 1987-09-25 1990-06-26 Nkk Corporation Method for smelting and reducing iron ores
WO1991005879A1 (en) * 1989-10-10 1991-05-02 Ausmelt Pty. Ltd. Smelting of nickel laterite and other iron containing nickel oxide materials
AU633153B2 (en) * 1989-10-10 1993-01-21 Ausmelt Pty Ltd Recovery of ferro nickel from laterite and other oxide minerals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286107A (en) * 1985-10-03 1987-04-20 ミドレツクス インタ−ナシヨナルビ−.ブイ.ロツテルダム Method and apparatus for producing molten iron
JPH0471963B2 (en) * 1985-10-03 1992-11-17 Midoretsukusu Intern Bv Rotsuterudamu
US4936908A (en) * 1987-09-25 1990-06-26 Nkk Corporation Method for smelting and reducing iron ores
WO1991005879A1 (en) * 1989-10-10 1991-05-02 Ausmelt Pty. Ltd. Smelting of nickel laterite and other iron containing nickel oxide materials
AU633153B2 (en) * 1989-10-10 1993-01-21 Ausmelt Pty Ltd Recovery of ferro nickel from laterite and other oxide minerals

Also Published As

Publication number Publication date
JPS6143406B2 (en) 1986-09-27

Similar Documents

Publication Publication Date Title
JP2635256B2 (en) Method for producing pig iron or sponge iron
JPH0635613B2 (en) Pig iron manufacturing method
JPH01195226A (en) Smelting reduction method
JPS6123245B2 (en)
JPS60145307A (en) Reducing method of iron ore by melting
CA1333662C (en) Process for melting cold iron material
JPH01252714A (en) Mixed agglomerating briquette for smelting reduction furnace and smelting reduction method for mixed agglomerating briquette
JPS63171807A (en) Operation method for oxygen blast furnace
JPH01147009A (en) Melting and reducing method
JPH06228623A (en) Steelmaking method having small energy consumption
JPS62230923A (en) Manufacture of iron by smelting and reduction
JPH01162711A (en) Smelting reduction method
JPH11189816A (en) Operation of vertical scrap iron melting furnace
JPH0826378B2 (en) Method for producing molten iron containing chromium
JPS5816053A (en) Manufacture of ferrochromium
JPS58199810A (en) Operating method of converter
JPS6342351A (en) Manufacture of chromium-containing molten iron
JPH01275711A (en) Smelt-reduction method
JPS63169310A (en) Blast furnace operation method
JPS63216908A (en) Bach type production for molten metal
JPH02125807A (en) Smelting reduction method for ore
JPH03247713A (en) Smelting reduction method for iron ore
JPH01195211A (en) Method for melting and reducing iron oxide
JPS63130707A (en) Production of molten iron
JP2001262216A (en) Method for melting iron scrap