JP2018095951A - Reduction method for reducing agent during refining stainless steel - Google Patents

Reduction method for reducing agent during refining stainless steel Download PDF

Info

Publication number
JP2018095951A
JP2018095951A JP2017143585A JP2017143585A JP2018095951A JP 2018095951 A JP2018095951 A JP 2018095951A JP 2017143585 A JP2017143585 A JP 2017143585A JP 2017143585 A JP2017143585 A JP 2017143585A JP 2018095951 A JP2018095951 A JP 2018095951A
Authority
JP
Japan
Prior art keywords
carbon
reducing agent
stainless steel
slag
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017143585A
Other languages
Japanese (ja)
Other versions
JP6435026B2 (en
Inventor
ミン オ 石
Min Oh Seok
ミン オ 石
仁 成 車
In-Sung Cha
仁 成 車
河 チョル 成
Ha-Chul Sung
河 チョル 成
恭 永 金
Gong Young Kim
恭 永 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2018095951A publication Critical patent/JP2018095951A/en
Application granted granted Critical
Publication of JP6435026B2 publication Critical patent/JP6435026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0025Adding carbon material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reduction method for reducing agent during refining stainless steel, which comprises introducing a carbon-containing composite material into a slag containing valuable metals to promote reduction during decarburization of stainless steel or after completion of decarburization in order to increase the reactivity with slag and to minimize the carbon pickup to the molten steel and efficiently recover the valuable metals in the slag without affecting the quality.SOLUTION: In the reduction method for reducing agent during refining stainless steel, a carbon-containing composite material that reacts with the slag while floating on the molten steel is charged prior to introduction of the reduction agent in a stainless steel refining step including a decarburization step of blowing out oxygen to remove carbon and a reduction step of reducing a valuable metal by charging a reducing agent. The carbon-containing composite material includes any one of MgO-C, CaO-MgO-C, AlO-C and SiO-C. Waste refractories are used in the case the carbon-containing composite material is MgO-C or CaO-MgO-C.SELECTED DRAWING: Figure 3

Description

本発明は、ステンレス鋼精錬時の還元剤低減方法に係り、より詳しくは、ステンレス鋼の脱炭酸精錬時に最終スラグ中の有価金属の回収のために投入する還元剤の量を画期的に低減すると共に酸化された有価金属を回収し得るステンレス鋼精錬時の還元剤低減方法に関する。   The present invention relates to a method for reducing a reducing agent during refining of stainless steel. More specifically, the amount of reducing agent introduced for recovering valuable metals in final slag during decarbonation refining of stainless steel is dramatically reduced. In addition, the present invention relates to a method for reducing a reducing agent during refining of stainless steel that can collect valuable metal that has been oxidized.

ステンレス鋼は、スクラップを電気炉で溶解して精錬した後鋳造する方式で生産され、前記溶解及び精錬過程では脱炭のために高圧の酸素を吹き込むが、吹き込まれる酸素により酸素親和力の強いクロムが酸化されて多量のクロム酸化物がスラグ内に流入する。
特に、スラグに含有されたクロム酸化物は、スラグの流動性を減少させて溶湯からスラグの分離を難しくするだけでなく、ステンレス鋼の核心成分であり且つ有価金属であるクロムの消費量を増加させてステンレス鋼の生産原価を上昇させ、重金属であるクロムによる環境汚染の問題もあるため、クロムの回収は非常に重要になる。
Stainless steel is produced by a method in which scrap is melted and refined in an electric furnace and then cast. In the melting and refining process, high-pressure oxygen is blown for decarburization. Oxidized and a large amount of chromium oxide flows into the slag.
In particular, chromium oxide contained in slag not only reduces the fluidity of slag and makes it difficult to separate slag from the molten metal, but also increases the consumption of chromium, which is a core component of stainless steel and a valuable metal. Therefore, the production cost of stainless steel is raised, and there is also a problem of environmental pollution due to chromium, which is a heavy metal, so that the recovery of chromium becomes very important.

一般的に、AODまたはVODの精錬炉工程でステンレス鋼を製造するとき、脱炭反応のために供給する酸素は、溶鋼中のクロムまたは鉄などと反応してスラグを作り、脱炭反応の終了後、これらクロム、鉄などの酸化物は、Al、SiまたはTiなどのような還元剤を添加してクロム、鉄などの有価金属を回収する。従来は、還元剤として高価のFeSiまたはAlを投入することで製造原価が上昇する問題があった。
また、高価な還元剤の代わりに、C系還元剤を使用する既存技術として、日本公開特許公報第1998−025507号に、クロム鉱石の溶融還元時に炭材を利用して還元する方法が開示されている。しかし、この技術は、炭材をそのまま使用することで脱炭終点の高融点スラグとの反応性が落ちて溶鋼中への炭素ピックアップが発生する問題があった。
In general, when stainless steel is produced in the AOD or VOD refining furnace process, the oxygen supplied for the decarburization reaction reacts with chromium or iron in the molten steel to form slag, and the decarburization reaction ends. Thereafter, these oxides such as chromium and iron collect a valuable metal such as chromium and iron by adding a reducing agent such as Al, Si or Ti. Conventionally, there has been a problem that the manufacturing cost is increased by introducing expensive FeSi or Al as a reducing agent.
In addition, as an existing technique using a C-based reducing agent instead of an expensive reducing agent, Japanese Published Patent Publication No. 1998-025507 discloses a method of reducing using a carbonaceous material at the time of smelting reduction of chromium ore. ing. However, this technique has a problem in that the carbon pick-up into the molten steel occurs because the reactivity with the high melting point slag at the decarburization end point is lowered by using the carbon material as it is.

特開1998−025507号JP 1998-025507

前記問題点を解決するための本発明が目的とするところは、スラグとの反応性を高めると共に溶鋼への炭素ピックアップを最小にして品質に影響を及ぼさないで効率的にスラグ中の有価金属を回収するために、ステンレス鋼の脱炭中、または脱炭終了後に有価金属を含有しているスラグに炭素を含有する複合材料を投入して還元を促進するステンレス鋼精錬時の還元剤低減方法を提供することである。   The purpose of the present invention to solve the above problems is to increase the reactivity with the slag and minimize the carbon pickup to the molten steel so that the valuable metals in the slag can be efficiently removed without affecting the quality. In order to recover, a reducing agent reduction method during refining of stainless steel that promotes reduction by introducing a composite material containing carbon into slag containing valuable metals during or after the decarburization of stainless steel Is to provide.

本発明のステンレス鋼精錬時の還元剤低減方法は、酸素を吹き込んで炭素を除去する脱炭段階及び還元剤を投入して有価金属を還元させる還元段階を含むステンレス鋼の精錬工程において、前記還元剤の投入の前に溶鋼上に浮遊しながらスラグと反応する炭素含有複合材料を投入することを特徴とする。   The method for reducing a reducing agent during refining of stainless steel according to the present invention includes a decarburization step of blowing oxygen to remove carbon and a refining step of stainless steel including a reduction step of reducing valuable metal by introducing a reducing agent. A carbon-containing composite material that reacts with slag while floating on the molten steel is charged before the agent is charged.

前記炭素含有複合材料は、MgO−C、CaO−MgO−C、Al−C及びSiO−Cのうちいずれか一つを含むことを特徴とする。 The carbon-containing composite material includes any one of MgO—C, CaO—MgO—C, Al 2 O 3 —C, and SiO 2 —C.

前記MgO−CまたはCaO−MgO−C炭素含有複合材料は、廃耐火物を利用する。   The MgO—C or CaO—MgO—C carbon-containing composite material uses waste refractory.

前記CaO−C、Al−CまたはSiO−C炭素含有複合材料は、前記スラグ内に存在する酸化物と炭素を混合成形したブリケット(briquette)を利用することを特徴とする。 The CaO—C, Al 2 O 3 —C or SiO 2 —C carbon-containing composite material is characterized by using a briquette obtained by mixing and molding an oxide and carbon present in the slag.

前記炭素含有複合材料は、前記脱炭段階の中間または完了時に投入することを特徴とする。   The carbon-containing composite material is introduced in the middle or at the completion of the decarburization step.

前記還元段階は、還元剤または蛍石を一部投入してArガスで底吹撹拌することを特徴とする。   The reducing step is characterized in that a reducing agent or fluorite is partially added and bottom-blown with Ar gas.

本発明によれば、高価の還元剤の使用量を減らすことで製造原価が節減できる。
また、炭素含有複合材料が有価金属と反応しCOガスを生成して大気中に消え去るため、スラグ量が低減できスラグ処理費用が節減でき、低減されたスラグ量により耐火物の侵食も低減できる。
また、既存還元剤の置換反応と異なり、SiOやAlが発生しないので、耐火物の侵食を抑制するための塩基度調節用追加の生石灰投入をする必要がなく、製造原価を一層節減できる。
さらに、炭素含有複合材料は、溶鋼中に浮遊して有価金属と反応することでスラグと反応性が高く、鋼中への炭素ピックアップが低減できる。
According to the present invention, the manufacturing cost can be reduced by reducing the amount of expensive reducing agent used.
In addition, since the carbon-containing composite material reacts with valuable metals to generate CO gas and disappears into the atmosphere, the amount of slag can be reduced and the slag treatment cost can be reduced, and the erosion of the refractory can be reduced by the reduced amount of slag.
Also, unlike the substitution reaction of the existing reducing agent, no SiO 2 or Al 2 O 3 is generated, so there is no need to add additional quick lime for adjusting the basicity in order to suppress erosion of the refractory, further increasing the manufacturing cost. You can save.
Further, the carbon-containing composite material is highly reactive with slag by floating in the molten steel and reacting with valuable metals, and carbon pickup into the steel can be reduced.

従来及び本発明の一実施例による有価金属の還元反応を比較して示した模式図である。It is the schematic diagram which showed the reduction reaction of the valuable metal by the past and one Example of this invention in comparison. 従来の脱炭及び還元段階を示した工程図である。It is process drawing which showed the conventional decarburization and reduction | restoration step. 本発明の一実施例による脱炭及び還元段階を示した工程図である。FIG. 3 is a process diagram illustrating a decarburization and reduction stage according to an embodiment of the present invention.

本発明のステンレス鋼精錬時の還元剤低減方法では、酸素を吹き込んで炭素を除去する脱炭段階及び還元剤を投入して有価金属を還元させる還元段階を含むステンレス鋼の精錬工程において、前記還元剤の投入の前に溶鋼上に浮遊しながらスラグと反応する炭素含有複合材料を投入する。   In the method for reducing a reducing agent during refining of stainless steel according to the present invention, in the refining process of stainless steel including a decarburizing step of removing oxygen by blowing oxygen and a reducing step of reducing a valuable metal by introducing a reducing agent, the reduction The carbon-containing composite material that reacts with the slag while floating on the molten steel is charged before the agent is charged.

以下、本発明の実施例について添付図面を参照しながら詳細に説明する。
本発明は、ステンレス鋼の脱炭中、あるいは脱炭終了後に有価金属を含有しているスラグに炭素を含有する物質を投入してクロム酸化物を含む有価金属の還元を促進する技術である。このとき、流動性を付与することができる蛍石(CaF)のような物質を投入するか、FeSi及び/またはAlを一部投入して液状率を高めることで反応性を高めることを特徴とする。炭素を含有する物質は、単純に炭素のみを含むものではなく、溶鋼上に浮遊しながらスラグと反応性を維持できるようにスラグ成分を一緒に含むことを特徴とする。
本発明の一実施例によるステンレス鋼精錬時の還元剤低減方法では、酸素を吹き込んで炭素を除去する脱炭段階及び還元剤を投入して有価金属を還元させる還元段階を含むステンレス鋼の精錬工程において、還元剤の投入前に炭素(C)含有複合材料を投入する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The present invention is a technique for promoting reduction of valuable metals including chromium oxide by introducing a carbon-containing substance into slag containing valuable metals during or after the decarburization of stainless steel. At this time, it is characterized by increasing the reactivity by introducing a substance such as fluorite (CaF 2 ) capable of imparting fluidity or by partially introducing FeSi and / or Al to increase the liquid ratio. And The carbon-containing material is not simply composed of carbon but is characterized by including a slag component together so that the reactivity with the slag can be maintained while floating on the molten steel.
In the method for reducing a reducing agent during refining of stainless steel according to an embodiment of the present invention, a refining process for stainless steel including a decarburization step for removing carbon by blowing oxygen and a reduction step for reducing valuable metals by introducing a reducing agent. The carbon (C) -containing composite material is charged before the reducing agent is charged.

図1は、従来及び本発明の一実施例による有価金属の還元反応を比較して示した模式図である。
図1に示す通り、従来はFeSiなどの高価な還元剤を投入することでスラグ中の有価金属であるCrを還元していたが、本発明では、炭素含有複合材料を投入することでスラグ中のCrを還元する。本発明による還元剤低減方法での還元反応は、有価金属であるCrと置換反応により還元することではなく、炭素含有複合材料の炭素(C)が酸素と反応して一酸化炭素(CO)ガスを生成し、前記ガスは、精錬炉の排気ガス集塵機により収去される。したがって、置換反応による反応生成物であるAlまたはSiOが多量発生せず、スラグ量が低減できる。スラグ量の低減によって、耐火物の侵食低減及び塩基度(CaO/SiOまたはCaO/Al)調節のための生石灰投入量の低減が期待できる。
FIG. 1 is a schematic view showing a comparison of a reduction reaction of a valuable metal according to one example of the prior art and the present invention.
As shown in FIG. 1, conventionally, an expensive reducing agent such as FeSi was introduced to reduce Cr 2 O 3 which is a valuable metal in the slag, but in the present invention, a carbon-containing composite material is introduced. To reduce Cr 2 O 3 in the slag. The reduction reaction in the reducing agent reducing method according to the present invention is not reduction by substitution reaction with Cr 2 O 3 which is a valuable metal, but carbon (C) of the carbon-containing composite material reacts with oxygen to produce carbon monoxide ( CO) gas is generated, and the gas is removed by an exhaust gas dust collector of the smelting furnace. Therefore, a large amount of Al 2 O 3 or SiO 2 which is a reaction product by the substitution reaction is not generated, and the amount of slag can be reduced. By reducing the amount of slag, it is possible to expect a reduction in erosion of the refractory and a reduction in the amount of quicklime for adjusting the basicity (CaO / SiO 2 or CaO / Al 2 O 3 ).

このとき、炭素含有複合材料が重要であるが、単純に炭素のみを含有する場合には、スラグとの反応性が低く、むしろ鋼中に容易に溶解して入るので、鋼中へのピックアップが発生する問題がある。これを抑制するため、炭素以外にスラグに溶解されて入り、且つ溶鋼上に浮遊しながらスラグ中のCrと持続的に反応する適正比重を有することが重要である。したがって、スラグ成分であるCaO、MgO、AlまたはSiOを炭素と一緒に使用することが好ましい。
炭素含有複合材料は、MgO−C、CaO−MgO−C、Al−C及びSiO−Cのうちいずれか一つを含む。MgO−CまたはCaO−MgO−Cは、廃耐火物を利用して経済的に使用でき、任意に、AlまたはSiOを炭素と一緒に成形してブリケット(briquette)の形態で使用する。これは、スラグ組成によって弾力的に決定できる。
At this time, the carbon-containing composite material is important. However, when only carbon is contained, the reactivity with the slag is low, and rather it is easily dissolved in the steel. There are problems that occur. In order to suppress this, it is important to have an appropriate specific gravity that dissolves and enters the slag other than carbon and continuously reacts with Cr 2 O 3 in the slag while floating on the molten steel. Therefore, it is preferable to use CaO, MgO, Al 2 O 3 or SiO 2 which is a slag component together with carbon.
The carbon-containing composite material includes any one of MgO—C, CaO—MgO—C, Al 2 O 3 —C, and SiO 2 —C. MgO-C or CaO-MgO-C is economical to use and use of waste refractory, optionally, used in the form of briquettes (briquette) by molding the Al 2 O 3 or SiO 2 together with the carbon To do. This can be elastically determined by the slag composition.

炭素含有複合材料は、精錬炉脱炭段階の中間または完了時に投入する。通常、脱炭の中間に発生するスラグは、Crにより固相を維持しているため、炭素含有複合材料を投入しても反応性が高くない。しかし、脱炭段階の終了時に、蛍石(CaF)やFeSiまたはAlなどの還元剤を一部投入する時点からCrなどの有価金属と炭素含有複合材料が反応するようになる。
図2及び図3は、従来の発明と本発明による脱炭及び還元段階を比較して示した工程図である。
従来の精錬工程の場合、溶銑装入後に酸素を吹錬しながら脱炭する。このとき、酸素吹錬によって発生するSiO成分による耐火物侵食を抑制するために、副原料として生石灰(CaO)及び軽焼ドロマイト(CaO・MgO)を投入する。以後、酸素吹錬により酸化された有価金属を還元するために還元剤(Al、FeSi)と蛍石(CaF)を投入し、底吹でArガスを吹き込んで撹拌する。一定時間後に溶鋼を出鋼する。
The carbon-containing composite material is introduced during or at the completion of the smelting furnace decarburization stage. Usually, the slag generated in the middle of decarburization maintains a solid phase with Cr 2 O 3, so that the reactivity is not high even when a carbon-containing composite material is introduced. However, at the end of the decarburization step, the valuable metal such as Cr 2 O 3 and the carbon-containing composite material react with each other from the time when a reducing agent such as fluorite (CaF 2 ), FeSi, or Al is partially added.
2 and 3 are process diagrams showing a comparison of the decarburization and reduction steps according to the conventional invention and the present invention.
In the case of the conventional refining process, decarburization is performed while oxygen is blown after the molten metal is charged. At this time, quick lime (CaO) and light calcined dolomite (CaO · MgO) are added as auxiliary materials in order to suppress refractory erosion by the SiO 2 component generated by oxygen blowing. Thereafter, a reducing agent (Al, FeSi) and fluorite (CaF 2 ) are introduced in order to reduce valuable metals oxidized by oxygen blowing, and Ar gas is blown into the bottom and stirred. The molten steel is produced after a certain time.

一方、本発明による精錬工程では、溶銑装入、酸素吹錬、脱炭及び副原料の投入に追加して脱炭段階で炭素含有複合材料を投入する。炭素含有複合材料は、脱炭段階の中間に投入するか、脱炭段階の終了時に投入してもよい。
以後、還元段階では、先に還元剤(Al、FeSi)と蛍石(CaF)を一部投入し、底吹でArガスを吹き込んで撹拌する。前記還元剤及び蛍石を一部投入することで、先に投入された炭素含有複合材料のスラグとの反応性を高めて且つ液状率が確保できる。一定時間炭素含有複合材料による還元反応が進行した後に、スラグ内に残存するCrを全量還元するために還元剤(Al、FeSi)を投入し、底吹でArガスを吹き込んで撹拌する。
On the other hand, in the refining process according to the present invention, the carbon-containing composite material is introduced at the decarburization stage in addition to the hot metal charging, oxygen blowing, decarburization, and the addition of auxiliary materials. The carbon-containing composite material may be introduced in the middle of the decarburization stage or at the end of the decarburization stage.
Thereafter, in the reduction stage, a reducing agent (Al, FeSi) and fluorite (CaF 2 ) are partly charged first, and Ar gas is blown into the bottom and stirred. By introducing a part of the reducing agent and fluorite, the reactivity with the slag of the carbon-containing composite material that has been previously added can be increased and a liquid ratio can be secured. After the reduction reaction with the carbon-containing composite material proceeds for a certain period of time, a reducing agent (Al, FeSi) is added to reduce the total amount of Cr 2 O 3 remaining in the slag, and Ar gas is blown into the bottom and stirred. .

以下、実施例を通じて本発明を具体的に説明する。
実施例
ステンレス溶銑を精錬炉に装入した後、酸素を吹錬して脱炭を実施した。脱炭終了時点で炭素含有複合材料を投入し、続いて、還元剤(Al、FeSi)を投入した。Crの還元反応の終了後、還元剤の投入量、精錬炉の耐火物溶損量及びクロム(Cr)の実収率を測定し、下記表1に示した。

Figure 2018095951
表1の結果から、炭素含有複合材料を使用しない比較例1及び比較例2に比べて、廃耐火物あるいは任意にスラグ成分と炭素を混合して製造した物質(Al−C)を投入した場合、既存の高価なFeSi及びAl還元剤の投入量が大幅に減少し、類似のクロム実収率を示すことが分かった。また、スラグ量が減少するによって耐火物溶損量も減少したことが分かった。 Hereinafter, the present invention will be described in detail through examples.
Example After putting stainless steel hot metal into a refining furnace, oxygen was blown and decarburization was performed. At the end of decarburization, a carbon-containing composite material was charged, and subsequently, a reducing agent (Al, FeSi) was charged. After completion of the reduction reaction of Cr 2 O 3, the amount of reducing agent added, the refractory refractory erosion amount of the smelting furnace, and the actual yield of chromium (Cr) were measured and are shown in Table 1 below.
Figure 2018095951
From the results of Table 1, compared to Comparative Example 1 and Comparative Example 2 in which no carbon-containing composite material is used, waste refractory or a substance (Al 2 O 3 -C) produced by optionally mixing slag components and carbon is used. It was found that when it was added, the amount of existing expensive FeSi and Al reducing agents was significantly reduced, and a similar chromium yield was exhibited. It was also found that the amount of refractory erosion decreased as the amount of slag decreased.

本発明のステンレス鋼精錬時の還元剤低減方法は、高速脱炭時に発生するCrの還元費用が節減でき、発生スラグ量を減らすことでスラグ埋め立て費用を節減し得る。 The reducing agent reduction method during refining of stainless steel according to the present invention can reduce the reduction cost of Cr 2 O 3 generated during high-speed decarburization, and can reduce the slag landfill cost by reducing the amount of generated slag.

以上、本発明に関する好ましい実施例を説明したが、本発明は前記実施形態に限定されるものではなく、本発明の属する技術分野を逸脱しない範囲での全ての変更が含まれる。
As mentioned above, although the preferable Example regarding this invention was described, this invention is not limited to the said embodiment, All the changes in the range which does not deviate from the technical field to which this invention belongs are included.

Claims (6)

酸素を吹き込んで炭素を除去する脱炭段階及び還元剤を投入して有価金属を還元させる還元段階を含むステンレス鋼の精錬工程において、
前記還元剤の投入の前に溶鋼上に浮遊しながらスラグと反応する炭素含有複合材料を投入することを特徴とするステンレス鋼精錬時の還元剤低減方法。
In the refining process of stainless steel, which includes a decarburization stage in which oxygen is blown to remove carbon and a reduction stage in which a reducing agent is added to reduce valuable metals,
A method for reducing a reducing agent during refining of stainless steel, wherein a carbon-containing composite material that reacts with slag while floating on the molten steel is introduced before the reducing agent is added.
前記炭素含有複合材料は、MgO−C、CaO−MgO−C、Al−C及びSiO−Cのうちいずれか一つを含むことを特徴とする請求項1に記載のステンレス鋼精錬時の還元剤低減方法。 2. The stainless steel refining according to claim 1, wherein the carbon-containing composite material includes any one of MgO—C, CaO—MgO—C, Al 2 O 3 —C, and SiO 2 —C. Reducing agent reduction method. 前記MgO−CまたはCaO−MgO−C炭素含有複合材料は、廃耐火物を利用することを特徴とする請求項2に記載のステンレス鋼精錬時の還元剤低減方法。 The method for reducing a reducing agent during refining of stainless steel according to claim 2, wherein the MgO-C or CaO-MgO-C carbon-containing composite material uses a waste refractory. 前記CaO−C、Al−CまたはSiO−C炭素含有複合材料は、前記スラグ内に存在する酸化物と炭素を混合成形したブリケット(briquette)を利用することを特徴とする請求項2に記載のステンレス鋼精錬時の還元剤低減方法。 The CaO-C, Al 2 O 3 -C , or SiO 2 -C carbon-containing composite material according to claim, characterized in that utilizing the briquettes (briquette) by mixing molded oxide and carbon present in said slag The reducing agent reduction method at the time of the stainless steel refining of 2. 前記炭素含有複合材料は、前記脱炭段階の中間または完了時に投入することを特徴とする請求項1に記載のステンレス鋼精錬時の還元剤低減方法。 The method for reducing a reducing agent during refining of stainless steel according to claim 1, wherein the carbon-containing composite material is introduced in the middle or at the completion of the decarburization step. 前記還元段階は、前記還元剤または蛍石(CaF)を一部投入してArガスで底吹撹拌することを特徴とする請求項1に記載のステンレス鋼精錬時の還元剤低減方法。
2. The method of reducing a reducing agent during refining of stainless steel according to claim 1, wherein in the reducing step, a part of the reducing agent or fluorite (CaF 2 ) is added and bottom blowing stirring is performed with Ar gas.
JP2017143585A 2016-12-08 2017-07-25 Reducing agent reduction method during refining of stainless steel Active JP6435026B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160166555A KR101821366B1 (en) 2016-12-08 2016-12-08 Method for decreasing the reducing agent during stainless steel refining in converter process
KR10-2016-0166555 2016-12-08

Publications (2)

Publication Number Publication Date
JP2018095951A true JP2018095951A (en) 2018-06-21
JP6435026B2 JP6435026B2 (en) 2018-12-05

Family

ID=61071203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143585A Active JP6435026B2 (en) 2016-12-08 2017-07-25 Reducing agent reduction method during refining of stainless steel

Country Status (3)

Country Link
JP (1) JP6435026B2 (en)
KR (1) KR101821366B1 (en)
CN (1) CN108165706B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164715A (en) * 1982-03-24 1983-09-29 Nippon Steel Corp Production of molten metal containing chromium
JPS61106744A (en) * 1984-10-31 1986-05-24 Kawasaki Steel Corp Melting and manufacturing method of stainless steel
JPS61279608A (en) * 1985-06-05 1986-12-10 Sumitomo Metal Ind Ltd Production of high-chromium alloy by melt reduction
JPS6220812A (en) * 1985-07-17 1987-01-29 Kobe Steel Ltd Production of chrome steel
JPH1025507A (en) * 1996-07-09 1998-01-27 Kawasaki Steel Corp Method for refining stainless steel
JPH1136007A (en) * 1997-07-17 1999-02-09 Kawasaki Steel Corp Method for discharging slag generated during stainless steel production and method for reutilizing discharged slag

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669437B2 (en) * 2006-05-11 2011-04-13 黒崎播磨株式会社 Converter slag forming sedative material using refractory waste
CN101338396B (en) * 2008-04-29 2010-09-08 永兴特种不锈钢股份有限公司 Method for smelting very-low carbon and high silicon stainless steel by AOD
CN101768656B (en) * 2008-12-31 2011-08-24 宝山钢铁股份有限公司 Method for refining ultra-low carbon ferritic stainless steel under vacuum

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164715A (en) * 1982-03-24 1983-09-29 Nippon Steel Corp Production of molten metal containing chromium
JPS61106744A (en) * 1984-10-31 1986-05-24 Kawasaki Steel Corp Melting and manufacturing method of stainless steel
JPS61279608A (en) * 1985-06-05 1986-12-10 Sumitomo Metal Ind Ltd Production of high-chromium alloy by melt reduction
JPS6220812A (en) * 1985-07-17 1987-01-29 Kobe Steel Ltd Production of chrome steel
JPH1025507A (en) * 1996-07-09 1998-01-27 Kawasaki Steel Corp Method for refining stainless steel
JPH1136007A (en) * 1997-07-17 1999-02-09 Kawasaki Steel Corp Method for discharging slag generated during stainless steel production and method for reutilizing discharged slag

Also Published As

Publication number Publication date
CN108165706B (en) 2020-02-28
CN108165706A (en) 2018-06-15
KR101821366B1 (en) 2018-01-23
JP6435026B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
CN100577822C (en) Method for extracting vanadium and removing phosphorus from vanadium-containing molten iron and steel-smelting technique using the same method
CN102264919A (en) Method for reclaiming iron and phosphorus from steelmaking slag
CN109022644B (en) Method for recovering slag desulfurization and dephosphorization in cooperation with ferrite in full-three-removal process
JP2012001797A (en) Method for recovering iron and phosphorus from steelmaking slag, and blast-furnace slag fine powder or blast-furnace slag cement, and resource raw material for phosphoric acid
JP4829225B2 (en) Chromium reduction method for metallurgical slag
CN111286577A (en) Smelting method of ultra-low titanium steel
JP2006206957A (en) Method for recovering manganese from slag produced when manufacturing manganese-based ferroalloy
JP2011094210A (en) Decarbonizing method for silicochromium
KR101189182B1 (en) Method for separating vanadium from vanadium-containing melt
JP2020180322A (en) Production method of molten steel using converter
JP6435026B2 (en) Reducing agent reduction method during refining of stainless steel
JP2947063B2 (en) Stainless steel manufacturing method
KR101189183B1 (en) Recovery method of valuable metals from spent petroleum catalysts
JPH10140227A (en) Production of high alloy steel by joining two molten steels
CN111074037A (en) Novel process for upgrading manganese-rich slag smelting product structure
JP3063537B2 (en) Stainless steel manufacturing method
JP4254412B2 (en) Hot metal desulfurization method
JP7311771B2 (en) Method of melting iron-containing materials
JPH0967608A (en) Production of stainless steel
KR101301439B1 (en) Method for decarburizing stainless steel in AOD
CN114231684A (en) High-efficiency molten iron pretreatment desulfurizer and preparation method thereof
JP2000328121A (en) Dephosphorization method of molten iron
CN106868248A (en) Reduce the stainless steel method of refining that the refractory body of converter corrodes
JPH09111328A (en) Method for recovering manganese and phosphorus from molten iron
JP2002060826A (en) Converter type pretreating method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181109

R150 Certificate of patent or registration of utility model

Ref document number: 6435026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250