JPS6342351A - Manufacture of chromium-containing molten iron - Google Patents

Manufacture of chromium-containing molten iron

Info

Publication number
JPS6342351A
JPS6342351A JP18454286A JP18454286A JPS6342351A JP S6342351 A JPS6342351 A JP S6342351A JP 18454286 A JP18454286 A JP 18454286A JP 18454286 A JP18454286 A JP 18454286A JP S6342351 A JPS6342351 A JP S6342351A
Authority
JP
Japan
Prior art keywords
molten iron
chromium
scrap
iron
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18454286A
Other languages
Japanese (ja)
Inventor
Takeshi Mimura
毅 三村
Akihide Hikosaka
彦坂 明秀
Shuzo Ito
修三 伊東
Toshio Onoe
尾上 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18454286A priority Critical patent/JPS6342351A/en
Publication of JPS6342351A publication Critical patent/JPS6342351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce manufacturing costs by using scrap as iron source, chromitite as chromium source, and carbon material as heat source and by controlling C content in molten iron and temp. of molten iron to specific values, respectively, at the time of manufacturing chromium-containing molten iron. CONSTITUTION:Steel scrap 5 is introduced into a melting-reducing furnace 1 of converter type, into which, from a furnace-bottom tuyere 1a, pulverized coal 2 and a powder of quick lime 4 as slagging agent are blown together with inert gas 11 of Ar, N2, etc., and also O2 gas 3 is blown simultaneously so as to burn the pulverized coal 2 by oxidation into CO and also to melt the scrap 5 by means of the above heat of oxidation. Hot blasts are generated in regenerators 6, 6' by waste-gas utilization and they are blown into the upper space of the furnace 1 to burn CO into CO2, so that temp. of molten iron and C content in molten iron are regulated to 1,500 deg.C and >=2.5%, respectively. Subsequently, chromitite and lump coke are charged from the upper part of the furnace, and Cr2O3 and FeO in the ore are reduced to form a chromium- containing molten iron metal with about 18% Cr content, which is desulfurized by blowing CaC2 blowing. In this way, the chromium-containing molten iron can be manufactured inexpensively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスクラップを主たる鉄源とし、また熱源として
炭素質物質の酸化による発熱を利用し溶融精錬時にクロ
ム鉱石を添加して含クロム溶鉄を製造する方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses scrap as the main source of iron, and uses heat generated by oxidation of carbonaceous materials as a heat source to produce chromium-containing molten iron by adding chromium ore during melting and refining. It relates to a manufacturing method.

[従来の技術] 近年、製鉄業界においては製鉄原料としてスクラップを
用い、電気炉に代わって炭素質物質の酸化による発熱を
利用して製鉄を行なうリアクタ製鉄法(特公昭59−4
4363号公報)などが提案開示されている。このよう
な省電力の動きは普通鋼のみならずステンレス鋼の分野
にも広がってきている。
[Prior art] In recent years, the steel industry has developed a reactor iron manufacturing method (Japanese Patent Publication No. 59-4), which uses scrap as a raw material for iron manufacturing and utilizes the heat generated by oxidation of carbonaceous materials instead of an electric furnace to manufacture steel.
No. 4363) and the like have been proposed and disclosed. This energy saving movement is spreading not only to ordinary steel but also to stainless steel.

従来ステンレス鋼の溶製は、スクラップおよびクロム源
としてのフェロクロムを電気炉に装入し、電力熱源で溶
融することにより行なわれてきたが、最近では炭素材と
酸素を電気炉内に吹込んで反応熱を利用するという電力
原単位節減方法や、予備脱燐を行った溶銑を転炉で吹錬
する時にクロム鉱石を添加して溶融還元を行いクロム分
を溶綱中に歩留まらせる方法(特公昭56−2125号
公報)等が提案開示されている。
Traditionally, stainless steel has been produced by charging scrap and ferrochrome as a chromium source into an electric furnace and melting it with an electric heat source, but recently, carbon materials and oxygen have been injected into the electric furnace and reacted. There are methods for reducing electricity consumption by using heat, and methods for retaining chromium in the melt by adding chromium ore when pre-dephosphorized hot metal is smelted in a converter and melting it down. Publication No. 56-2125) etc. have been proposed and disclosed.

[発明が解決しようとする問題点コ 従来の電気炉によるステンレス鋼の製造においては、鉄
鋼所内で発生したスクラップおよび布中から回収された
加工屑、更には老廃屑などの回収スクラップ中に含まれ
るクロム分をクロム源として用いる方法が、フェロクロ
ムを用いるより安価であることに鑑み、主たる鉄源とし
てクロム分を含有した同種のスクラップを中心とし、こ
れに普通鋼スクラップおよび不足分のクロム源としてフ
ェロクロムを加えるという、原料制約が少ない上に原料
コストの低いクロムリサイクル方法を主流としている。
[Problems to be solved by the invention] In the production of stainless steel using a conventional electric furnace, scraps generated in the steel mill, processed scraps recovered from cloth, and even waste scraps are contained in the recovered scraps. Considering that the method of using chromium as a chromium source is cheaper than using ferrochrome, we mainly use the same type of scrap containing chromium as the main iron source, and use ordinary steel scrap and ferrochrome as a chromium source to make up for the shortage. The mainstream is the chromium recycling method, which has fewer raw material constraints and low raw material costs.

しかしこの方法は前述のごとくスクラップおよびフェロ
クロム溶融の熱源に電力を用いるものであるため、高い
電力料金が製造コストを引き上げているという問題があ
る。
However, as described above, this method uses electricity as a heat source for melting scrap and ferrochrome, and therefore has a problem in that high electricity charges increase manufacturing costs.

これに対して予備脱燐をした溶銑をベースにクロム鉱石
の溶融還元を行なう方法では、転炉吹錬が主体となる為
確かに電力を用いずに含クロム溶鉄を製造することが可
能となっている。しかもクロム鉱石を溶融還元して溶鋼
中に歩留らせており、別の電気炉で製造されたフェロク
ロムを使用する場合と比べてクロム源の原料コストを著
しく下げることが可能となっている。しかしながらこの
方法では主たる鉄源に溶銑を用いておりしかもそれを予
備脱燐する必要があること、熱供給が不足するため含ク
ロムスクラップの使用が制限されることなどといった原
料制約を受けるという問題を有していた。
On the other hand, in the method of smelting and reducing chromium ore using pre-dephosphorized hot metal as a base, converter blowing is the main process, making it possible to produce chromium-containing molten iron without using electricity. ing. Moreover, the chromium ore is melted down and retained in the molten steel, making it possible to significantly lower the cost of the chromium source compared to using ferrochrome produced in a separate electric furnace. However, this method uses hot metal as the main source of iron, which requires preliminary dephosphorization, and the lack of heat supply limits the use of chromium-containing scrap. had.

こうした状況のもとであるから、本発明の目的は、■ス
クラップを主たる鉄源とすること、■熱源を電力によら
ずに炭素質物質の酸化による発熱を利用すること、■ク
ロム源をスクラップ中のクロムおよび/またはクロム鉱
石の溶融還元により得ることという3条件を満足するこ
とによりクロム溶鉄を安価に得ることのできる含クロム
溶鉄の製造方法の提供にある。
Under these circumstances, the objectives of the present invention are: - to use scrap as the main source of iron; - to use heat generated by the oxidation of carbonaceous materials as a heat source without relying on electricity; and - to replace scrap chromium as a source of iron. An object of the present invention is to provide a method for producing chromium-containing molten iron that can obtain chromium-containing molten iron at a low cost by satisfying three conditions: chromium and/or chromium ore are obtained by melting and reduction.

[問題点を解決するための手段] 上記問題点を解決することのできた本発明とはスクラッ
プを主たる鉄源とし、炉内に炭素質物質と酸化性ガスを
添加して該炭素質物質を少なくともCOまで酸化せしめ
、この時の酸化熱で鉄源を溶融すると共に、溶融後の溶
鉄中[C]≧2.5%(%:重量%の意味、以下同じ)
および溶鉄温度1500℃以上に調整維持することによ
り別途添加されたクロム鉱石を溶融還元することを構成
要旨とするものである。
[Means for Solving the Problems] The present invention, which has solved the above problems, uses scrap as the main source of iron, and adds carbonaceous material and oxidizing gas to the furnace to remove at least the carbonaceous material. The iron source is oxidized to CO, and the oxidation heat at this time melts the iron source, and the molten iron after melting has [C] ≧2.5% (%: weight %, the same applies hereinafter).
The gist of the structure is to melt and reduce the separately added chromium ore by adjusting and maintaining the molten iron temperature at 1500° C. or higher.

[作用コ 前述のようにステンレス鋼をはじめとして、スクラップ
を主な鉄源として含クロム溶鉄を製造するプロセスにお
いては、■スクラップの溶融エネルギーを現在の電力か
ら安価な炭素質物質の酸化発熱エネルギーに変更するこ
とと、■安価なりロム源を使用することは、製造コスト
の低減を図る上で必須的な前提条件となる。
[Operations] As mentioned above, in the process of manufacturing chromium-containing molten iron using scrap as the main iron source, including stainless steel, ■ the melting energy of scrap is converted from current electric power to the oxidation exothermic energy of inexpensive carbonaceous materials. (1) Use of an inexpensive ROM source are essential prerequisites for reducing manufacturing costs.

現在クロム源としては、スクラップ中のクロム分の他、
別の電気炉で製造されたフェロクロムが使用されている
が、このフェロクロムをクロム鉱石におきかえ且つ炭素
質物質により溶融・還元して直接溶鋼に歩留らせること
ができるならば製造のコストの低減に大きな効果をもた
らすことが朋待される。しかしながらクロム鉱石は(M
g。
Currently, chromium sources include chromium in scrap,
Ferrochrome manufactured in a separate electric furnace is used, but if this ferrochrome can be replaced with chromium ore, melted and reduced with carbonaceous material, and directly retained in molten steel, manufacturing costs can be reduced. We hope that this will have a great impact on the future. However, chromium ore (M
g.

)−e)O・ (Cr、A1.Fe)203組成のクロ
マイトスピネルおよび高融点の蛇紋石からなる難通元性
の鉱石であるため、高いクロム歩留りを得るには操業条
件を適切に設定する必要がある。
)-e) O. (Cr, A1.Fe) Since it is a difficult ore consisting of chromite spinel with a composition of 203 and serpentine with a high melting point, operating conditions must be set appropriately to obtain a high chromium yield. There is a need.

クロム鉱石の溶融還元速度に対する溶鉄中の炭素濃度や
溶鉄温度の影響は大きいものであることが分かった。第
1図は溶鉄中の炭素濃度とクロム鉱石の溶融還元速度と
の関係を示すものであるが、溶鉄中炭素濃度2,5%を
境としてクロム鉱石溶融還元速度が大きく変化するため
(詳しくは溶鉄温度1550℃〜1600℃のときは2
.5%で、溶鉄温度1600℃〜1650℃のときは2
%で夫々急激に変化している)大きなりロム鉱石溶融還
元速度を得るためには、溶鉄中炭素濃度を安全サイドに
見て2.5%以上に維持する必要がある。また溶鉄温度
とクロム鉱石の溶融還元速度との関係については、第2
図に示すように1500’C付近で溶融還元速度が大き
く変化するため、大きな溶融還元速度を得るためには溶
鉄温度を1500を以上としなければならない。
It was found that the carbon concentration in molten iron and the temperature of molten iron have a large influence on the smelting reduction rate of chromium ore. Figure 1 shows the relationship between the carbon concentration in molten iron and the smelting reduction rate of chromium ore, but since the chromium ore smelting reduction rate changes greatly after the carbon concentration in molten iron reaches 2.5% (for details, see 2 when the molten iron temperature is 1550℃~1600℃
.. 5% and 2 when the molten iron temperature is 1600℃~1650℃
In order to obtain a high rate of smelting and reduction of chromium ore (which varies rapidly in percentage), it is necessary to maintain the carbon concentration in the molten iron at 2.5% or more on the safe side. In addition, regarding the relationship between molten iron temperature and chromium ore melt reduction rate,
As shown in the figure, the smelting reduction rate changes greatly around 1500'C, so the molten iron temperature must be set to 1500 or above in order to obtain a high smelting reduction rate.

一方、炭素質物質および酸化性ガスを添加して炭素質物
質をCOおよび一部CO□まで酸化させ、この時の酸化
熱によりスクラップを溶融する工程において、操業の安
定性を得るには、溶鉄中の炭素イ農度を2%程度の高い
レベルに保つことが必要であり、溶鉄中炭素濃度が2%
より低いと第3図に示すようにスラグ中のT−Feすな
わち酸化鉄濃度が高くなり、スラグフォーミングと鉄歩
留りの低下をきたす。また溶鉄温度も1450〜150
0℃程度でなければならない。
On the other hand, in the process of adding carbonaceous substances and oxidizing gas to oxidize the carbonaceous substances to CO and some CO□, and melting the scrap with the heat of oxidation at this time, in order to obtain operational stability, it is necessary to It is necessary to maintain the carbon concentration in the molten iron at a high level of about 2%, and the carbon concentration in the molten iron is 2%.
If it is lower, as shown in FIG. 3, the concentration of T-Fe, that is, iron oxide in the slag becomes high, causing slag foaming and a decrease in iron yield. Also, the temperature of molten iron is 1450-150
The temperature must be around 0°C.

従って炭素質物質の酸化熱によるスクラップの溶融工程
と、これをf!1!湯としてクロム鉱石の溶融還元を行
う工程を組み合わせて操業するに当たっては本発明で規
制した上記条件に設定することが必要であり、これによ
って両工程を有機的に結合させ且つ効率的に実施するこ
とができる。
Therefore, the process of melting the scrap by the heat of oxidation of the carbonaceous material and f! 1! When operating in combination with the process of melting and reducing chromium ore as hot water, it is necessary to set the above conditions regulated by the present invention, so that both processes can be organically combined and carried out efficiently. Can be done.

またクロム鉱石の溶融還元時には、造滓剤と鉱石の脈石
分から多量の溶滓が発生する。従ってこの時にスクラッ
プの溶融を行うと溶滓によりスクラップの溶融が阻害さ
れる。従ってクロム鉱石の溶融還元はスクラップの溶融
が完了もしくは少なくとも%以上が終了したあとに行う
ことが望ましい。
Further, when chromium ore is melted and reduced, a large amount of slag is generated from the slag-forming agent and gangue of the ore. Therefore, if the scrap is melted at this time, the melting of the scrap will be inhibited by the slag. Therefore, it is desirable to reduce the chromium ore by melting it after the melting of the scrap has been completed or at least % has been completed.

クロム源としてはスクラップ中のクロムおよび/または
クロム鉱石の他にロータリーキルンなどで予備還元を行
ったベレットなどを用いても良い。この場合には還元時
間が短縮されるほか、還元時の吸熱が少なくなるために
炭素質物質や酸化性ガスの使用量が減少する。また必要
であればクロム源をスクラップ中のクロムから得て補充
的にクロム鉱石を添加することにより所望する含有量の
含クロム溶鉄を得ることもできる。
As a chromium source, in addition to chromium in scrap and/or chromium ore, pellets pre-reduced in a rotary kiln or the like may be used. In this case, not only the reduction time is shortened, but also the amount of carbonaceous material and oxidizing gas used is reduced because the amount of heat absorbed during reduction is reduced. Furthermore, if necessary, chromium-containing molten iron with a desired content can be obtained by obtaining a chromium source from chromium in scrap and supplementary addition of chromium ore.

本発明では炭素質物質を主熱源として多量に用いるため
に、通常の炭素質物質に含まれる硫黄分が溶鉄中に入る
。従って通常のステンレス鋼などの含クロム溶鉄を製造
する場合には脱硫を行わなければならないし、また溶鋼
とするためには脱炭も必要である。
In the present invention, since a large amount of carbonaceous material is used as the main heat source, sulfur contained in ordinary carbonaceous materials enters the molten iron. Therefore, when producing chromium-containing molten iron such as ordinary stainless steel, desulfurization must be performed, and decarburization is also necessary to produce molten steel.

脱硫は、炭素質物質の使用が完了するクロム鉱石の溶融
還元後に行う。この時は、溶鉄中の炭素濃度が2.5%
以上と高くなっているため、溶鉄中の硫黄の反応性が高
く脱硫が容易となる。したがって、クロム鉱石の溶融還
元時に炭素濃度を高く維持することは、その後の脱硫を
効率よく行うためにも必須となる。なお脱硫期には硫黄
源となる炭素質物質や還元反応である脱硫を阻害する酸
化性ガスの吹込みは中止し、溶鉄の攪拌は窒素などの不
活性ガスで行わなければならない。
Desulfurization is carried out after the smelting reduction of the chromium ore when the use of carbonaceous material is completed. At this time, the carbon concentration in the molten iron was 2.5%.
Since the molten iron is higher than the above, the reactivity of sulfur in the molten iron is high and desulfurization becomes easy. Therefore, maintaining a high carbon concentration during melt reduction of chromium ore is essential for efficient subsequent desulfurization. During the desulfurization period, the injection of carbonaceous substances that serve as sulfur sources and oxidizing gas that inhibits desulfurization, which is a reduction reaction, must be stopped, and the molten iron must be stirred using an inert gas such as nitrogen.

脱硫後は、硫黄濃度の高い溶滓を除去したのち、酸化性
ガスを吹込むことにより脱炭し粗溶鋼とする。
After desulfurization, slag with a high sulfur concentration is removed, and then oxidizing gas is blown into the steel to decarburize it and produce crude molten steel.

また溶鉄中のクロムは溶鉄中の窒素の飽和溶解度を高め
るので、何らかの脱窒処理を行う必要があるが、脱炭期
には多量のCOガスが発生し、このCOガス気泡により
脱窒素を同時に行うことができる。第4図に溶鉄中の脱
炭量と溶銑中含窒素量との関係を示す。要求される窒素
レベルに応じた脱炭量とする必要があるが、いずれにし
ても前工程で炭素濃度を2.5%以上に保つことは脱窒
素に関しても不可欠な条件である。
In addition, since chromium in molten iron increases the saturation solubility of nitrogen in molten iron, it is necessary to perform some denitrification treatment, but a large amount of CO gas is generated during the decarburization period, and this CO gas bubbles can be used to simultaneously denitrify. It can be carried out. Figure 4 shows the relationship between the amount of decarburization in molten iron and the nitrogen content in hot metal. It is necessary to set the amount of decarburization according to the required nitrogen level, but in any case, maintaining the carbon concentration at 2.5% or more in the previous step is an essential condition for denitrification.

以上のようにスクラップを主たる鉄源としてこれの溶融
精錬時にクロム源としてクロム鉱石を添加して含クロム
溶鉄を製造する工程において、本発明で規制したように
炭素質物質と酸化性ガスとの酸化熱を用いてスクラップ
溶融とクロム鉱石の溶融還元を行い、その後脱硫および
脱炭し、しかもプロセス途中の溶鉄中炭素濃度と溶鉄温
度を制御して全体の工程を有機的に結合することにより
、一連の合理的なプロセスとすることができ、製造コス
トの低減と安定した操業を可能とする。
As described above, in the process of producing chromium-containing molten iron by adding chromium ore as a chromium source during melting and refining of scrap as the main iron source, oxidation of carbonaceous substances and oxidizing gases as regulated by the present invention. By using heat to melt scrap and reduce the chromium ore by melting, followed by desulfurization and decarburization, and controlling the carbon concentration in the molten iron and the molten iron temperature during the process, the entire process is organically linked. This enables a streamlined process, lower manufacturing costs, and stable operation.

[実施例] 第5図(概略図)に示すスクラップ溶融精錬炉を用いて
第6図に示す製造フロー図および条件に従って含クロム
溶鉄(18%Cr)の製造を行った。1は溶融精錬炉(
以下炉と記す)であり、炭素質物質として微粉炭を使用
し微粉炭2と生石灰4を不活性ガス11と共に底吹きに
より、また酸化性ガスとして酸素3を炉下部1aより炉
1内に導入し、微粉炭を酸素ですくなくともCOまで酸
化燃焼させ、その酸化熱でスクラップ5を溶融させる。
[Example] Using the scrap melting and refining furnace shown in FIG. 5 (schematic diagram), chromium-containing molten iron (18% Cr) was manufactured according to the manufacturing flow diagram and conditions shown in FIG. 6. 1 is a melting and refining furnace (
(hereinafter referred to as a furnace), pulverized coal is used as the carbonaceous material, pulverized coal 2 and quicklime 4 are introduced together with an inert gas 11 by bottom blowing, and oxygen 3 is introduced as an oxidizing gas into the furnace 1 from the lower part 1a of the furnace. Then, the pulverized coal is oxidized and burned with oxygen to at least CO, and the scrap 5 is melted by the oxidation heat.

さらに蓄熱室6.6′を設け、これにより熱風を製造し
、炉1内上部空間に吹込んでCOガスの一部をCO2ま
で酸化燃焼させ、この熱によリスクラップ5をさらに溶
融させる。この時の溶鉄温度は1500℃、溶鉄中C含
有量は3%である。ざらに溶鉄中[C]≧2.5%、溶
鉄温度1500℃以上に調整維持しながらクロム鉱石お
よび塊コークスを炉1内に装入し、クロム鉱石を溶融還
元する。さらに高品質の含クロム溶鉄を得るために微粉
炭2および酸素3の導入を一時中止し生石灰4およびカ
ルシウムカーバイト7および不活性ガス12を導入して
脱硫を行い、次いで酸素3を吹きこんで脱炭し含クロム
溶鉄を得る。
Furthermore, a heat storage chamber 6.6' is provided, whereby hot air is produced and blown into the upper space of the furnace 1 to oxidize and burn a part of the CO gas to CO2, and the heat causes the squirrel scrap 5 to further melt. The molten iron temperature at this time was 1500°C, and the C content in the molten iron was 3%. Roughly, chromium ore and lump coke are charged into the furnace 1 while adjusting and maintaining the temperature of [C]≧2.5% in the molten iron and 1500° C. or higher, and the chromium ore is melted and reduced. In order to obtain even higher quality chromium-containing molten iron, the introduction of pulverized coal 2 and oxygen 3 was temporarily stopped, and quicklime 4, calcium carbide 7 and inert gas 12 were introduced to perform desulfurization, and then oxygen 3 was blown in. Decarburize to obtain chromium-containing molten iron.

また高熱排ガスは蓄熱室6.6’ 、排熱ボイラー8,
9、スクラップ予熱装置1oで熱交換し、高温空気や蒸
気の製造およびスクラップの予熱等に使用する。
In addition, high-temperature exhaust gas is stored in a heat storage chamber 6.6', an exhaust heat boiler 8,
9. The scrap preheating device 1o exchanges heat and is used for producing high temperature air and steam, preheating scrap, etc.

上記した方法で18%Cr粗溶鋼を製造したときの主要
原単位を実施例、通常の電気炉で製造した時の原単位を
比較例としてそれぞれ第1表に示す。
Table 1 shows the main unit consumption when producing 18%Cr crude molten steel by the above-described method as an example, and the unit consumption when producing it in a normal electric furnace as a comparative example.

第1表より電力の炭素質物質への代替と、フェロクロム
のクロム鉱石への代替が可能となることがわかり、大き
なコストダウンを図ることができる。
Table 1 shows that it is possible to replace electricity with carbonaceous materials and replace ferrochrome with chromium ore, making it possible to significantly reduce costs.

第1表 [発明の効果] 以上のように本発明方法によると■スクラップを主たる
鉄源とすること、■熱源を電力によらずに炭素質物質の
酸化による発熱を利用すること、■クロム源をスクラッ
プ中のクロムおよび/またはクロム鉱石の溶融還元から
得ることにより安価にクロム溶鉄を得ることができる。
Table 1 [Effects of the Invention] As described above, according to the method of the present invention, 1) scrap is used as the main iron source, 2) heat generated by oxidation of carbonaceous material is used as a heat source without relying on electricity, and 2) chromium source is used. Molten chromium iron can be obtained at low cost by obtaining it from smelting reduction of chromium and/or chromium ore in scrap.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶鉄中炭素濃度とクロム鉱石の溶融還元速度と
の関係図、第2図は溶鉄温度とクロム鉱石の溶融還元速
度との関係図、第3図はスラグ中[T−Fe]と溶鉄中
炭素濃度との関係図、第4図は溶鉄の脱炭量と溶銑中含
窒素量との関係図、第5図は実施例で用いたスクラップ
溶融精錬炉の概略図、第6図は本発明の実施例を示すフ
ロー図である。 工・・・溶融精錬炉   2・・・微粉炭3・・・酸素
      4・・・生石灰5・・・スクラップ   
6・・・蓄熱室7・・・カルシウムカーバイド 11.12・・・不活性ガス 13・・・炭化水素系ガス
Figure 1 is a diagram showing the relationship between the carbon concentration in molten iron and the smelting reduction rate of chromium ore, Figure 2 is a diagram showing the relationship between molten iron temperature and the smelting reduction rate of chromium ore, and Figure 3 is a diagram showing the relationship between [T-Fe] in slag and the smelting reduction rate of chromium ore. Figure 4 is a diagram of the relationship between the carbon concentration in molten iron, the amount of decarburization of molten iron and the nitrogen content in hot metal, Figure 5 is a schematic diagram of the scrap melting and refining furnace used in the examples, and Figure 6 is FIG. 2 is a flow diagram illustrating an embodiment of the present invention. Engineering: Melting and refining furnace 2: Pulverized coal 3: Oxygen 4: Quicklime 5: Scrap
6... Heat storage chamber 7... Calcium carbide 11.12... Inert gas 13... Hydrocarbon gas

Claims (1)

【特許請求の範囲】[Claims] (1)スクラップを主たる鉄源とし、炉内に炭素質物質
と酸化性ガスを添加して該炭素質物質を少なくともCo
まで酸化せしめ、この時の酸化熱で鉄源を溶融すると共
に、溶融後の溶鉄中[C]≧2.5%(%:重量%の意
味、以下同じ)および溶鉄温度1500℃以上に調整維
持することにより別途添加されたクロム鉱石を溶融還元
することを特徴とする含クロム溶鉄の製造方法。
(1) Using scrap as the main source of iron, carbonaceous material and oxidizing gas are added to the furnace to convert the carbonaceous material into at least Co.
At the same time, the oxidation heat at this time melts the iron source, and the molten iron after melting is adjusted to [C] ≧ 2.5% (%: weight %, the same applies hereinafter) and the molten iron temperature is maintained at 1500°C or higher. A method for producing chromium-containing molten iron, which is characterized by melting and reducing chromium ore that is separately added.
JP18454286A 1986-08-05 1986-08-05 Manufacture of chromium-containing molten iron Pending JPS6342351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18454286A JPS6342351A (en) 1986-08-05 1986-08-05 Manufacture of chromium-containing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18454286A JPS6342351A (en) 1986-08-05 1986-08-05 Manufacture of chromium-containing molten iron

Publications (1)

Publication Number Publication Date
JPS6342351A true JPS6342351A (en) 1988-02-23

Family

ID=16155026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18454286A Pending JPS6342351A (en) 1986-08-05 1986-08-05 Manufacture of chromium-containing molten iron

Country Status (1)

Country Link
JP (1) JPS6342351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780756B2 (en) 2005-08-30 2010-08-24 E.I. Du Pont De Nemours And Company Ore reduction process and titanium oxide and iron metallization product
US8372179B2 (en) 2007-10-15 2013-02-12 E I Du Pont De Nemours And Company Ore reduction process using carbon based materials having a low sulfur content and titanium oxide and iron metallization product therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780756B2 (en) 2005-08-30 2010-08-24 E.I. Du Pont De Nemours And Company Ore reduction process and titanium oxide and iron metallization product
US8372179B2 (en) 2007-10-15 2013-02-12 E I Du Pont De Nemours And Company Ore reduction process using carbon based materials having a low sulfur content and titanium oxide and iron metallization product therefrom

Similar Documents

Publication Publication Date Title
JP2690733B2 (en) Steel manufacturing plant and method of operating the same
US4340420A (en) Method of manufacturing stainless steel
JPS6123245B2 (en)
US3947267A (en) Process for making stainless steel
JPS6342351A (en) Manufacture of chromium-containing molten iron
JPS59211519A (en) Production of low p-containing chromium steel
JPS63111108A (en) Production of molten iron containing chromium
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPH01215912A (en) Manufacture of molten chromium-containing pig iron
JPS60145307A (en) Reducing method of iron ore by melting
JPH0435529B2 (en)
JPS61272346A (en) Melting-reducing refining method for high manganese ferrous alloy
JPH06228623A (en) Steelmaking method having small energy consumption
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JP2837282B2 (en) Production method of chromium-containing hot metal
JPH01195211A (en) Method for melting and reducing iron oxide
JPS59107016A (en) Method for obtaining molten metal containing ni for manufacturing stainless steel
JPH01142009A (en) Steel making method
JPS61272345A (en) Manufacture of high manganese ferrous alloy by melting-reducing smelting
JPS609814A (en) Production of high chromium alloy unsaturated with carbon by melt reduction
JPS6123244B2 (en)
JPH03115519A (en) Production of stainless steel
JPS58100657A (en) Smelting method for molten high alloy
JPS59150060A (en) Method and device for producing stainless steel by melt reduction of chromium ore
JPS5891149A (en) Melting method of high chromium alloy