JPH0437134B2 - - Google Patents
Info
- Publication number
- JPH0437134B2 JPH0437134B2 JP30126287A JP30126287A JPH0437134B2 JP H0437134 B2 JPH0437134 B2 JP H0437134B2 JP 30126287 A JP30126287 A JP 30126287A JP 30126287 A JP30126287 A JP 30126287A JP H0437134 B2 JPH0437134 B2 JP H0437134B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- dephosphorization
- hot metal
- slag
- manganese ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011572 manganese Substances 0.000 claims description 104
- 239000002893 slag Substances 0.000 claims description 67
- 229910052751 metal Inorganic materials 0.000 claims description 62
- 239000002184 metal Substances 0.000 claims description 62
- 229910052748 manganese Inorganic materials 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 48
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 47
- 238000005261 decarburization Methods 0.000 claims description 47
- 239000003795 chemical substances by application Substances 0.000 claims description 44
- 229910000831 Steel Inorganic materials 0.000 claims description 33
- 238000007670 refining Methods 0.000 claims description 33
- 239000010959 steel Substances 0.000 claims description 33
- 238000007664 blowing Methods 0.000 claims description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 13
- 238000009628 steelmaking Methods 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 8
- 229910001882 dioxygen Inorganic materials 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 46
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 40
- 239000000292 calcium oxide Substances 0.000 description 20
- 235000012255 calcium oxide Nutrition 0.000 description 20
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 15
- 239000010436 fluorite Substances 0.000 description 15
- 230000004907 flux Effects 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 9
- 239000011574 phosphorus Substances 0.000 description 9
- 229910000805 Pig iron Inorganic materials 0.000 description 8
- 239000000571 coke Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000006477 desulfuration reaction Methods 0.000 description 6
- 230000023556 desulfurization Effects 0.000 description 6
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 229910000616 Ferromanganese Inorganic materials 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010459 dolomite Substances 0.000 description 3
- 229910000514 dolomite Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 229910001341 Crude steel Inorganic materials 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
〈産業上の利用分野〉
この発明は、全製鋼工程を通じての造滓剤(生
石灰等)使用量を極力抑えつつ高能率脱燐を行う
と共に、精錬剤としてマンガン鉱石(鉄−マンガ
ン鉱石も含む)を利用し、かつそれを最大限に溶
融還元して転炉における精錬終点[Mn]濃度を
上昇させることにより、品質の良好な鋼をコスト
安く溶製する方法に関するものである。
〈背景技術〉
近年、低燐鋼をより一層低いコストで安定溶製
する手段の開発を目指して様々な研究がなされる
ようになつたが、このような状況の中で、最近で
は製鋼トータルコストのミニマム化や低燐鋼の安
定溶製に関し次のような溶銑の予備脱燐法、即
ち、
(a) トーピード内の溶銑に生石灰系のフラツクス
又はソーダ灰をインジエクシヨンすることで予
備脱燐を行う方法、
(b) 取鍋内の溶銑に生石灰系のフラツクスをイン
ジエクシヨンしたりブラステイング(吹き付
け)することで予備脱燐を行う方法、
(c) 高炉鋳床樋中の溶銑に生石灰系のフラツクス
をブラステイングして予備脱燐を行う方法、
が提案され、一部実用化もなされるようになつ
た。
しかし、前記(a)及び(b)の方法では脱燐を“脱燐
剤の浮上過程で進行する反応(トランジトリー・
リアクター・リアクシヨン)”に頼るため脱燐フ
ラツクスの利用効率が必ずしも良くなく、また処
理時間が長くかかる分だけ処理時の抜熱が大きく
なつて溶銑温度が低下すると言う問題があり、一
方、前記(c)の方法では脱燐処理が高炉から出銑さ
れた直後の溶銑に施されることから脱燐処理温度
が約1400℃と高く、従つて到達P含有量が十分に
満足できるレベルになり難いとの指摘がなされて
いた。
その上、溶銑脱燐フラツクスとして生石灰等を
用いる場合には、その後の転炉吹錬で使用される
生石灰等の量をも合わせて考えると、前記何れの
方法も、“予備脱燐工程を省いて転炉のみでの脱
燐を行う方法”に比べて必要造滓剤量(生石灰等
の量)の低減効果はそれほど顕著であるとは言え
なかつた。
そこで、上記状況を踏まえた本発明者等は、先
に、第3図で略示されるような「上下両吹き機能
を有した2基の転炉形式の炉を使用するととも
に、そのうちの一方を脱燐炉1、他方を脱炭炉2
とし、前記脱燐炉1内へ注入した溶銑3に前記脱
炭炉2で発生した転炉滓4を主成分とする精錬剤
の添加を行い、撹拌ガス吹き込みノズル5による
底吹きガス撹拌を実施しつつランス6より酸素ガ
スを上吹きして脱燐炉1の溶銑3の温度を1400℃
以下に保ちながら溶銑脱燐を行つた後、得られた
脱燐溶銑を脱炭炉2にて脱炭並びに仕上脱燐する
ことにより、極めて少ない量の造滓剤でもつて通
常燐レベルの鋼或いは低燐鋼を作業性良く低コス
トで製造し得るようにした製鋼方法」
を確立し、特願昭61−132517号として提案した。
なお、本発明者等が先に提案した上記発明は、
「全製鋼工程を通じての造滓剤の必要量はスラグ
とメタルとを向流的に接触させる“スラグ−メタ
ル向流精錬”によるときが最も少なくて良いが、
実際上は該向流精錬の完全な実現は殆ど不可能で
あり、現状において最も労少なく造滓剤の使用量
を抑え得る可能性を秘めた製鋼手段として挙げ得
るものは、脱燐工程を2段階に分割し、その下工
程で発生するスラグを上工程の脱燐剤として使用
する方法以外に見当たらない」との認識の下に、
該“転炉滓再利用による製鋼法”に関し、作業安
定性、脱燐効率或いは設備コスト等の面での問題
点解消を目指した研究による次の知見事項(A)〜
(F)、即ち、
(A) 溶銑の脱燐処理においては脱燐効率からみて
処理温度を出来るだけ低くする方が良いが、該
温度が余りに低くなり過ぎると次工程での不都
合を引き起こす上、処理後スラグへの粒鉄ロス
が多くなると言う問題が生じるので、該温度は
1200〜1400℃、好ましくは1300〜1350℃程度が
最も良好である。しかし、実際作業では脱燐剤
の添加そのものが処理温度を低下する大きな要
因となるので上記温度を保持するのは極めて困
難であるが、脱燐処理時に少量の酸素ガスを吹
き込むことによつて前記処理温度が安定かつ容
易に維持される、
(B) フラツクスの脱燐能を十分に発揮せしめて脱
燐能率を上げるには、上述のような処理温度の
調整もさることながら、脱燐平衡状態を達成す
るための十分な撹拌を欠くことができないが、
高温の溶銑を高能率脱燐するに十分満足できる
効率の良い撹拌を短時間に実現するためには、
処理容器底部から吹き込まれるガスによるガス
撹拌が最も好ましい、
(C) 加えて、効率の良い脱燐処理を行うためには
処理容器にスラグフオーミングのための十分な
フリーボード(湯面から容器上端までの距離)
が必要である、
(D) スラグによる処理容器耐火物の溶損を軽減し
て脱燐作業能率を上げるためには、塩基性ライ
ニングの使用が好ましい、
(E) 2段階脱燐工程を含む製鋼法において脱燐作
業能率を上げるためには処理容器からの排滓能
率を無視することができす、排滓が容易な処理
容器の使用を欠かせない、
(F) 高品質鋼を作業性良く量産するためには十分
な排ガス処理設備(集塵機)が必要である、
(G) これらの条件を考慮すると、溶銑脱燐処理容
器としては転炉形式の炉、それも炉底から撹拌
ガスを導入できる上下両吹き機能を有した複合
吹錬転炉が理想的であり、これを使用して前述
した“2段階脱燐工程を含む製鋼法”を実施す
ると、全製鋼工程を通じての造滓剤の使用量が
極く少なくても十分に効率の良い脱燐がなさ
れ、高品質鋼を作業能率良く量産できる、
を基に完成されたものである。
そして、この本発明者等が先に提案した方法
は、使用造滓剤量を極力抑えた低コスト操業でも
つて低燐鋼を安定して製造することができ、高品
質鋼を安価に提供する上で極めて有利であつた。
しかも、該提案は、転炉精錬(脱炭炉精錬)の
際にMn鉱石を投入し、精錬時の[Mn]ロスの
軽減や溶鋼[Mn]上昇を図ることをも示唆して
おり、高Mn鋼を溶製する場合でも非常に有益な
ものであつた。
特に、近年、厚板鋼材の品質安定化と低コスト
化要求が強まつてきたことに対処し、高Mn鋼を
できるだけ低い価格で溶製しようとの研究が盛ん
に行われており、これらのうちの最も有効な手段
として“転炉内の溶銑にマンガン鉱石を投入して
酸素吹錬を行うことで終点[Mn]濃度を上昇さ
せる転炉精錬方法”が挙げられるが、上記提案の
方法によつて造滓剤使用量の低減が可能となり、
このことによつてマンガン鉱石投入による溶鋼
[Mn]上昇をより効果的に行うことが可能とな
つたのである。
ただ、上記提案の方法では、マンガン鉱石の添
加を脱炭炉で行うことを主眼とし、これによつて
脱炭炉終点の[Mn]濃度を上昇させることが大
きな狙いであり、脱燐炉でのマンガン鉱石の添加
にはそれほど重きを置いたものではなく、〔転炉
滓+酸化鉄+蛍石〕を主成分とする脱燐精錬剤に
所望により添加する副次的なものでしかなかつ
た。そして、この時の脱炭炉でのマンガン鉱石添
加可能量は“脱燐銑の温度と溶銑[C]濃度”及
び“脱炭炉終点温度と溶鋼[C]濃度”によつて
決定されるものであり、従つて、実際には添加主
体となる脱炭炉でのマンガン鉱石添加可能量も
精々溶鉄トン当り15〜20Kg程度に過ぎず、脱炭炉
終点[Mn]濃度も0.7〜0.9重量%程度にしかな
らないものであつた。
これに対して、高めのMn含有量が要求される
製品の[Mn]濃度は1.5重量%程度とかなり高い
ものが多く、そのため足りない分はやはり高価な
フエロマンガン等の添加で補う必要があり、本発
明者等が先に提案した上記方法は、このような観
点からすれば今一歩物足りない点のあることがそ
の後の検討によつて強く認識されるに至つたので
ある。
即ち、精錬後のフエロマンガン添加量を減らし
て高Mn鋼の製造コストをより低減するためには
脱炭炉終点[Mn]濃度を更に上げることが必要
であるが、前述した理由によりマンガン鉱石の添
加・溶融還元可能量に限界があることから、単に
脱炭炉でのマンガン鉱石添加量を増やす策は採用
することができなかつた。
もつとも、溶銑予備処理による脱燐銑にマンガ
ン鉱石を投入しMn濃度の高い溶鋼を転炉精錬
(転炉を1基だけ使用した通常の精錬)する際の
終点[Mn]濃度をより一層向上させる手段とし
て、コークスのような炭材を添加するのが有効で
ある事実も知られてはいる。しかしながら、この
方法を先に提案した方法での脱炭精錬に適用した
としてもコークス使用による費用増を招くばかり
か、吹込み酸素費用も上昇し、吹錬時間の延長
(生産性の低下につながる)、コークスからの
[S]上昇、コークスからの脈石上昇、脈石を中
和するために添加する生石灰量の上昇、脈石及び
生石灰量上昇の結果としてのスラグ量増大による
マンガン鉱石還元歩留の低下等が生じ、或る程度
のコスト低減効果は認められるものの、コークス
を添加せずにマンガン鉱石を添加して溶融還元す
る場合と同じ[Mn]上昇量で比較すると、コー
クス使用時の便益が小さくなるのを否定できなか
つた。
〈問題点を解決するための手段〉
そこで、本発明者等は、上下両吹き機能を有し
た2基の転炉形式の炉のうちの一方を脱燐炉、他
方を脱炭炉として溶銑の精錬を行うと言う先に提
案した製鋼方法の利点を生かし、かつ前述した不
利を伴うコークスの添加手段によることなく脱炭
炉での終点[Mn]濃度を効果的に上昇させるこ
とが可能な、“能率が良くて製造コストの安い製
鋼方法”を見出すべく研究を続けたところ、更に
次のような知見が得られた。即ち、
(a) 先に提案した方法では脱燐炉でのマンガン鉱
石添加を必須とはしなかつたが、その脱燐炉で
もマンガン鉱石を必須の精錬剤として吹錬を行
うと、このマンガン鉱石も脱燐のための酸化剤
として十分に作用する上、脱燐炉で脱燐された
溶銑の[Mn]濃度を最大限に高めることが簡
単に可能となる。そして、この高[Mn]濃度
の脱燐銑に更にマンガン鉱石を含む造滓剤を投
入して脱炭炉で精錬すると、極力少ない造滓剤
使用量の下で低燐でかつ[Mn]濃度の高い鋼
をコスト安く高能率で安定溶製することが可能
となること、
(b) 一般に溶銑脱燐用の精錬剤(フラツクス)は
生石灰、酸化鉄及び蛍石を主成分としていて、
酸化鉄は不可欠な成分とされており、本発明者
等が先に提案した方法においても「スラグ中の
FeOを確保し脱燐を促進するため、脱燐炉で添
加する精錬剤(脱燐剤)中に酸化鉄を含ませる
ことが不可欠である」と認識されていた(従つ
て脱燐剤は〔転炉滓+酸化鉄+蛍石〕を主成分
とするものが良好とされていた)が、この場
合、脱燐剤として酸化鉄を含まない〔転炉滓+
マンガン鉱石〕、或いはこれに蛍石を配合した
ものを使用してもマンガン鉱石が酸化鉄の代替
剤として有効に作用し良好な脱燐が進行するこ
と、
(c) 従つて、転炉滓以外の必須成分であつた酸化
鉄に代えてマンガン鉱石を含む精錬剤を脱燐炉
での脱燐剤として使用すれば、酸化鉄添加に要
する費用が削減された上で十分に良好な脱燐を
進行させることができ(勿論、マンガン鉱石は
脱燐促進作用に加え、それ自身が[C]等で還
元されて脱燐銑の[Mn]をも効果的に上昇さ
せる作用を発揮する)、この点から製造コスト
低減効果も確保されること、
(d) これらの結果、その後の脱炭炉精錬での終点
[Mn]がより高くなり(脱炭炉のみでマンガ
ン鉱石添加吹錬を行う場合の限界値よりも!?か
に高い終点[Mn]濃度が得られる)。マンガ
ン合金鉄の顕著な節減が可能となること。
この発明は、上記知見に基づいてなされたもの
であり、
「第1図に示される如く、上下両吹き機能を有
した2基の転炉形式の炉のうちの一方を脱燐炉
1、他方を脱炭炉2として溶銑の精錬を行う製鋼
方法において、前記脱燐炉1内へ注入した溶銑3
に前記脱炭炉2で発生した転炉滓4及びマンガン
鉱石(ここでは“鉄−マンガン鉱石”を含めて
“マンガン鉱石”と総称する)を主成分とする精
錬剤を添加し、撹拌ガス吹込みノズル5による底
吹きガス撹拌を行いつつ、ランス6より酸素ガス
を上吹きして溶銑温度を1400℃以下に保ちながら
溶銑脱燐と溶銑[Mn]の上昇を行う工程と、得
られた脱燐溶銑に通常造滓剤とマンガン鉱石とを
投入して脱炭炉2で精錬し、溶銑の脱炭と溶鉄の
精錬終点[Mn]の上昇を図る工程とを含ませる
ことにより、極めて少ない量の造滓剤でもつて低
い燐レベルで、しかも高い[Mn]含有量の高品
質鋼を作業性良く低コストで製造し得るようにし
た点」
に特徴を有するものである。
脱燐炉での処理温度を1400℃以下に調整する理
由は、溶銑処理温度がこれよりも高くなると脱炭
ばかりが進行してスラグ中の酸化剤量が低くなる
と共に、熱力学的にも1400℃以上では脱燐が悪化
することにある。
しかし、余りに低温になるとスラグへの粒鉄ロ
スが増加するほか、その後の脱炭炉にて溶鋼中の
[Mn]濃度を高める上でも問題がある。
即ち、マンガン鉱石の溶融還元は
MnO2+2[C]→[Mn]+2CO
なる吸熱反応で進行する(マンガン鉱石の冷却能
はスクラツプの約2.5倍もある)。従つて、マンガ
ン鉱石添加可能量(溶融還元可能量)は溶銑の温
度及び[C]濃度が高いほど多くなる。そのた
め、脱燐処理は溶銑の温度及び[C]濃度が高い
状態で完了することが、脱炭炉におけるマンガン
鉱石添加可能量を上昇させ、脱炭炉での終点
[Mn]濃度を高める上で好ましい。ここで、温
度と[C]濃度が高い状態で脱燐処理を完了し易
いように、脱P炉に注湯する溶銑温度及び溶銑
[C]濃度をできるだけ高くすることが先ず考え
られるが、高炉の出銑温度や高炉銑の[C]濃度
を大きく変えることは技術的にもコスト的にも問
題がある。従つて、脱燐処理時に溶銑の温度と
[C]濃度(即ち溶銑の顕熱と潜熱の合計)をで
きるだけ下げないことが重要である。
従つて、脱燐炉での処理温度は1400℃以下の領
域の中で可能な限り高めに維持するのが良い。
このような処理温度の維持は、上吹きランスか
らの酸素ガス吹き込み或いは炉底羽口からの酸素
ガス吹き込みの併用によつて行われる。つまり、
上記脱燐炉での酸素ガス吹き込みは、脱燐処理温
度を保証するために行われるのである。従つて、
ここでの上吹き酸素ランスは通常の転炉ランスで
も良いが、脱燐用に新作した小流量ランスであつ
ても良い。そして、使用酸素ガス量は処理前の溶
銑温度や珪素含有量、転炉滓の温度、脱燐炉の温
もり具合、目的とする処理溶銑温度等によつて決
定されるが、概ね20Nm3/t以下で良く、通常は
5〜10Nm3/tが効果的である。因に、このとき
の脱炭量は0.5%程度である。
前記「上下両吹き機能を有した転炉形式の炉」
としては現在使われている“上下吹き複合吹錬転
炉”が最も好ましいが、特に脱燐炉については、
精錬条件が脱炭炉よりもマイルドであるため炉自
体を更に小さくしても良いので、脱燐専用に新設
してもコスト的にそれほどの影響はない。
脱燐炉での精錬剤(脱燐剤)としては、脱炭炉
で発生した転炉滓とマンガン鉱石を主成分とする
ものが使用されるが、例えば、
転炉滓:40〜80重量%、
マンガン鉱石:10〜60重量%、
蛍石:0〜30重量%
の配合組成のものが推奨される。
なお、マンガン鉱石は酸化鉄に比して滓化の点
で幾分不利であるため、蛍石は積極的に添加する
のが良く、それも酸化鉄を配合する場合よりも多
めとするのが望ましい。
この精錬剤は、勿論上記組成に限定されるわけ
ではなく、付加的に生石灰を配合しても良いし、
CaCl2,Na2O・SiO2,Na2CO3等を加えても良
い。また、マンガン鉱石の代わりに、前述したよ
うに鉄−マンガン鉱石を用いても良い。そして、
転炉滓以外のこれら脱燐剤原料は滓化性の面から
小さい粒径程好ましいが、一般に使われている程
度のものであれば何ら差し支えない。
ところで、既に述べた如く、本発明者等が先に
提案した方法では、脱燐炉での脱燐剤は〔転炉滓
+酸化鉄+蛍石〕が重要な成分であり、このうち
転炉滓は言うに及ばないが、酸化鉄も脱燐率を確
保するために不可欠なものと考えられていた。
しかし、本発明者等は、この酸化剤として用い
る酸化鉄の代わりにマンガン鉱石を用いる方法を
検討し、この場合に酸化鉄を用いた場合と同様の
脱燐率が得られると共に、処理後の溶鉄の温度や
[C]濃度も酸化鉄を用いた場合と同レベルの状
態に維持しつつ[Mn]濃度の上昇を達成できる
ことを突き止めて本発明を完成するに至つたわけ
である。しかし、従来の生石灰系溶銑脱燐剤(生
石灰+酸化鉄+蛍石)を使用する場合に酸化鉄の
代わりに上述の如くマンガン鉱石を配合しても、
フラツクスの滓化が非常に悪く、かつ脱燐に必要
なスラグ中の酸化力が確保できないので良好な脱
燐は進行しない。ところが、転炉滓系の脱燐剤
(転炉滓+酸化鉄+蛍石)のような場合、構成成
分である“酸化鉄”を“マンガン鉱石”に代えて
も良好な結果が得られる理由は、「転炉滓は一度
滓化したものであるためフラツクスの滓化が良好
であること」及び「転炉滓中に酸化鉄が10〜25重
量%程度含まれているため、これとマンガン鉱石
の酸化力が合わさつて脱燐に必要な酸化力が確保
できること」によると考えられる。
マンガン鉱石の溶融還元(自身は酸化剤として
作用する)量は、添加量によつても異なるが、例
えば投入量10Kg/tで[Mn]増加量は0.3〜0.4
%程度である。
この場合、マンガン鉱石の添加歩留を高くする
ためにはスラグ塩基度を2.5以上にした方が有利
である。その理由を第2図を用いて説明する。
第2図は“脱燐炉のスラグ中(Mn)〔実際は
MnOの形態であるMn分を重量%で表わしたも
の〕と溶銑[Mn]との比(Mn分配比)”と“ス
ラグ塩基度”との関係を示したものであるが、こ
の第2図からも明らかなように、塩基度が高くな
るほど(Mn)/[Mn]は小さくなることが分
かる。つまり、スラグ塩基度が高いほど酸化マン
ガンは還元され易くなり、スラグ塩基度が2.5以
上の領域では、この傾向が最も強くなつて一定化
することを確認できる(なお、スラグ塩基度が高
くなるほど脱硫も進行し易くなり、CaO/SiO2
が3の場合には脱硫率が60%程度になることも確
認済みである)。
スラグの塩基度を高くするためには、脱炭炉の
転炉滓量を多くする方法があるが、転炉滓と共に
生石灰を補助的に添加しても良い。
脱燐炉で使用される精錬剤(脱燐剤)の量は溶
製する鋼の[P]レベルにより決定されるが、通
常は30〜60Kg/t程度で良い。
さて、脱燐炉で使用される精錬剤の主成分たる
転炉滓としては、脱炭炉で発生した溶融状態のも
のが熱経済的にも脱燐フラツクスの滓化性の面か
らも好ましいが(このように溶融状態のものを用
いる場合には耐火物を内張りした鍋を介して脱燐
炉に注滓される)、取り扱いの容易さ等を考慮し
て脱炭炉で得られたものを一旦冷却凝固させ、粒
状又は塊状に破砕してから用いても良い(なお、
この時も熱的な面からスラグの温度は高い程良
い)。ただ、この場合、脱燐炉での滓化性向上の
ために粒径は小さい程良好であるが、転炉滓は本
来滓化性に富んでいることもあつて粒径が100mm
を下回る程度でも格別な不都合を来たすことがな
いし、これより大きくても使用可能である。
そして、使用される転炉滓は、タイミングとし
ては前回チヤージのものが良いが、それ以前に脱
炭炉から出たものや他の工場の脱炭炉で発生した
ものでも良いことは言うまでもない。
炉底から吹き込む撹拌ガスとしてはAr,CO2,
CO,N2,O2、空気等の何れであつても良い。そ
して、脱燐炉の炉底ガス撹拌の程度は通常の上下
両吹き複合吹錬におけると同程度(0.03〜0.2N
m3/t)で良いが、脱燐速度の工場を狙つてこれ
よりも更に多くして良いことは勿論である。
以上のような条件で脱燐処理を行うと、通常、
20分以内で所望の高[Mn]濃度の脱燐銑を得る
ことができる。
そして、このようにして脱燐炉で[Mn]を上
昇させた脱燐銑を脱C炉で吹錬する場合、添加マ
ンガン鉱石量を増加させるためにコークス等の炭
材を熱源として添加しても良いことは言うまでも
ない。
脱炭炉での吹錬は、基本的には通常の“炉外で
脱燐された溶銑”を吹錬する場合と同じである
が、終点での溶鋼の[Mn]濃度を向上させるた
め、生石灰やドロマイトを中心とする造滓剤の他
にマンガン鉱石が添加される。
ところで、この発明に係る製鋼法を実施する場
合には、出来れば適用される溶銑の事前脱硫処理
を行うのが良い。その第一の理由として該製鋼法
では脱硫の進行が極めて鈍いことが上げられる
が、他方では、事前脱硫していない溶銑を用いた
場合には転炉スラグ中のS含有量が上昇し、次の
チヤージにおける溶鋼S含有量を高めることも懸
念されるからである。なお、前記事前脱硫は通常
行われている溶銑脱硫方法の何れによつても良
い。
更に、この方法に適用される原料溶銑のSi含有
量も低い程好ましい。なぜなら、溶銑中のSi含有
量が多くなるほど前記脱燐炉でのスラグ塩基度が
低下して脱燐能が落ち、全体での生石灰等の使用
量が増加するためである。それ故、溶銑のSi含有
量は出来れば0.3%以下、好ましくは0.2以下に調
整しておくのが良策である。なお、脱炭炉の条件
から処理後の溶銑温度を少しでも高くしたいよう
な場合、溶銑のSi含有量は0.2%程度の方が有利
なこともあり、工場のローカル条件によつて決定
すべきである。
次に、この発明を比較例と対比した実施例によ
り更に具体的に説明する。
〈実施例〉
比較例
トーピード内で脱硫・脱珪処理した第1表の上
段に示される如き成分の溶銑250トンを脱燐炉と
して使用する上下両吹き複合吹錬転炉に注銑し、
これに同様形式の脱炭炉で発生した転炉滓を冷
却・凝固して30mm以下の粒径に破砕したもの25
Kg/tと、同様の粒径を持つ鉄鉱石12Kg/t並び
に蛍石8Kg/tとを混合状態で添加して13分間の
脱燐処理を行つた。
なお、使用した脱燐炉並びに脱炭炉は、何れも
炉底よりガス吹込み撹拌が可能な250トン上下
<Industrial Application Field> This invention performs highly efficient dephosphorization while minimizing the amount of slag-forming agents (quicklime, etc.) used throughout the entire steelmaking process, and uses manganese ore (including iron-manganese ore) as a refining agent. The present invention relates to a method for producing high-quality steel at a low cost by utilizing Mn and maximally melting and reducing it to increase the refining end point [Mn] concentration in a converter. <Background technology> In recent years, various studies have been conducted with the aim of developing means to stably melt low-phosphorus steel at even lower costs. Regarding the minimization of phosphorus and the stable production of low phosphorus steel, the following preliminary dephosphorization method of hot metal is used: (a) Preliminary dephosphorization is performed by injecting quicklime-based flux or soda ash into the hot metal in a torpedo. (b) A method in which preliminary dephosphorization is performed by injecting or blasting a quicklime-based flux onto the hot metal in the ladle; (c) A method in which quicklime-based flux is applied to the hot metal in the blast furnace casting bed trough. A method of preliminary dephosphorization by blasting has been proposed, and some of it has been put into practical use. However, in methods (a) and (b) above, dephosphorization is a “transitary reaction” that progresses during the floating process of the dephosphorizing agent.
Because the dephosphorization flux is not always efficiently used because it relies on the ``reactor reaction'', there is also the problem that the longer the treatment time, the more heat is removed during the treatment, which lowers the hot metal temperature. In method c), the dephosphorization treatment is performed on hot metal immediately after being tapped from the blast furnace, so the dephosphorization treatment temperature is as high as approximately 1400℃, and therefore it is difficult to reach a sufficiently satisfactory level of P content. Furthermore, when using quicklime etc. as flux for hot metal dephosphorization, considering the amount of quicklime etc. used in the subsequent converter blowing, both of the above methods Compared to the "method of omitting the preliminary dephosphorization step and performing dephosphorization only in a converter," the effect of reducing the amount of required slag forming agent (amount of quicklime, etc.) could not be said to be that remarkable. Based on the above situation, the present inventors first used two converter-type furnaces with both upper and lower blowing functions as schematically shown in Fig. 3, and one of them was used for dephosphorization. Furnace 1, the other is decarburization furnace 2
Then, a refining agent mainly composed of converter slag 4 generated in the decarburization furnace 2 is added to the hot metal 3 injected into the dephosphorization furnace 1, and bottom-blown gas is stirred by the stirring gas injection nozzle 5. At the same time, oxygen gas is blown upward from lance 6 to raise the temperature of hot metal 3 in dephosphorization furnace 1 to 1400℃.
After dephosphorizing the hot metal while maintaining the following conditions, the obtained dephosphorized hot metal is decarburized and final dephosphorized in the decarburization furnace 2 to produce steel with a normal phosphorus level or He established a "steel manufacturing method that enables low-phosphorus steel to be manufactured with good workability and at low cost," and proposed it as patent application No. 132517-1981. The above invention previously proposed by the present inventors is
``The amount of slag forming agent required throughout the entire steelmaking process is minimal when ``slag-metal countercurrent refining'' is used, which brings slag and metal into countercurrent contact.
In reality, it is almost impossible to fully realize countercurrent refining, and the only steelmaking method that has the potential to reduce the amount of slag used with the least amount of labor is the two-step dephosphorization process. Recognizing that there is no other way than to divide the process into stages and use the slag generated in the lower process as a dephosphorizing agent in the upper process,
Regarding the "steel manufacturing method by reusing converter slag," the following findings (A) are based on research aimed at solving problems in terms of work stability, dephosphorization efficiency, equipment cost, etc.
(F), that is, (A) In the dephosphorization treatment of hot metal, it is better to keep the treatment temperature as low as possible from the viewpoint of dephosphorization efficiency, but if the temperature becomes too low, it will cause problems in the next step, Since the problem of increased granular iron loss to the slag after treatment occurs, the temperature is
The best temperature is about 1200-1400°C, preferably about 1300-1350°C. However, in actual work, it is extremely difficult to maintain the above temperature because the addition of the dephosphorizing agent itself becomes a major factor in lowering the processing temperature. However, by blowing a small amount of oxygen gas during the dephosphorization process, (B) In order to fully utilize the dephosphorizing ability of the flux and increase the dephosphorization efficiency, it is necessary to maintain the dephosphorization equilibrium state in addition to adjusting the treatment temperature as described above. Although adequate agitation is essential to achieve
In order to achieve sufficient and efficient stirring in a short time for highly efficient dephosphorization of high-temperature hot metal,
Gas agitation using gas injected from the bottom of the processing vessel is most preferable. distance)
(D) In order to reduce erosion of the processing vessel refractories caused by slag and increase dephosphorization work efficiency, it is preferable to use a basic lining. (E) Steel manufacturing including a two-step dephosphorization process In order to increase the efficiency of dephosphorization in the method, the efficiency of removing slag from the processing container can be ignored, and it is essential to use a processing container that allows easy removal of slag. Sufficient exhaust gas treatment equipment (dust collector) is required for mass production. (G) Taking these conditions into consideration, a converter-type furnace is recommended as the hot metal dephosphorization treatment vessel, and stirring gas is introduced from the bottom of the furnace. A composite blowing converter with both upper and lower blowing functions is ideal, and if this is used to carry out the above-mentioned "steel manufacturing method including a two-stage dephosphorization process," the slag-forming agent will be removed throughout the entire steel manufacturing process. It was completed based on the following principles: Even if the amount used is extremely small, sufficient dephosphorization can be performed and high-quality steel can be mass-produced with high efficiency. The method previously proposed by the present inventors can stably produce low-phosphorus steel with low-cost operation that minimizes the amount of slag-forming agent used, and provides high-quality steel at a low price. It was extremely advantageous. Moreover, the proposal also suggests that Mn ore be input during converter refining (decarburization furnace refining) to reduce [Mn] loss during refining and increase molten steel [Mn]. It was also very useful when melting Mn steel. In particular, in recent years, in response to the increasing demand for quality stabilization and cost reduction of thick plate steel materials, research has been actively conducted to produce high-Mn steel at the lowest possible price. The most effective method is the "converter refining method in which manganese ore is introduced into the hot metal in the converter and oxygen blowing is performed to increase the end point [Mn] concentration," but the method proposed above This makes it possible to reduce the amount of slag-forming agent used,
This made it possible to increase the molten steel [Mn] more effectively by adding manganese ore. However, the method proposed above focuses on adding manganese ore in the decarburization furnace, and the main aim is to increase the [Mn] concentration at the end of the decarburization furnace. The addition of manganese ore did not place much emphasis on it, and was merely a secondary addition, if desired, to the dephosphorization refining agent, whose main components were [converter slag + iron oxide + fluorite]. . The amount of manganese ore that can be added in the decarburization furnace at this time is determined by the "dephosphorization temperature and hot metal [C] concentration" and the "decarburization furnace end temperature and molten steel [C] concentration." Therefore, in reality, the amount of manganese ore that can be added in the decarburization furnace, which is the main source of addition, is at most only about 15 to 20 kg per ton of molten iron, and the [Mn] concentration at the end of the decarburization furnace is 0.7 to 0.9% by weight. It was only a matter of degree. On the other hand, the [Mn] concentration of products that require a high Mn content is often quite high, around 1.5% by weight, so it is necessary to make up for the deficiency by adding expensive ferromanganese, etc. From this point of view, it has been strongly recognized through subsequent studies that the above-mentioned method previously proposed by the present inventors is still unsatisfactory. In other words, in order to further reduce the manufacturing cost of high-Mn steel by reducing the amount of ferromanganese added after refining, it is necessary to further increase the [Mn] concentration at the end point of the decarburization furnace. - Because there is a limit to the amount of manganese ore that can be reduced by smelting, it was not possible to simply increase the amount of manganese ore added in the decarburization furnace. However, it is possible to further improve the end point [Mn] concentration when molten steel with a high Mn concentration is refined in a converter (normal refining using only one converter) by adding manganese ore to the dephosphorized pig iron produced by hot metal pretreatment. It is also known that it is effective to add a carbonaceous material such as coke. However, even if this method is applied to decarburization refining using the method proposed earlier, not only will the cost increase due to the use of coke, the cost of blown oxygen will also increase, and the blowing time will be extended (leading to a decrease in productivity). ), increase in [S] from coke, increase in gangue from coke, increase in amount of quicklime added to neutralize gangue, and increase in amount of slag as a result of increase in amount of gangue and quicklime. Although a certain degree of cost reduction effect is recognized due to a decrease in the amount of residue, etc., when comparing the amount of increase in [Mn] that is the same as when manganese ore is added and melted and reduced without adding coke, the amount of increase in [Mn] when using coke is It could not be denied that the benefits would be smaller. <Means for Solving the Problems> Therefore, the present inventors devised a system for converting hot metal by using one of two converter-type furnaces with both upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace. It is possible to effectively increase the end point [Mn] concentration in the decarburization furnace by taking advantage of the previously proposed steelmaking method of refining, and without using the method of adding coke that has the disadvantages mentioned above. As we continued our research to find a steel manufacturing method that is efficient and has low production costs, we obtained the following findings. That is, (a) the previously proposed method did not require the addition of manganese ore in the dephosphorization furnace, but if blowing is performed in the dephosphorization furnace with manganese ore as an essential refining agent, this manganese ore In addition to sufficiently acting as an oxidizing agent for dephosphorization, it is also possible to easily maximize the [Mn] concentration of hot metal dephosphorized in a dephosphorization furnace. Then, if a slag-forming agent containing manganese ore is further added to this dephosphorized pig iron with a high [Mn] concentration and it is refined in a decarburization furnace, it will be possible to achieve a low phosphorus and [Mn] concentration with the least amount of slag-forming agent used. (b) Generally, the refining agent (flux) for hot metal dephosphorization has quicklime, iron oxide, and fluorite as its main components.
Iron oxide is considered to be an essential component, and the method previously proposed by the present inventors also
It was recognized that in order to secure FeO and promote dephosphorization, it is essential to include iron oxide in the refining agent (dephosphorization agent) added in the dephosphorization furnace (therefore, the dephosphorization agent Converter slag + iron oxide + fluorite] was considered to be good), but in this case, as a dephosphorizing agent, it does not contain iron oxide
(c) Therefore, even if fluorite is mixed with manganese ore, the manganese ore will act effectively as a substitute for iron oxide and good dephosphorization will proceed. If a refining agent containing manganese ore is used as a dephosphorizing agent in a dephosphorization furnace instead of iron oxide, which was an essential component of iron oxide, the cost required for adding iron oxide can be reduced and sufficient dephosphorization can be achieved. (Of course, manganese ore not only promotes dephosphorization, but also works to effectively increase the [Mn] of the dephosphorized pig iron by being reduced with [C] etc.). (d) As a result, the final point [Mn] in the subsequent decarburization furnace refining becomes higher (when performing manganese ore addition blowing only in the decarburization furnace). A much higher end point [Mn] concentration than the limit value can be obtained). Significant savings in manganese ferroalloy are possible. This invention was made based on the above knowledge, and it is said that ``As shown in Fig. 1, one of the two converter-type furnaces having both upper and lower blowing functions is dephosphorizing furnace 1, and the other is In a steelmaking method in which hot metal is refined using the decarburization furnace 2, the hot metal 3 injected into the dephosphorization furnace 1 is
A refining agent whose main components are the converter slag 4 generated in the decarburization furnace 2 and manganese ore (hereinafter collectively referred to as "manganese ore" including "iron-manganese ore") is added, and the stirring gas is blown. A process of dephosphorizing the hot metal and raising the hot metal [Mn] while keeping the temperature of the hot metal below 1400°C by blowing oxygen gas upward from the lance 6 while stirring bottom-blown gas through the pouring nozzle 5, and By adding a normal slag-forming agent and manganese ore to phosphorous hot metal and refining it in the decarburization furnace 2, and including the process of decarburizing the hot metal and increasing the refining end point [Mn] of the molten iron, the amount of phosphorus can be reduced to an extremely small amount. It is characterized by the ability to produce high-quality steel with a low phosphorus level and high [Mn] content using a slag-forming agent with good workability and at low cost. The reason why the treatment temperature in the dephosphorization furnace is adjusted to 1400℃ or less is that if the hot metal treatment temperature is higher than this, decarburization will proceed and the amount of oxidizing agent in the slag will decrease, and thermodynamically the temperature will be lower than 1400℃. If the temperature is above ℃, dephosphorization will deteriorate. However, if the temperature is too low, the loss of granular iron to the slag increases, and there are also problems in increasing the [Mn] concentration in the molten steel in the subsequent decarburization furnace. That is, the melting reduction of manganese ore proceeds through an endothermic reaction of MnO 2 +2[C]→[Mn]+2CO (the cooling capacity of manganese ore is about 2.5 times that of scrap). Therefore, the amount of manganese ore that can be added (the amount that can be reduced by melting) increases as the temperature and [C] concentration of the hot metal increases. Therefore, completing the dephosphorization process while the hot metal temperature and [C] concentration are high increases the amount of manganese ore that can be added in the decarburization furnace and increases the final [Mn] concentration in the decarburization furnace. preferable. Here, in order to easily complete the dephosphorization process while the temperature and [C] concentration are high, the first idea is to raise the temperature and [C] concentration of the hot metal poured into the deP furnace as high as possible. Large changes in the tapping temperature and [C] concentration of blast furnace pig iron are problematic both technically and cost-wise. Therefore, it is important to keep the temperature and [C] concentration of the hot metal (ie, the sum of the sensible heat and latent heat of the hot metal) as low as possible during the dephosphorization process. Therefore, it is preferable to maintain the treatment temperature in the dephosphorization furnace as high as possible within the range of 1400°C or lower. This treatment temperature is maintained by blowing oxygen gas from the top blowing lance or by blowing oxygen gas from the bottom tuyere. In other words,
The oxygen gas injection in the dephosphorization furnace is performed to ensure the dephosphorization treatment temperature. Therefore,
The top-blowing oxygen lance here may be a normal converter lance, but it may also be a new small flow rate lance for dephosphorization. The amount of oxygen gas used is determined by the temperature and silicon content of the hot metal before treatment, the temperature of the converter slag, the warmth of the dephosphorization furnace, the target temperature of the hot metal to be treated, etc., but is approximately 20Nm 3 /t. It may be less than 5 Nm 3 /t, and usually 5 to 10 Nm 3 /t is effective. Incidentally, the amount of decarburization at this time is about 0.5%. ``Converter type furnace with both upper and lower blowing functions''
The currently used "top-bottom blowing combined blowing converter" is the most preferable, but especially for dephosphorization furnaces,
Since the refining conditions are milder than in a decarburization furnace, the furnace itself can be made even smaller, so even if a new one is built specifically for dephosphorization, there will not be much of an impact on the cost. As the refining agent (dephosphorization agent) in the dephosphorization furnace, a substance whose main components are converter slag generated in the decarburization furnace and manganese ore is used. For example, converter slag: 40 to 80% by weight , Manganese ore: 10 to 60% by weight, Fluorite: 0 to 30% by weight. In addition, since manganese ore is somewhat disadvantageous in terms of slag formation compared to iron oxide, it is better to actively add fluorite, and it is better to add more fluorite than when adding iron oxide. desirable. This refining agent is of course not limited to the above composition, and quicklime may be added in addition,
CaCl 2 , Na 2 O.SiO 2 , Na 2 CO 3 or the like may be added. Further, instead of manganese ore, iron-manganese ore may be used as described above. and,
The smaller the particle size of these dephosphorizing agent raw materials other than the converter slag is, the more preferable it is from the viewpoint of slag formation, but there is no problem as long as it is of a generally used size. By the way, as already mentioned, in the method previously proposed by the present inventors, the important components of the dephosphorizing agent in the dephosphorizing furnace are [converter slag + iron oxide + fluorite], and among these, the dephosphorizing agent in the dephosphorizing furnace is In addition to slag, iron oxide was also considered essential to ensure a high dephosphorization rate. However, the present inventors investigated a method of using manganese ore instead of iron oxide used as the oxidizing agent, and in this case, the same dephosphorization rate as when using iron oxide could be obtained, and the The present invention was completed by discovering that it is possible to increase the [Mn] concentration while maintaining the temperature and [C] concentration of molten iron at the same level as when iron oxide is used. However, when using the conventional quicklime-based hot metal dephosphorizing agent (quicklime + iron oxide + fluorite), even if manganese ore is mixed as described above instead of iron oxide,
The slag formation of the flux is very poor, and the oxidizing power in the slag necessary for dephosphorization cannot be secured, so that good dephosphorization does not proceed. However, in the case of a dephosphorizing agent based on converter slag (converter slag + iron oxide + fluorite), why can good results be obtained even if the component "iron oxide" is replaced with "manganese ore"? ``Since the converter slag has been turned into slag, the flux is well converted into slag,'' and ``Since the converter slag contains about 10 to 25% by weight of iron oxide, this and manganese slag must be mixed.'' This is thought to be due to the fact that the oxidizing powers of the ores combine to secure the oxidizing power necessary for dephosphorization. The amount of smelting reduction of manganese ore (itself acts as an oxidizing agent) varies depending on the amount added, but for example, with an input amount of 10 kg/t, the increase in [Mn] is 0.3 to 0.4
It is about %. In this case, in order to increase the addition yield of manganese ore, it is advantageous to set the slag basicity to 2.5 or more. The reason for this will be explained using FIG. 2. Figure 2 shows “(Mn) in the slag of the dephosphorization furnace [actually
Figure 2 shows the relationship between the ratio of Mn in the form of MnO (expressed in weight percent) to hot metal [Mn] (Mn distribution ratio) and slag basicity. As is clear from the above, it can be seen that (Mn)/[Mn] decreases as the basicity increases.In other words, the higher the slag basicity, the easier manganese oxide is reduced, and the region where the slag basicity is 2.5 or more It can be confirmed that this tendency becomes strongest and becomes constant (note that desulfurization progresses more easily as the slag basicity increases, and CaO/SiO 2
It has also been confirmed that the desulfurization rate is about 60% when is 3). In order to increase the basicity of slag, there is a method of increasing the amount of converter slag in the decarburization furnace, but quicklime may be added as an auxiliary together with the converter slag. The amount of refining agent (dephosphorizing agent) used in the dephosphorizing furnace is determined by the [P] level of the steel to be melted, but is usually about 30 to 60 kg/t. Now, as the converter slag, which is the main component of the refining agent used in the dephosphorization furnace, the molten slag generated in the decarburization furnace is preferable from the viewpoint of thermoeconomics and the ability of the dephosphorization flux to form slag. (If the molten material is used in this way, it is poured into the dephosphorization furnace through a pot lined with refractory material.) Considering ease of handling, etc., the material obtained in the decarburization furnace is used. It may be used after being cooled and solidified and crushed into granules or chunks (in addition,
Also at this time, from a thermal standpoint, the higher the slag temperature, the better.) However, in this case, the smaller the particle size is, the better it is in order to improve the slag formation in the dephosphorization furnace, but since the converter slag is inherently highly slag formation, the particle size is 100 mm.
Even if it is smaller than this, no particular inconvenience will occur, and even if it is larger than this, it can be used. The timing of the converter slag to be used is preferably that from the previous charge, but it goes without saying that it may also be from the decarburizing furnace or from a decarburizing furnace at another factory. Stirring gases blown from the bottom of the furnace include Ar, CO 2 ,
It may be any of CO, N 2 , O 2 , air, etc. The degree of agitation of the bottom gas in the dephosphorization furnace is the same as in normal double blowing combined blowing (0.03 to 0.2N
m 3 /t), but it is of course possible to increase the amount even more if you are aiming for a factory with a high dephosphorization rate. When dephosphorization is performed under the above conditions, usually
Dephosphorized pig iron with the desired high [Mn] concentration can be obtained within 20 minutes. When the dephosphorized pig iron with increased [Mn] in the dephosphorizing furnace is blown in the dephosphorizing furnace, carbonaceous material such as coke is added as a heat source to increase the amount of manganese ore added. Needless to say, it's a good thing. Blowing in a decarburizing furnace is basically the same as blowing ordinary hot metal that has been dephosphorized outside the furnace, but in order to improve the [Mn] concentration of the molten steel at the end point, Manganese ore is added in addition to slag-forming agents, mainly quicklime and dolomite. By the way, when implementing the steel manufacturing method according to the present invention, it is preferable to perform a preliminary desulfurization treatment on the applied hot metal if possible. The first reason for this is that the progress of desulfurization is extremely slow in this steelmaking method, but on the other hand, when hot metal that has not been desulfurized in advance is used, the S content in the converter slag increases, and the This is because there is also a concern that the molten steel S content in the charge may be increased. Note that the preliminary desulfurization may be performed by any of the commonly used hot metal desulfurization methods. Furthermore, the lower the Si content of the raw material hot metal used in this method, the better. This is because as the Si content in the hot metal increases, the basicity of the slag in the dephosphorization furnace decreases, the dephosphorization ability decreases, and the total amount of quicklime etc. used increases. Therefore, it is a good idea to adjust the Si content of hot metal to 0.3% or less, preferably 0.2% or less. In addition, if it is desired to raise the temperature of the hot metal after treatment due to the conditions of the decarburization furnace, it may be advantageous to set the Si content of the hot metal to around 0.2%, so it should be determined based on the local conditions of the factory. It is. Next, the present invention will be explained in more detail with reference to examples in comparison with comparative examples. <Example> Comparative example 250 tons of hot metal having the composition shown in the upper row of Table 1, which had been desulfurized and desiliconized in a torpedo, was poured into a top and bottom double blowing combined blowing converter used as a dephosphorization furnace.
In addition to this, converter slag generated in a similar type of decarburization furnace is cooled and solidified and crushed into particles with a particle size of 30 mm or less25
Kg/t, 12 Kg/t of iron ore and 8 Kg/t of fluorite having similar particle sizes were added in a mixed state and dephosphorization was carried out for 13 minutes. The dephosphorization and decarburization furnaces used are both 250-ton and upper-lower furnaces that can be stirred by injecting gas from the bottom of the furnace.
【表】【table】
【表】【table】
【表】【table】
【表】
両吹き複合吹錬転炉であり、第2表に示したよう
な操業条件が採用された。
このようにして得られた脱燐銑(成分組成は第
1表の中段に示す)を、一旦鍋中に出銑してから
脱炭炉に注銑し、更に生石灰8Kg/t、ドロマイ
ト5Kg/t、蛍石1Kg/t及びマンガン鉱石20
Kg/tを添加してから主吹錬を実施した。
このとき発生した転炉滓は25Kg/tであり、こ
れを鉄鉱石及び蛍石と共に次のチヤージの脱燐剤
原料として脱燐炉に添加し脱燐を行うと言う一連
の操作を繰り返した。
この結果、全製鋼工程での使用生石灰及びドロ
マイト量が合計で13Kg/tと言う少ない値で、第
1表の下段に示すような鋼中[P]が0.011重量
%、[Mn]が0.82重量%と言う溶鋼が得られた。
なお、第1表で脱燐後の[Mn]が上昇してい
るのは、脱炭炉で発生した転炉滓中の(MnO)
が18重量%と高くなつていたことによるものであ
る。
実施例 1
脱燐炉内に注銑した第3表の上段に示される如
き成分の脱硫・脱珪溶銑250トンに、脱炭炉で発
生した転炉滓25Kg/tと蛍石8Kg/tのほか、鉄
鉱石に代えて粒径30mm以下のマンガン鉱石12Kg/
tを添加した以外は上記比較例の場合と同様条件
で脱燐処理を行つた。
次いで、このようにして得られた脱燐銑(成分
組成は第3表の中段に示す)を前記比較例と同様
条件で脱炭炉において精錬した。
その結果、第3表の下段に示すような溶鋼が得
られ、脱炭炉での終点[Mn]が1.05重量%まで
上昇したことが明らかとなつた。勿論、全製鋼工
程での使用生石灰及びドロマイト量が少なくて済
んだことは比較例の場合と同様であつた。
このように、脱燐炉での精錬剤として鉄鉱石に
代えてマンガン鉱石を用いる本発明方法による
と、前記比較例の場合に比して0.23%より高い
[Mn]上昇を確保できることが確認された。
実施例 2
第4表の上段に示される如き成分の脱硫・脱珪
溶銑250トンを対象に、脱燐剤(脱燐炉での精錬
剤)として
脱炭炉で発生した転炉滓:25Kg/t、
マンガン鉱石:12Kg/t、
生石灰:7Kg/t、
蛍石:10Kg/t
の配合物を用いたほかは実施例1と同様の転炉吹
錬を実施した。
この時の脱燐溶銑組成を第4表の中段に、そし
て脱炭炉における終点溶鋼組成を第4表の下段に
示す。
第4表からも明らかなように、この精錬によつ
て脱炭炉における終点[Mn]を1.13重量%まで
上昇することができた。
これは、前記比較例の場合と比べて0.31%高い
[Mn]上昇が確保されたことを意味するもので
ある。
〈効果の総括〉
以上に説明した如く、一般に脱炭炉においてマ
ンガン鉱石を使用した場合、これらの約半分は
Mnにまで還元されずに酸化物としてスラグ中に
残るが、この発明によれば、該スラグを溶銑脱燐
フラツクスとして再使用するので上記残留鉱石の
有効利用がなされ、溶銑脱燐段階における
“[Mn]ロスの軽減”或いは“[Mn]上昇”に役
立つ。また、脱炭炉にマンガン鉱石を添加して還
元させるので、脱炭炉における終点[Mn]を従
来法に比べ0.2〜0.3重量%程度も安定かつ安価に
上昇させることができる。従つて、フエロマンガ
ン添加量を粗鋼1トン当り3〜4Kg節減すること
が可能となる上、製鋼工程の全体を通じて必要な
造滓剤量の著しい低減も達成できるなど、産業上
極めて有用な効果がもたらされるのである。[Table] This is a double blowing combined blowing converter, and the operating conditions shown in Table 2 were adopted. The dephosphorized pig iron thus obtained (composition is shown in the middle row of Table 1) is tapped into a ladle and then poured into a decarburizing furnace. t, fluorite 1Kg/t and manganese ore 20
Main blowing was carried out after adding Kg/t. The converter slag generated at this time was 25 kg/t, and a series of operations were repeated in which it was added to the dephosphorization furnace as a dephosphorizing agent raw material for the next charge together with iron ore and fluorite, and dephosphorization was performed. As a result, the total amount of quicklime and dolomite used in the entire steelmaking process was as low as 13 kg/t, and as shown in the lower row of Table 1, [P] was 0.011% by weight and [Mn] was 0.82% by weight. % of molten steel was obtained. In Table 1, the increase in [Mn] after dephosphorization is due to (MnO) in the converter slag generated in the decarburization furnace.
This was due to the fact that the amount of carbon dioxide was as high as 18% by weight. Example 1 250 tons of desulfurized and desiliconized hot metal having the components shown in the upper row of Table 3 poured into a dephosphorization furnace were mixed with 25 kg/t of converter slag generated in the decarburization furnace and 8 kg/t of fluorite. In addition, 12 kg of manganese ore with a particle size of 30 mm or less can be used instead of iron ore.
Dephosphorization treatment was carried out under the same conditions as in the above comparative example except that t was added. Next, the dephosphorized pig iron thus obtained (the composition is shown in the middle row of Table 3) was refined in a decarburization furnace under the same conditions as in the comparative example. As a result, molten steel as shown in the lower row of Table 3 was obtained, and it was revealed that the end point [Mn] in the decarburization furnace increased to 1.05% by weight. Of course, as in the comparative example, the amount of quicklime and dolomite used in the entire steelmaking process was small. In this way, it was confirmed that according to the method of the present invention, which uses manganese ore instead of iron ore as a refining agent in the dephosphorization furnace, it is possible to secure a higher increase in [Mn] by 0.23% compared to the case of the comparative example. Ta. Example 2 Converter slag generated in the decarburization furnace was used as a dephosphorizing agent (refining agent in the dephosphorization furnace) for 250 tons of desulfurized and desiliconized hot metal with the components shown in the upper row of Table 4: 25 kg/ Converter blowing was carried out in the same manner as in Example 1, except that the following mixtures were used: manganese ore: 12 kg/t, quicklime: 7 kg/t, and fluorite: 10 kg/t. The dephosphorized hot metal composition at this time is shown in the middle row of Table 4, and the final point molten steel composition in the decarburization furnace is shown in the lower row of Table 4. As is clear from Table 4, this refining made it possible to raise the end point [Mn] in the decarburization furnace to 1.13% by weight. This means that a 0.31% higher increase in [Mn] was ensured compared to the case of the comparative example. <Summary of effects> As explained above, when manganese ore is generally used in a decarburization furnace, about half of the
Although it remains in the slag as an oxide without being reduced to Mn, according to the present invention, the slag is reused as hot metal dephosphorization flux, so the residual ore is effectively utilized, and the "[ It is useful for “reducing [Mn] loss” or “increasing [Mn]”. Furthermore, since manganese ore is added to the decarburization furnace and reduced, the end point [Mn] in the decarburization furnace can be stably and inexpensively increased by about 0.2 to 0.3% by weight compared to conventional methods. Therefore, it is possible to reduce the amount of ferromanganese added by 3 to 4 kg per ton of crude steel, and it is also possible to achieve a significant reduction in the amount of slag forming agent required throughout the steelmaking process, which brings extremely useful effects industrially. It is possible.
第1図は、本発明プロセスの概念図である。第
2図は、脱燐炉でのMn分配比とスラグ塩基度と
の関係を示したグラフである。第3図は、先に提
案した製鋼法に係るプロセスの概念図である。
図面において、1……脱燐炉、2……脱炭炉、
3……溶銑、4……転炉滓、4′……転炉滓を主
成分とする脱燐スラグ、5……撹拌ガス吹き込み
ノズル、6……ランス。
FIG. 1 is a conceptual diagram of the process of the present invention. FIG. 2 is a graph showing the relationship between the Mn distribution ratio and the slag basicity in the dephosphorization furnace. FIG. 3 is a conceptual diagram of the process related to the steel manufacturing method proposed above. In the drawings, 1... dephosphorization furnace, 2... decarburization furnace,
3... Hot metal, 4... Converter slag, 4'... Dephosphorization slag whose main component is converter slag, 5... Stirring gas blowing nozzle, 6... Lance.
Claims (1)
のうちの一方を脱燐炉、他方を脱炭炉として溶銑
の精錬を行う製鋼方法において、前記脱燐炉内へ
注入した溶銑に前記脱炭炉で発生した転炉滓及び
マンガン鉱石を主成分とする精錬剤を添加し、底
吹きガス撹拌を行いつつ酸素ガスを上吹きして溶
銑温度を1400℃以下に保ちながら溶銑脱燐と溶銑
[Mn]の上昇を行う工程と、得られた脱燐溶銑
に通常造滓剤とマンガン鉱石とを投入して脱炭炉
で精錬し、溶銑の脱炭と溶鉄の精錬終点[Mn]
の上昇を図る工程とを含むことを特徴とする製鋼
方法。 2 被処理溶銑が、Si含有量0.30重量%以下にま
で予備脱珪処理されたものである、特許請求の範
囲第1項に記載の製鋼方法。[Scope of Claims] 1. A steelmaking method in which hot metal is refined by using one of two converter-type furnaces having upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, wherein the dephosphorization furnace A refining agent mainly composed of converter slag and manganese ore generated in the decarburization furnace is added to the hot metal injected into the furnace, and oxygen gas is blown upward while stirring the bottom blowing gas to bring the temperature of the hot metal below 1400℃. The process involves dephosphorizing the hot metal and raising the hot metal [Mn] while maintaining the temperature, and adding a normal slag forming agent and manganese ore to the resulting dephosphorized hot metal and refining it in a decarburizing furnace, decarburizing the hot metal and increasing the molten iron. Refining end point [Mn]
A steel manufacturing method characterized by including a step of aiming at an increase in. 2. The steelmaking method according to claim 1, wherein the hot metal to be treated has been subjected to a preliminary desiliconization treatment to reduce the Si content to 0.30% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30126287A JPH01142009A (en) | 1987-11-28 | 1987-11-28 | Steel making method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30126287A JPH01142009A (en) | 1987-11-28 | 1987-11-28 | Steel making method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01142009A JPH01142009A (en) | 1989-06-02 |
JPH0437134B2 true JPH0437134B2 (en) | 1992-06-18 |
Family
ID=17894699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30126287A Granted JPH01142009A (en) | 1987-11-28 | 1987-11-28 | Steel making method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01142009A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0696729B2 (en) * | 1989-11-08 | 1994-11-30 | 住友金属工業株式会社 | Steelmaking process with smelting reduction of manganese ore |
JP2582692B2 (en) * | 1991-11-16 | 1997-02-19 | 新日本製鐵株式会社 | Converter steelmaking method |
-
1987
- 1987-11-28 JP JP30126287A patent/JPH01142009A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01142009A (en) | 1989-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3557910B2 (en) | Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method | |
US20030140732A1 (en) | Method for treating slags or slag mixtures on an iron bath | |
JPH0437132B2 (en) | ||
JPH01316409A (en) | Method for dephosphorizing molten iron accompanied with scrap melting | |
JP3458890B2 (en) | Hot metal refining method | |
WO2003029498A1 (en) | Method for pretreatment of molten iron and method for refining | |
JPH0437134B2 (en) | ||
JP4192503B2 (en) | Manufacturing method of molten steel | |
JPH0377246B2 (en) | ||
JPH01147011A (en) | Steelmaking method | |
JPH0557327B2 (en) | ||
JPH0471965B2 (en) | ||
JPH0214404B2 (en) | ||
JPS6247417A (en) | Melt refining method for scrap | |
JPH0433844B2 (en) | ||
JP2587286B2 (en) | Steelmaking method | |
JPH032312A (en) | Production of low-phosphorus pig iron | |
JPH01312020A (en) | Method for dephosphorizing molten iron by heating | |
JPH0967608A (en) | Production of stainless steel | |
JPH03122210A (en) | Two step counterflow refined steelmaking method using duplex converters | |
JPS59159963A (en) | Production of high chromium molten metal | |
JP2755027B2 (en) | Steelmaking method | |
JPH01252715A (en) | Method for operating iron bath type smelting reduction furnace | |
JPH0841519A (en) | Steelmaking method | |
JPS61139614A (en) | Manufacture of steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 16 |