JPS61279608A - Production of high-chromium alloy by melt reduction - Google Patents

Production of high-chromium alloy by melt reduction

Info

Publication number
JPS61279608A
JPS61279608A JP12179485A JP12179485A JPS61279608A JP S61279608 A JPS61279608 A JP S61279608A JP 12179485 A JP12179485 A JP 12179485A JP 12179485 A JP12179485 A JP 12179485A JP S61279608 A JPS61279608 A JP S61279608A
Authority
JP
Japan
Prior art keywords
slag
oxygen
chromium
blowing
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12179485A
Other languages
Japanese (ja)
Other versions
JPH0421727B2 (en
Inventor
Takeyuki Hirata
平田 武行
Yujo Marukawa
雄浄 丸川
Masaharu Anezaki
姉崎 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12179485A priority Critical patent/JPS61279608A/en
Publication of JPS61279608A publication Critical patent/JPS61279608A/en
Publication of JPH0421727B2 publication Critical patent/JPH0421727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Abstract

PURPOSE:To execute chromium reduction with high efficiency by dividing a refining process to two processes and specifying the content of Cr in slag in the 1st period and the contents of Cr and MgO in the slag and slag temp. in the 2nd period. CONSTITUTION:A metallic bath 2 of molten iron is contained into a furnace body 1 and a Cr raw material, carboneous material and fluxing agent are introduced from a banker 8 into the furnace body in the 1st period of blowing. Oxygen is blown into the furnace body from a top blowing lance 4 and oxygen or the gas enriched with oxygen is blown therein from side blowing tuyeres 6, 6' to form the slag 3 on the metallic bath 2 and to adjust the content of Cr in the slag 3 to 5-20wt%. Only the carboneous material is introduced into the furnace from the banker 8 and the oxygen or the gas enriched with the oxygen or the inert gas is blown hterein from the tuyeres 6, 6' in the 2nd period. A stirring gas such as N2 is blown into the furnace from bottom blowing tuyeresd 9, 9' to adjust the content of Cr in the slag 3 to <=3wt% and the content of MgO to <=3wt%. The temp. of the parts a1, a2 of the slag 3 where the slag does not contact with the blowing oxygen is maintained higher by >=50 deg.C than the average temp. of the bath 2 in the 2nd period.

Description

【発明の詳細な説明】 11よpμ月造1 本発明は酸素上吹き炉を用いて溶融還元により高クロム
合金を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high chromium alloys by smelting reduction using an oxygen top-blown furnace.

より詳細には本発明は、酸素上吹きランスの外、金属浴
撹拌用ガス吹込羽口、スラグ中に酸素または酸素富化ガ
スおよびN2、CO2、COなどの不活性ガスを吹込む
ための羽口を備える精錬炉を用い、溶融還元により高ク
ロム合金を効率よく製造する方法に関する。
More specifically, the present invention includes a gas blowing tuyere for stirring a metal bath, a tuyere for blowing oxygen or an oxygen-enriched gas, and an inert gas such as N2, CO2, CO, etc. into the slag, outside the oxygen top-blowing lance. The present invention relates to a method for efficiently producing a high chromium alloy by smelting reduction using a refining furnace equipped with the above.

従来の技術 従来、ステンレス鋼等の高クロム鋼は、クロム鉱石を電
気炉においてコークスにより還元して高炭素フェロクロ
ムを製造し、これを原料として溶製されてきた。すなわ
ち、この方式は、Cr%が高い鉱石の還元が進行するた
めには高温度が必要であるため、これを過剰量の炭材(
コークス)の存在下で電気炉で行い、得られたフェロク
ロムを鉄源とともに再度溶解、脱炭して高クロム鋼を製
造する2段階の方法である。
BACKGROUND ART Conventionally, high chromium steel such as stainless steel has been produced by reducing chromium ore with coke in an electric furnace to produce high carbon ferrochrome, and using this as a raw material. In other words, in this method, high temperatures are required for the reduction of ores with high Cr% to proceed, so they are treated with an excessive amount of carbonaceous material (
This is a two-step method in which high chromium steel is produced by melting the obtained ferrochrome together with an iron source and decarburizing it again in an electric furnace in the presence of coke.

しかしながら、“間接製造法”と称するこの方式には、
クロム鉱石からステンレス鋼までの一貫の流れとして見
た場合、次のような問題点がある。
However, this method called “indirect manufacturing method” has
When viewed as a consistent flow from chrome ore to stainless steel, there are the following problems.

(1)  クロム酸化物の還元に要する多量のエネルギ
ーとして、高価な電力を用いている。
(1) Expensive electricity is used as the large amount of energy required to reduce chromium oxide.

(2)一般にフェロクロム製造工場と製鋼工場は離れて
いるため、高炭素フェロクロムは溶融物として製造され
ながら、いったん凝固させ、製鋼過程で再溶融するので
エネルギー損失が大きい。
(2) Since ferrochrome manufacturing plants and steelmaking plants are generally located far apart, high-carbon ferrochrome is produced as a molten product, but it is solidified once and then remelted during the steelmaking process, resulting in large energy losses.

(3)多量のスラグが[Cr%〕の高いフェムクロムと
接触した状態で精錬されるので、フラグ中の(Cr%〕
を低くすることがむずかしく、クロム損失が大きい。
(3) Since a large amount of slag is smelted in contact with femchrome with a high [Cr%], the (Cr%) in the flag is
It is difficult to lower the chromium loss, and the loss of chromium is large.

従って、高クロム鋼の溶製のコスト低減のためにはこれ
らの問題を解決することが必要であり、次のような対策
が考えられた。すなわち、(1)  クロム鉱石の還元
エネルギーとして、電力ではなく安価な一次エネルギー
を使用すること、(2)クロム鉱石からステンレス鋼ま
での一貫工程としてエネルギー損失が最小となるように
すること、 (3)  スラグを最小量とし、Cr回収率の高い反応
または反応環境とすること、 が必要である。
Therefore, in order to reduce the cost of melting high chromium steel, it is necessary to solve these problems, and the following measures have been considered. In other words, (1) use cheap primary energy rather than electricity as energy for reducing chromium ore; (2) minimize energy loss in the integrated process from chromium ore to stainless steel; (3) ) It is necessary to minimize the amount of slag and create a reaction or reaction environment with a high Cr recovery rate.

このような技術思想のもとに、例えば特開昭54−15
8320号に底吹き転炉によりクロム鉱石からクロム鋼
を製造する方法が提案されている。
Based on this technical idea, for example, Japanese Patent Application Laid-Open No. 54-15
No. 8320 proposes a method for producing chromium steel from chromium ore using a bottom-blown converter.

しかしながら、溶銑にクロム鉱石を直接投入した場合、
クロム鉱石の主成分たるMgO・Cr2O3などの難溶
性クロマイトを還元することは容易でない。効率よく還
元するためには、SiO,やCaO等を加え、MgO’
CrzOaのスラグ中への溶解を促進する必要がある(
公知文献 興梠ら、鉄と鋼70(1984) 3.11
4)。                  1゜この
ような問題を解決するために、特開昭60−9815号
公報には、溶湯温度を1650℃以下に保つとともに、
炉底より吹込まれるガス量を制御し、ス       
Iラグ組成および遊離炭材量を制限して溶融還元する方
法が開示されている。しかしながら、この方     
  1法ではクロムを還元するためにスラグの強撹拌を
行う必要があるが、この撹拌力をメタルの撹拌を介して
スラグに伝える点で、精錬操作上大きな難点がある。即
ち、メタル撹拌ガス量が極めて多いため、非02系ガス
ではメタル温度の低下を招きやすい。温度維持のため0
2を含ませると、メタル中のクロムの酸化を招くジレン
マがある。また、第2期終了後のスラグとメタルの分離
の際、吹込みガス量を減少しにくいため、スラグ中懸濁
粒鉄としてのメタルロスの増加を招く欠点がある。
However, when chromium ore is directly added to hot metal,
It is not easy to reduce poorly soluble chromite such as MgO.Cr2O3, which is the main component of chromium ore. For efficient reduction, add SiO, CaO, etc., and MgO'
It is necessary to promote the dissolution of CrzOa into the slag (
Publicly known literature Koroki et al., Tetsu to Hagane 70 (1984) 3.11
4). 1゜In order to solve such problems, Japanese Patent Application Laid-Open No. 60-9815 discloses that while keeping the molten metal temperature below 1650℃,
The amount of gas injected from the bottom of the furnace is controlled, and the
A method of melting and reducing by limiting the I-lag composition and the amount of free carbon material is disclosed. However, this person
Method 1 requires strong stirring of the slag in order to reduce chromium, but there is a major difficulty in refining operations in that this stirring force is transmitted to the slag via stirring of the metal. That is, since the amount of metal stirring gas is extremely large, non-02 gas tends to cause a drop in metal temperature. 0 to maintain temperature
There is a dilemma when 2 is included, which leads to oxidation of chromium in the metal. Furthermore, when separating the slag and metal after the second stage, it is difficult to reduce the amount of blown gas, resulting in an increase in metal loss as suspended particulate iron in the slag.

発Hの解決しようとする問題点 本発明の目的は、上記した従来技術の問題を解決するこ
とにあり、より詳細には炉内耐火物の過大な損耗を招く
ことなく、クロム還元を高収率で実現しうる溶融還元に
よる高クロム合金の製造方法を提供することにある。
Problems to be solved regarding H generation The purpose of the present invention is to solve the above-mentioned problems of the prior art, and more specifically, to reduce chromium in a high yield without causing excessive wear and tear on the refractories in the furnace. The object of the present invention is to provide a method for producing a high chromium alloy by smelting reduction that can be realized at a high rate.

問題点を解決する手段 本発明者等は上記した本発明の目的を達成するため種々
の実験、検討を重ねた結果、次の知見を得、本発明を完
成したものである。
Means for Solving the Problems As a result of various experiments and studies in order to achieve the above-mentioned object of the present invention, the present inventors obtained the following knowledge and completed the present invention.

■ 特開昭54−158320号および特開昭60−9
815号公報に開示の上底吹転炉を使用してクロム還元
を行っているが、本来還元性雰囲気であるべき金属浴中
に酸素を吹込むと還元されたクロムを再酸化してクロム
還元速度を遅くする。また、金属浴中に微粉炭を底吹き
するには専用の吹込み設備が必要であり、ランニングコ
ストも高くなる。
■ JP-A-54-158320 and JP-A-60-9
Chromium reduction is performed using a top-bottom blowing converter disclosed in Publication No. 815, but when oxygen is blown into the metal bath, which should originally be a reducing atmosphere, the reduced chromium is reoxidized and chromium is reduced. Slow down. In addition, special blowing equipment is required to bottom blow pulverized coal into a metal bath, which increases running costs.

■ 一方、溶融還元ではスラグ中でクロム還元を行ない
、金属浴は還元されて降下するクロムを回収する媒体と
して扱い、スラグおよび金属浴を別々に管理することが
反応効率、熱管理および炉内耐火物の原単位向上の点か
ら極めて好ましいことが解った。
■ On the other hand, in smelting reduction, chromium is reduced in slag, and the metal bath is treated as a medium to recover the chromium that falls due to reduction. Separate management of the slag and metal bath improves reaction efficiency, heat management, and fire resistance in the furnace. It was found that this is extremely preferable from the point of view of improving the basic unit of production.

■ すなわち、クロムの還元反応効率および回収率を向
上するためにスラグの化学組成、温度および還元雰囲気
を最適に調整し、一方、金属浴は温度を均一に保持する
程度の撹拌を行えば十分である。
■ In other words, in order to improve the chromium reduction reaction efficiency and recovery rate, the chemical composition, temperature, and reducing atmosphere of the slag should be optimally adjusted, while the metal bath should be sufficiently stirred to maintain a uniform temperature. be.

■ このような技術思想のもとにクロム鉱石投入口等の
熱源を多量に必要とする期間は酸素を上吹きすることは
もらろん、スラグ内にも酸素または酸素富化ガスを吹込
み、加熱およびスラグ撹拌の強化を図る。一方、炉底か
らは撹拌ガスを吹込み、金属浴の温度を均一とし、金属
浴の加熱はスラグとの接触による伝導加熱のみとする。
■ Based on this technical idea, during periods when a large amount of heat source is required, such as at the chromium ore inlet, oxygen is not top-blown, but oxygen or oxygen-enriched gas is also blown into the slag. Heating and slag stirring will be strengthened. On the other hand, stirring gas is blown from the bottom of the furnace to make the temperature of the metal bath uniform, and the metal bath is heated only by conduction heating through contact with the slag.

また、クロム鉱石の投入完了後等、熱源をあまり必要と
しない期間は、上吹酸素量を減少させ、発熱量と吸熱量
とのバランスをとるほかスラグ内へ吹込むガスの酸素濃
度を減らす。
In addition, during periods when a heat source is not required, such as after the completion of charging chromium ore, the amount of top-blown oxygen is reduced to maintain a balance between calorific value and heat absorption, and to reduce the oxygen concentration of the gas blown into the slag.

熱バランスが十分とれればスラグ内の還元雰囲気を一層
強化する目的でN2、CO2、COなどの不活性ガスを
用いる方がさらに望ましい。
If a sufficient heat balance is achieved, it is more desirable to use an inert gas such as N2, CO2, or CO in order to further strengthen the reducing atmosphere within the slag.

この際も、当然メタル内の撹拌に酸素は用いず、スラグ
からの伝導加熱に徹する。
At this time, of course, oxygen is not used to stir the metal, and heating is carried out through conduction from the slag.

以上の如き知見に基づき本発明は完成されたものであっ
て、本発明に従い、内部に金属浴を収容し、該金属浴面
下で金属浴を撹拌するためのガス吹込羽口と、該金属浴
面上で且つスラグ面下に位置し、該スラグ内に酸素また
は酸素富化ガスおよびN2、CO2、COなどの不活性
ガスを吹込む羽口と、酸素上吹きランスとを備える精錬
炉を用いる溶融還元によるCr分が39%以下のクロム
合金を製造する方法であって、クロム原料、炭材および
媒溶剤を投入する第1期と、炭材のみを投入し、クロム
を還元する第■期とに精錬過程を分け、第1期の末期に
おけるスラグ中のCr分を5〜20重量%、第■期終了
時に右けるスラグ中のCr分を3重量%未満とし、第■
期中のスラブ中のMg0分を30重童%未満に保持し、
スラグの吹込み酸素と接触しない部分の温度を金属浴の
平均温度よりも50t’以上高く保持することを特徴と
する溶融還元による高クロム合金の製造方法が提供され
る。
The present invention has been completed based on the above knowledge, and according to the present invention, a gas blowing tuyere for accommodating a metal bath inside and stirring the metal bath below the surface of the metal bath, and a A smelting furnace is provided with a tuyere located above the bath surface and below the slag surface for blowing oxygen or oxygen-enriched gas and an inert gas such as N2, CO2, CO into the slag, and an oxygen top blowing lance. This is a method for producing a chromium alloy with a Cr content of 39% or less by smelting reduction. The refining process is divided into two stages: the Cr content in the slag at the end of the first stage is 5 to 20% by weight, the Cr content in the slag at the end of the first stage is less than 3% by weight, and the Cr content in the slag at the end of the first stage is less than 3% by weight.
Maintain the Mg0 content in the slab during the period to less than 30%,
There is provided a method for producing a high chromium alloy by smelting reduction, characterized in that the temperature of the portion of the slag that does not come into contact with the blown oxygen is maintained at 50 t' or more higher than the average temperature of the metal bath.

添付の第1図および第2図を参照して本発明の詳細な説
明する。
The present invention will now be described in detail with reference to the accompanying FIGS. 1 and 2. FIG.

第1図は本発明の方法を実施するのに好適に用いられる
反応炉の断面概略図であり、第2図は第1図に示した精
錬炉内のスラグと吹込み酸素とが接触する領域を示す模
式図である。
FIG. 1 is a schematic cross-sectional view of a reactor suitably used to carry out the method of the present invention, and FIG. 2 is a region where the slag and blown oxygen in the refining furnace shown in FIG. 1 come into contact. FIG.

第1図は上底吹転炉を改造した精錬炉であるが、本発明
の方法を実施するのに用いる精錬炉は転炉型ではなくと
も、例えば電気炉を改造したものであってもよい。第1
図において、炉体1は例えばマグネシア−クロメートレ
ンガで内張すされたものであって、この炉体1の内部に
は金属浴2、例えば溶銑または溶鋼が収容されている。
Although FIG. 1 shows a refining furnace that is a modified top-bottom blowing converter, the refining furnace used to carry out the method of the present invention does not have to be a converter type, and may be, for example, a modified electric furnace. . 1st
In the figure, a furnace body 1 is lined with, for example, magnesia-chromate bricks, and a metal bath 2, for example hot metal or molten steel, is accommodated inside the furnace body 1.

金属浴2の上方にはスラグ3が形成され、スラグ3の上
面に酸素を吹き込むための上吹きランス4が炉体1の開
口部5の上方から垂下して設けられ、一方、スラグ3内
に酸素または酸素富化ガスおよびN2、CO2、COな
どの不活性ガスを吹込むための横吹き羽口6.6°が炉
体1の炉壁部に設けられている。
A slag 3 is formed above the metal bath 2 , and a top blowing lance 4 for blowing oxygen into the top surface of the slag 3 is provided hanging down from above the opening 5 of the furnace body 1 . A 6.6° horizontal blowing tuyere for blowing oxygen or oxygen-enriched gas and inert gas such as N2, CO2, CO, etc. is provided in the furnace wall of the furnace body 1.

さらに、炉体1の開口部5には排ガス回収フード7が着
脱可能に付設され、またクロム鉱石、還元ペレット等の
クロム原料、コークス等の炭材及び媒溶剤を炉内に添加
するバンカー8が設けられている。
Further, an exhaust gas recovery hood 7 is removably attached to the opening 5 of the furnace body 1, and a bunker 8 is provided for adding chromium raw materials such as chromium ore and reduced pellets, carbon materials such as coke, and solvents into the furnace. It is provided.

一方、炉体1の炉底部には金属浴2を撹拌するためにガ
スを吹込む羽口9.9′が設けられている。
On the other hand, the bottom of the furnace body 1 is provided with tuyeres 9 and 9' through which gas is blown into the metal bath 2 to stir it.

本発明の方法に従うと、バンカー8よりクロム原料、炭
材および媒溶材を切り出し、金属浴1上に投入し、上吹
きランス4より酸素を吹込みスラグ3を形成する。
According to the method of the present invention, a chromium raw material, a carbonaceous material, and a solvent material are cut out from a bunker 8, placed on a metal bath 1, and oxygen is blown into the metal bath 1 from a top blowing lance 4 to form a slag 3.

さらに、本発明の方法に従うと、吹錬の第1期には、バ
ンカー8からクロム原料、炭材、媒溶剤を投入し、上吹
きランス4から酸素を吹込み横吹き羽口6.6′から酸
素または酸素富化ガスを吹込んで、金属浴上にスラグ3
を形成する。
Further, according to the method of the present invention, in the first stage of blowing, the chromium raw material, carbon material, and solvent are charged from the bunker 8, oxygen is blown from the top blowing lance 4, and the side blowing tuyeres 6.6' The slag 3 is placed on the metal bath by blowing oxygen or oxygen-enriched gas from
form.

第1期が終了すると、第■期ではバンカー8からのクロ
ム原料、媒溶剤の投入を停止し、炭剤のみを投入し、横
吹き羽口6.6°から酸素または酸素富化ガスあるいは
N2、CO□、COなどの不活性ガスを、底吹き羽口9
.9°からは窒素等の撹拌ガスを吹込む。
After the first period is completed, in the second period, the injection of chromium raw material and solvent from the bunker 8 is stopped, only the carbonaceous agent is introduced, and oxygen or oxygen-enriched gas or N2 , CO□, CO, etc. through the bottom blowing tuyere 9
.. From 9° onwards, blow in a stirring gas such as nitrogen.

上吹きランス4及び横吹き羽口6.6°から吹込まれる
酸素と接触するスラグの部分を第1図に示すが、図示の
如く、上吹きランス4から吹込まれる酸素とスラグとの
接触部分a1と、横吹き羽口6.6゛から吹込まれる酸
素とスラグとの接触部分a2とはスラグ3の水平断面の
可成りの部分を占めている。また横吹き羽口6.6゛の
吹込み方向は炉体lの水平断面の半径方向とはずれて設
定されており、このためスラグが効果的に撹拌され、一
方上吹きランス4は高さ位置及び水平位置を変えること
により酸素のスラグとの接触部分al の面積が大とな
るように調節するのが好ましい。
Figure 1 shows the portion of the slag that comes into contact with oxygen blown from the top blow lance 4 and the side blow tuyere 6.6°. The portion a1 and the contact portion a2 between the slag and the oxygen blown from the side blowing tuyeres 6.6'' occupy a considerable portion of the horizontal cross section of the slag 3. In addition, the blowing direction of the side blowing tuyere 6.6゛ is set apart from the radial direction of the horizontal cross section of the furnace body l, so that the slag is effectively stirred, while the top blowing lance 4 is placed at a height position. It is preferable to adjust the area of the contact portion al of oxygen with the slag to be large by changing the horizontal position.

以上の如く、第■期に於いてはバンカー8から炭材のみ
を投入し上吹酸素量によって熱バランスをとると共に、
横吹羽口からの酸素富化ガスあるいは熱バランスさえ十
分ならばN2、CO2、CO等の不活性ガスによってス
ラグを強撹拌してスラグ中のクロム還元を行う。一方、
第■期に於いては炉底羽口9.9°から撹拌ガスが吹込
まれ、金属浴2は撹拌されると同時に、スラグ3との接
触により伝導加熱される。従って、金属浴2は酸素と接
触することなく、還元性雰囲気に保持され、スラグ中で
還元されたクロムを受け、また上記の如くスラグにより
加熱されるので流動性を保持できる。
As mentioned above, in the second stage, only carbonaceous material is injected from bunker 8, and the heat balance is maintained by the amount of top-blown oxygen.
If the oxygen-enriched gas from the side blowing tuyere or the heat balance is sufficient, the slag is strongly stirred with an inert gas such as N2, CO2, or CO to reduce chromium in the slag. on the other hand,
In the second period, stirring gas is blown into the furnace bottom through the 9.9° tuyere, and the metal bath 2 is stirred and at the same time conductively heated by contact with the slag 3. Therefore, the metal bath 2 is kept in a reducing atmosphere without coming into contact with oxygen, receives chromium reduced in the slag, and is heated by the slag as described above, so that fluidity can be maintained.

罫」 以下に本発明の方法に於ける各条件の限定理由について
説明する。
The reasons for limiting each condition in the method of the present invention will be explained below.

本発明の方法の製造対象となる高クロム合金はCr分が
39%以下である。Cr分が39%を越えるクロム合金
の場合にはスラグ中のCr分が増大し、スラグの流動性
が著しく低下するのでスラグ中のクロム還元を主とする
本発明の効率的な実施は期待しかたいからである。一方
、Cr分が5%以上のクロム合金の製造を本発明の方法
の対象とする。Cr分が5%未満のクロム合金の製造で
は、クロム鉱の使用量が少ないため、例えば溶銑による
クロム分の還元など従来方法で十分である。
The high chromium alloy to be manufactured by the method of the present invention has a Cr content of 39% or less. In the case of a chromium alloy with a Cr content of more than 39%, the Cr content in the slag increases and the fluidity of the slag significantly decreases, so the efficient implementation of the present invention, which mainly involves the reduction of chromium in the slag, cannot be expected. Because I want to. On the other hand, the method of the present invention is applied to the production of chromium alloys having a Cr content of 5% or more. In the production of chromium alloys with a Cr content of less than 5%, since the amount of chromium ore used is small, conventional methods such as reduction of the chromium content with hot metal are sufficient.

第1期末期におけるスラグ中のCr分は5〜20重量%
の範囲とする。5%未満では、スラグ中のクロム還元を
主とする本発明の方法ではクロム還元速度が遅く、一方
、20%を越えるとスラグの流動性が低下し、スラグを
さらに高温加熱することが必要となり、炉内耐火物の溶
損が著しく激しくなる。              
                 (さらに、本発明
の方法では、第■期におけるスラグ中のMgO分を30
%未満、好ましくは20〜30%の範囲とする。
The Cr content in the slag at the end of the first stage is 5 to 20% by weight.
The range shall be . If it is less than 5%, the rate of chromium reduction is slow in the method of the present invention, which mainly reduces chromium in the slag, while if it exceeds 20%, the fluidity of the slag decreases, making it necessary to heat the slag to an even higher temperature. , the corrosion of the refractories in the furnace becomes extremely severe.
(Furthermore, in the method of the present invention, the MgO content in the slag in the
%, preferably in the range of 20 to 30%.

IJgOはクロム鉱石からの成分であり、Crの反応過
程でMgO・(:r20aを形成し、クロム還元律速度
段階はMgO・Crz03の溶解である。クロムの還元
速度を速めるためにはMgOは低い方が好ましいが、一
方耐火物は通常MgOを主成分とするため、その保護の
面から、ある程度のスラグ中MgOが必要である。従っ
て、第■期に右けるスラグ中のMgOは20%以上であ
ることが好ましい。しかしながら、スラグ中のMgOが
30%を越えるとクロム還元反応速度が著しく低下する
ので、30%未満とした。
IJgO is a component from chromium ore, and forms MgO・(:r20a) in the reaction process of Cr, and the rate-limiting step for chromium reduction is the dissolution of MgO・Crz03.In order to accelerate the reduction rate of chromium, MgO must be low. However, since refractories usually have MgO as their main component, a certain amount of MgO in the slag is necessary from the standpoint of protection.Therefore, the MgO in the slag in stage Ⅰ should be 20% or more. However, if MgO in the slag exceeds 30%, the chromium reduction reaction rate will drop significantly, so it is set to less than 30%.

更に、本発明のクロム還元方法における第■期では、ス
ラグと金属浴の温度差を50℃以上となるように保持す
る。このスラグ温度とは上吹きランスや横吹き羽口から
吹込まれる酸素と接触していない部分におけるスラグの
温度である。上述した如く、本発明の方法は、クロム還
元をスラグ中で行い、金属浴中では行わないため、スラ
グのみをクロム還元反応に必要な温度まで加熱すればよ
く、[・ 485(“′”(7)?=sm*0)、sG旧ゝ顛6 
   [6°″′”(7)ut Ll”!!!?m“6
°““11度を1550〜1750 t:の範囲0温度
とする・155ば未       I満ではクロム還元
反応が進行せず、一方、1750℃       :も を越えると炉内耐火物の損傷が著しいからである。  
     ;実施例                
          ]以下、本発明を実施例により説
明するが、これらの実施例は本発明の単なる例示であり
、本発明       [の技術的範囲を何等制限する
ものではない。         ト第1図に示す反応
炉を用いて、クロム還元を行った。
Furthermore, in the second stage of the chromium reduction method of the present invention, the temperature difference between the slag and the metal bath is maintained at 50° C. or more. This slag temperature is the temperature of the slag in a portion that is not in contact with oxygen blown in from the top blowing lance or the side blowing tuyere. As mentioned above, in the method of the present invention, the chromium reduction is carried out in the slag and not in the metal bath, so it is only necessary to heat the slag to the temperature necessary for the chromium reduction reaction. 7)?=sm*0), sG old 6)
[6°″′”(7)ut Ll”!!!?m“6
°""11 degrees is defined as 0 temperature in the range of 1,550 to 1,750 t: Below 155 degrees, the chromium reduction reaction will not proceed, while if it exceeds 1,750 degrees Celsius, damage to the refractories in the furnace will be significant. It is.
;Example
] Hereinafter, the present invention will be explained with reference to Examples, but these Examples are merely illustrative of the present invention and do not limit the technical scope of the present invention in any way. Chromium reduction was carried out using the reactor shown in FIG.

使用した金属浴(溶銑)、クロム原料(クロム    
   (ベレット)、媒溶剤(焼成石灰、シリカ)及び
炭       ;け 材(コークス)の化学成分と使用量を第1表に示す。 
     [[。
The metal bath (hot metal) used, chromium raw material (chromium
Table 1 shows the chemical components and usage amounts of (bellet), solvent (calcined lime, silica), and charcoal (coke).
[[.

[゛ 第1表 タタシ、クロムペレット、焼成石灰、シリカは第1期中
にすべて投入し、コークスは第1期に3000kg、第
■期に500kg投入した。
[Table 1 Tatami, chrome pellets, calcined lime, and silica were all added during the first period, and 3000 kg of coke was added in the first period and 500 kg in the second period.

第1期の処理時間は50分で、ここでは、上吹きランス
からは酸素140ONm’ 、横吹き羽口からは02を
50ONm3、N2を30ONm3、底吹き羽口からは
N2を10100N吹き込んだ。
The treatment time in the first stage was 50 minutes, in which 140 ONm' of oxygen was blown from the top blowing lance, 50 ONm3 of 02 and 30 ONm3 of N2 were blown from the side blowing tuyere, and 10100 N of N2 was blown from the bottom blowing tuyere.

第1期の末期にえられたスラグ成分は第2表の通りであ
る。
The slag components obtained at the end of the first stage are shown in Table 2.

第2表(重量%) 第■期は30分を要し、上吹きランスからは酸素を40
ONm’、横吹き羽口からはN2を45ONm3、底吹
き羽口からはN2を5ONm3吹き込んだ。
Table 2 (wt%) Stage Ⅰ requires 30 minutes, and 40 minutes of oxygen is supplied from the top blowing lance.
ONm', 45ONm3 of N2 was blown from the side blowing tuyere, and 5ONm3 of N2 was blown from the bottom blowing tuyere.

第■期中のスラグ(酸素と接触しない部分)及び金属浴
の温度はそれぞれほぼ1650℃、1590℃であった
The temperatures of the slag (the part not in contact with oxygen) and the metal bath during the second period were approximately 1,650°C and 1,590°C, respectively.

第■期の終了のスラグ及び金属浴の化学組成をそれぞれ
第3表及び第4表に示す。
The chemical compositions of the slag and metal bath at the end of period (III) are shown in Tables 3 and 4, respectively.

第3表(重量%) 第4表(重量%) ↑ 発明の効果 以上に説明の如く本発明は、従来の溶融還元によるクロ
ム還元方法の常識を破り、精練炉内のスラグにのみ酸素
または酸素富化ガスおよびN2、CO2、GOなどの不
活性ガスを吹き込む横吹き羽口を設けてクロムの還元を
スラグ内でのみ行うものである。従って、金属浴は酸素
を吹き込まれず、常に還元性雰囲気に保持され、高効率
のクロム還元を実現できるとともに炉内耐火材の原単位
の低減を図ることができ、溶融還元による高クロム合金
の製造の工業化に大きく貢献するものである。
Table 3 (wt%) Table 4 (wt%) ↑ As explained above, the present invention breaks the common sense of the conventional chromium reduction method by smelting reduction, and only oxygen or oxygen is added to the slag in the smelting furnace. A horizontal blowing tuyere is provided to blow enriched gas and inert gas such as N2, CO2, GO, etc. to reduce chromium only within the slag. Therefore, the metal bath is not blown with oxygen and is always maintained in a reducing atmosphere, making it possible to achieve highly efficient chromium reduction and reduce the consumption of refractory materials in the furnace, making it possible to produce high chromium alloys by smelting reduction. This will greatly contribute to the industrialization of the world.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を実施するのに好適に用いられ
る精錬炉の概略断面図あり、 第2図は、第1図に示した精錬炉内のスラグの酸素と接
触する部分を示す模式図である。
FIG. 1 is a schematic cross-sectional view of a smelting furnace preferably used to carry out the method of the present invention, and FIG. 2 shows the portion of the slag in the smelting furnace shown in FIG. 1 that comes into contact with oxygen. It is a schematic diagram.

Claims (1)

【特許請求の範囲】[Claims] (1)内部に金属浴を収容し、該金属浴面下で金属浴を
撹拌するためのガス吹込羽口と、該金属浴面上で且つス
ラグ面下に位置し、該スラグ内に酸素または酸素富化ガ
スおよびN_2、CO_2、COなどの不活性ガスを吹
込む羽口と、酸素上吹きランスとを備える精錬炉を用い
る溶融還元によるCr分が39%以下のクロム合金を製
造する方法であって、クロム原料、炭材および媒溶剤を
投入する第 I 期と、炭材のみを投入し、クロムを還元
する第II期とに精錬過程を分け、第 I 期の末期におけ
るスラグ中のCr分を5〜20重量%、第II期終了時に
おけるスラグ中のCr分を3重量%未満とし、第II期中
のスラグ中のMgO分を30重量%未満に保持し、スラ
グの吹込み酸素と接触しない部分の温度を金属浴の平均
温度よりも50℃以上高く保持することを特徴とする溶
融還元による高クロム合金の製造方法。
(1) A metal bath is housed inside, and a gas blowing tuyere for stirring the metal bath below the metal bath surface, and a gas blowing tuyere located above the metal bath surface and below the slag surface to provide oxygen or oxygen in the slag. A method for producing a chromium alloy with a Cr content of 39% or less by smelting reduction using a smelting furnace equipped with a tuyere for blowing oxygen-enriched gas and an inert gas such as N_2, CO_2, CO, and an oxygen top-blowing lance. Therefore, the refining process is divided into Stage I, in which chromium raw materials, carbonaceous materials, and solvents are input, and Stage II, in which only carbonaceous materials are input and chromium is reduced. 5 to 20% by weight, the Cr content in the slag at the end of stage II is kept below 3% by weight, the MgO content in the slag during stage II is kept below 30% by weight, and the blown oxygen in the slag is A method for producing a high chromium alloy by smelting reduction, characterized in that the temperature of non-contact parts is maintained at 50°C or more higher than the average temperature of a metal bath.
JP12179485A 1985-06-05 1985-06-05 Production of high-chromium alloy by melt reduction Granted JPS61279608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12179485A JPS61279608A (en) 1985-06-05 1985-06-05 Production of high-chromium alloy by melt reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12179485A JPS61279608A (en) 1985-06-05 1985-06-05 Production of high-chromium alloy by melt reduction

Publications (2)

Publication Number Publication Date
JPS61279608A true JPS61279608A (en) 1986-12-10
JPH0421727B2 JPH0421727B2 (en) 1992-04-13

Family

ID=14820070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12179485A Granted JPS61279608A (en) 1985-06-05 1985-06-05 Production of high-chromium alloy by melt reduction

Country Status (1)

Country Link
JP (1) JPS61279608A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002478A1 (en) * 1987-09-10 1989-03-23 Nkk Corporation Process for producing molten stainless steel
US5039480A (en) * 1989-02-21 1991-08-13 Nkk Corporation Method for manufacturing molten metal containing Ni and Cr
JP2018095951A (en) * 2016-12-08 2018-06-21 ポスコPosco Reduction method for reducing agent during refining stainless steel
EP3757234A1 (en) * 2019-06-24 2020-12-30 SMS Group GmbH Converter and method for fresh molten metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002478A1 (en) * 1987-09-10 1989-03-23 Nkk Corporation Process for producing molten stainless steel
AU604974B2 (en) * 1987-09-10 1991-01-03 Nkk Corporation Process for producing molten stainless steel
US5039480A (en) * 1989-02-21 1991-08-13 Nkk Corporation Method for manufacturing molten metal containing Ni and Cr
JP2018095951A (en) * 2016-12-08 2018-06-21 ポスコPosco Reduction method for reducing agent during refining stainless steel
EP3757234A1 (en) * 2019-06-24 2020-12-30 SMS Group GmbH Converter and method for fresh molten metal

Also Published As

Publication number Publication date
JPH0421727B2 (en) 1992-04-13

Similar Documents

Publication Publication Date Title
RU2360008C2 (en) Method of chrome removing from metallurgical slags containing chrome
US3030201A (en) Method of producing ferro-nickel from nickel-containing silicate ores
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPS6250545B2 (en)
JP3063537B2 (en) Stainless steel manufacturing method
JP7447878B2 (en) Method for decarburizing molten Cr and method for producing Cr-containing steel
JPH0421729B2 (en)
JPH0435529B2 (en)
JPH0967608A (en) Production of stainless steel
JPH02221310A (en) Production of ni-and cr-containing molten metal
JPS61106744A (en) Melting and manufacturing method of stainless steel
JPS62116712A (en) Melting and smelting vessel having splash lance
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JPS6152208B2 (en)
JPH01215913A (en) Manufacture of stainless steel by smelting reduction
JPS61139614A (en) Manufacture of steel
JPS6342351A (en) Manufacture of chromium-containing molten iron
JPS59150060A (en) Method and device for producing stainless steel by melt reduction of chromium ore
JPH01195214A (en) Operation of iron bath type melting and reducing furnace
JPH02282410A (en) Smelting reduction method for ore
JPH01168806A (en) Production of chromium-contained molten iron
JPS609814A (en) Production of high chromium alloy unsaturated with carbon by melt reduction
JPH0437134B2 (en)
JPH01195211A (en) Method for melting and reducing iron oxide
JPH0610295B2 (en) Recovery method of valuable metal in molten slag during smelting reduction refining