WO2003029498A1 - Method for pretreatment of molten iron and method for refining - Google Patents

Method for pretreatment of molten iron and method for refining Download PDF

Info

Publication number
WO2003029498A1
WO2003029498A1 PCT/JP2002/010108 JP0210108W WO03029498A1 WO 2003029498 A1 WO2003029498 A1 WO 2003029498A1 JP 0210108 W JP0210108 W JP 0210108W WO 03029498 A1 WO03029498 A1 WO 03029498A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot metal
pretreatment
flux
blowing
dephosphorization
Prior art date
Application number
PCT/JP2002/010108
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hirata
Hiromi Ishii
Hiroaki Hayashi
Yuji Ogawa
Naoto Sasaki
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1020047004598A priority Critical patent/KR100658807B1/en
Priority to EP02772944.1A priority patent/EP1457574B1/en
Publication of WO2003029498A1 publication Critical patent/WO2003029498A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0025Adding carbon material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above

Definitions

  • the present invention relates to a hot metal pretreatment method for performing desiliconization and dephosphorization of hot metal using a refining vessel capable of being blown up and down, and a hot metal refining method for performing decarburization processing of hot metal after the hot metal pretreatment.
  • Hot metal pretreatment methods have been used. In the pretreatment of hot metal, it is common to initially perform a desiliconization process by adding a solid oxygen source such as iron oxide to the hot metal and then dephosphorizing by adding a dephosphorizing flux to the hot metal. there were.
  • a lime source was added as a flux to form a highly basic dephosphorized slag, and a solid oxygen source such as iron oxide was also added as a flux for dephosphorization.
  • a preliminarily dephosphorizing container a torpedo car or a ladle was used, and a method of preliminarily dephosphorizing by injecting a dephosphorizing flux into the hot metal contained therein was used. Note that the solid oxygen, iron oxide and that of oxygen contained in the (FeO, Fe 2 0 3) in a solid oxygen source, iron ore, Dust which need use as a flux or coolant mill A material containing iron oxide such as a scale 5.
  • a converter-type refining vessel capable of top-bottom blowing has been used as a hot metal pretreatment vessel, and hot metal pretreatment for simultaneous desiliconization and dephosphorization of hot metal has been used. It has come to be. Since strong stirring by top and bottom blowing is used, dephosphorization can be promoted even with slag having a low basicity, so that desiliconization and dephosphorization can be performed simultaneously. Since gaseous oxygen can be sufficiently used as an oxygen source, the temperature of the hot metal after the pretreatment is higher than in the conventional case where only solid oxygen is used or gas oxygen is used in a very small amount.
  • the pretreatment refining flux may be added to the refining vessel from above by means of injection, or by injection by adding the bottom blown gas into the hot metal as a carrier gas. By employing the flux injection, the dephosphorization efficiency in the pretreatment can be improved.
  • the lower the hot metal temperature at the end of pretreatment the higher the dephosphorization capacity. Therefore, even though the thermal margin can be improved by using gaseous oxygen in the pretreatment, if the hot metal temperature after the pretreatment is increased unnecessarily, the dephosphorization ability in the pretreatment is sufficiently exhibited. You cannot do that.
  • a carbon source is added to the hot metal during the hot metal pretreatment or decarburization refining, it can be used as a heat source during the decarburization process, and the heat tolerance of the refining can be increased.
  • a method of adding a carbon source during the decarburization process a method of adding lump anthracite from above is conceivable, but there is a problem that the outlet of the gas generated due to the upward flow of gas generated by blowing acid is large. .
  • decarburization [0108] In order to secure the basicity of the slag at the time, it is necessary to increase the amount of quicklime, which is not preferable.
  • Japanese Patent Application Laid-Open No. Sho 62-170409 discloses a method for improving the slag slag property (Mn ore or Flux mixed with calcium fluoride (fluorite) etc. is added to the upper part, and desiliconized flux (iron oxide) is blown into the hot metal, and a gas Z solid oxygen source is supplied to the hot metal surface while the desiliconized flux is supplied.
  • a method is described in which a carbon source is blown into the hot metal with a carrier gas after the completion of the desiliconization reaction to increase the carbon concentration of the hot metal.
  • the reason for adding CaO-based flux to the upper part is that when CaO-based flux containing iron oxide used for dephosphorization is injected into the hot metal together with the carbon source, the oxygen potential in the hot metal due to the carbon injection is increased. The reason is that the dephosphorization reaction is inhibited and the phosphorus content is reduced.
  • the present invention enables refinement without using fluorite in the hot metal pretreatment and decarburization processes, minimizes the formation of dephosphorization slag in the decarburization process, and efficiently adds a carbon source to the hot metal. It is an object of the present invention to provide a hot metal pretreatment method and a refining method for improving the heat tolerance. Disclosure of the invention
  • the amount of flux blown into the hot metal during the desiliconization reaction can be significantly reduced. Therefore, if the carbon source as a heat source is blown into the hot metal together with the carrier gas at the time of the desiliconization reaction, it becomes possible to add only the carbon source into the hot metal before the start of the flux blowing. Since the dephosphorizing flux containing lime-based components and the carbon source are not injected at the same time, the dephosphorization is not hindered by the injected carbon. In addition, by eliminating simultaneous injection of carbon source and iron oxide-based flux, This also has the effect of eliminating the risk of ignition due to the reaction between the carbon source and iron oxide.
  • the dephosphorization efficiency in the hot metal pretreatment is greatly improved and the refining is improved. It has been clarified that the overall thermal tolerance can be improved at the same time.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • a flux containing one or more of quick lime, limestone, and iron oxide and containing at least iron oxide as a main component is blown into the hot metal to remove hot metal.
  • a hot metal pretreatment method for performing silicon dephosphorization wherein a carbon source is blown into the hot metal during the desiliconization reaction, and the carbon source blowing is started before the flux blowing is started.
  • FIG. 1 is a schematic view showing a hot metal pretreatment furnace used in the present invention.
  • a refining vessel 1 that can be blown up and down as shown in FIG. 1 is used.
  • the top blowing mainly blows oxygen gas 8 from the tip of the top blowing lance 3 onto the surface of the hot metal.
  • the top-blown oxygen used during the desiliconization reaction can be used as an oxygen source for desiliconization.
  • the upper blowing is used to increase the oxygen potential of the slag to prevent re-phosphorus, and to supplement the heat dissipated to control the temperature to a predetermined temperature.
  • the bottom blowing is performed using a bottom blowing nozzle 2 provided at the bottom of the purification vessel 1.
  • a bottom blowing nozzle 2 provided at the bottom of the purification vessel 1.
  • it also has the function of blowing flux 9 together with carrier gas 7 from the bottom blow nozzle 2 into the hot metal.
  • top and bottom blown converters are used, one of them can be used for hot metal pretreatment and the other can be used for decarburization.
  • Preliminary treatment is performed in a converter for hot metal pretreatment, and then the hot metal is transferred to a converter for decarburization to perform decarburization.
  • the flux blown into the hot metal together with the carrier gas is one or more of quick lime, limestone, and iron oxide, and is a flux mainly containing a component containing at least iron oxide.
  • the flux used for dephosphorization contains CaO sources such as quicklime and limestone as well as iron oxide.
  • a flux containing iron oxide as a main component may be blown as a desiliconization aid.
  • iron oxide used as a flux component Various materials such as iron ore, mill scale, and sintering dust can be used.
  • the desiliconization reaction in the hot metal pretreatment is mainly performed using top-blown gaseous oxygen as the oxygen source.
  • a flux containing iron oxide may be blown together with the carrier gas during the desiliconization reaction and used as an auxiliary oxygen source for desiliconization, but even in that case, only gaseous oxygen is used as the oxygen source at the beginning of the desiliconization. Desiliconization, and do not blow the desiliconization flux.
  • a carbon source is blown into the hot metal from the bottom blow nozzle together with the carrier gas.
  • the carbon source anthracite powder ⁇ coatus powder or the like can be used.
  • the carbon source blowing is started. Therefore, there is always a time when the carbon source is blown without blowing the flux. Since the carbon source is injected alone, the problem of dephosphorization obstruction that occurs when the carbon source is injected simultaneously with the dephosphorization flux does not occur.
  • the hot metal temperature during and after the desiliconization reaction should be higher than before. I can do it. Therefore, slagging of the injected flux can be promoted, and the dephosphorization reaction during hot metal pretreatment can be significantly promoted.
  • the flux injection start timing may be at any time during the desiliconization reaction. At least at the end of the desiliconization reaction, blow in the flux. Otherwise, the dephosphorization reaction following the desiliconization reaction cannot be performed smoothly.
  • the means for determining the [Si] concentration during desiliconization may be determined by estimating the amount of desiliconization from the amount of acid supply and the efficiency of desiliconization reaction based on the initial molten iron [Si] value.
  • the effect of the present invention can be enjoyed even if there is a time when the carbon source and the flux are simultaneously blown during the desiliconization reaction.
  • the blowing of the flux is started after the blowing of the carbon source is completed, the waste of the dephosphorizing flux due to the simultaneous blowing of the dephosphorizing flux and the carbon source is reduced. This is more preferable because it can eliminate the risk of ignition that can be avoided when simultaneously injecting a flux containing iron oxide and a carbon source at the same time.
  • the hot metal temperature after the desiliconization reaction is high and the slag of the dephosphorized slag is good, so that the subsequent dephosphorization reaction proceeds well.
  • the carbon source is blown, the heat tolerance of refining can be increased, so that the hot metal temperature at the end of dephosphorization after hot metal pretreatment can be lowered.
  • a predetermined dephosphorization reaction is performed without using fluorite for hot metal pretreatment. 2/10108
  • the dephosphorization ability in the hot metal pretreatment is excellent, it is not necessary to perform an additional dephosphorization treatment in the decarburization treatment. Therefore, as described in the above (5) of the present invention, it becomes possible to reduce the phosphorus concentration in the molten steel to a predetermined concentration without using fluorite for the decarburization treatment.
  • top blowing oxygen gas 8 is blown onto hot metal 5 using top blowing lance 3.
  • bottom blowing six double pipe bottom blowing nozzles 2 provided at the bottom of the converter are used, and oxygen gas or inert gas is blown into the hot metal from the inner pipe. From the space between the inner tube and the outer tube, a hydrocarbon gas is blown as a cooling gas when oxygen gas is blown from the inner tube, and an inert gas such as nitrogen is blown when an inert gas is blown from the inner tube.
  • the flux 9 stored in the flux hopper 4 can be blown together with the carrier gas 7 from the bottom blowing tuyere 2.
  • a carbon source 9c, quicklime 9a, and sintered dust 9b are used.
  • Si0 using 2 6.7 wt% anthracite.
  • a mixture of quicklime powder 9a and sintered dust 9b in a mass ratio of 1: 1 or sintered dust 9b alone was used.
  • the particle size of the blowing material was set to 1.5 ⁇ or less.
  • the top blowing during the degassing reaction time increased the oxygen potential of the slag 6 to prevent reversion, and set the flow rate so as to compensate for the heat dissipated and control the temperature to a predetermined temperature.
  • Table 1 shows the injection status of the flux of carbon source and flux mainly in the pretreatment in each example.
  • Table 2 shows the detailed basic unit, component and temperature results for each example. Examples 1 and 2 of the present invention are examples to which the present invention is applied, and Comparative Examples 1 to 4 are examples using the conventional technology.
  • Pretreatment furnace Decarburization furnace Desiliconization period Dephosphorization period End temperature
  • Comparative Example 2 Sintered dust injected Ca0 + Sintered dust Normally carbon material added Injection (added above lump) Comparative Example 3 Fluxes Fluxes Normally carbonaceous material added No blown None Comparative Example 4 Fluxes Fluxes Finish temperature Carbon material added No blowing No blowing Up None
  • Example 1 of the present invention desiliconization was performed only by the upwardly blown oxygen during the desiliconization reaction time, while a carbon source was blown over the entire desiliconization reaction time.
  • a carbon source was blown over the entire desiliconization reaction time.
  • quicklime powder and a sinter dust mixture were blown in as fluxes for dephosphorization.
  • the blowing of the carbon source was completed before the [S i] concentration was reduced to 0.15% by mass, and the dephosphorization was completed after the [S i] concentration was reduced to 0.15% by mass.
  • quicklime powder and a sinter dust compounding agent were injected. The other conditions are the same as in Example 1 of the present invention.
  • Comparative Example 1 a carbon source and a sintering dust were blown from the bottom during the desiliconization reaction, and both the top-blown oxygen and the sintering dust were used as the desiliconization oxygen source. At the time of the dephosphorization reaction, quicklime powder and a sintering dust mix were blown in as flux for dephosphorization.
  • the carbon source was not injected during the desiliconization reaction time of the hot metal pretreatment, but instead lump anthracite was injected from above during the decarburization treatment.
  • Comparative Example 1 As in Comparative Example 2, [S i] and [C] in the hot metal reacted with the iron oxide in the sintered dust, and this was an endothermic reaction. In Comparative Example 1, since a carbon source was blown during the desiliconization reaction, [C] in the hot metal was always kept saturated. Since the reaction between [C] and iron oxide proceeds as the [C] concentration increases, the reaction between [C] and iron oxide proceeds more than in Comparative Example 2, and the degree of temperature decrease during the desiliconization reaction becomes larger.
  • Example 1 of the present invention the desiliconization reaction is performed using only the top-blown oxygen gas without blowing sintering dust during the desiliconization reaction time. Since the reaction between the hot metal [Si] and the oxygen gas is an exothermic reaction, the calorific value is larger than in Comparative Examples 1 and 2, and the hot metal temperature at the end of the desiliconization reaction can be increased. carbon The fact that [C] is kept saturated by the source injection makes it easy to reduce FeO in the slag as in Comparative Example 1. can be FeO production amount by many, to retain the slag FeO -Si 0 2 slag of low melting point. For the above reasons, in Example 1 of the present invention, the slag at the end of the desiliconization reaction can be made into a slag with good slagging, and the subsequent degassing reaction can advantageously proceed. .
  • Example 1 of the present invention at the time of the desiliconization reaction, since the desiliconization reaction is performed only with the top-blown oxygen without blowing the iron oxide-based flux, the hot metal temperature at the start of the dephosphorization reaction is high. Furthermore, since the dephosphorization flux added during the dephosphorization reaction is blown into the hot metal together with the carrier gas instead of being injected upward, the synergistic effect with the hot metal temperature gap makes it unnecessary to use fluorite. A dephosphorization reaction can proceed. Also, since the carbon source injection and the dephosphorization flux injection are performed at different times, the injected carbon source does not inhibit dephosphorization.
  • the temperature at the end of the hot metal pretreatment was kept at 1339 ° C, so that the [P] concentration after the treatment could be reduced to 0.012% by mass. For this reason, it is not necessary to perform additional dephosphorization in the subsequent decarburization treatment, but decarburization treatment was performed by generating 20 kg / t slag to reduce dust. Since fluorite was not added, there was no concern about elution of fluorine from the slag, and the slag could be effectively used. [Carbon source blowing was completed before the [Si] concentration dropped to 0.15% by mass, and dephosphorizing flux blowing was started. This makes it possible for the dephosphorization reaction to proceed even in the latter half of the desiliconization reaction.
  • Comparative Example 2 since the carbon source was not blown during desiliconization in comparison with Comparative Example 1, the [P] concentration after the pretreatment was 0.016% by mass, which was slightly better than Comparative Example 1. . Because the carbon source is not injected, the oxygen potential can be increased. On the other hand, there are S i0 2 Inpu' bets from anthracite was introduced by decarburization. Therefore, it was necessary to increase the amount of slag to 35 kg / t for the slag basicity secure.
  • Comparative Example 3 since the carbon source was not added, the heat tolerance was insufficient and Mn ore could not be added.
  • Comparative Example 4 although the pre-treatment end temperature was raised to improve the heat tolerance, the heat tolerance decreased due to the large amount of slag generated in the decarburization treatment, and the Mn ore was reduced to 5 kg / min. Only t could be added.
  • Examples 1 and 2 of the present invention a solid oxygen source was not used for desiliconization, and a flux blown into hot metal was used for dephosphorization, so that a high dephosphorization capacity was achieved in the pretreatment. I was able to.
  • carbon source is blown into the separate timing before the dephosphorization flux is blown during the desiliconization, carbon is added to the hot metal at a high yield without impairing the dephosphorization ability, and the heat tolerance of refining could be increased.
  • Example 1 Under the conditions of Example 1 and Comparative Example 3, continuous operation was performed for each of 20 channels, and the amount of refractory erosion was compared. As a result, it was confirmed that in Example 1, which did not use fluorite, the amount of erosion loss of the decarburization furnace refractories was 30% less than that of Comparative Example 2, which used 5 kg / t of fluorite in the decarburization furnace. It helped to reduce refractory costs.
  • the present invention relates to a hot metal refining method in which decarburization is performed after hot metal pretreatment in which desiliconization and dephosphorization is performed using a top and bottom blown refining vessel.
  • a carbon source is blown into the hot metal and then a dephosphorizing flux is blown, so that carbon can be added to the hot metal at a high yield to increase the heat tolerance of refining.
  • Sa Furthermore, a high dephosphorization ability can be realized in the pretreatment.
  • the degassing flux is started after the [Si] concentration has dropped to 0.15% by mass, the dephosphorization reaction can be caused even during the desiliconization reaction, and The ability to remove phosphorus can be improved.
  • the present invention is to increase the thermal tolerance of refining by adding carbon into hot metal at a high yield without impairing the dephosphorization ability by starting the dephosphorization flux injection after the carbon source injection. And the risk of ignition can be avoided.
  • the present invention is to perform the purification without using the fluorite in the hot metal pretreatment and without using the fluorite even in the decarburization process. Becomes possible. Thereby, the amount of refractory erosion can be reduced and the cost of refractory can be reduced.

Abstract

A method for the pretreatment of a molten iron wherein use is made of a top-blown refining vessel, and the desiliconization and the dephosphorization of the molten iron are carried out by blowing a flux having a primary component which contains iron oxide and at least one of calcium oxide and limestone into the molten iron, characterized in that a carbon source is blown into the molten iron during desiliconization and the blowing of the carbon source is started prior to the start of the blowing of the flux. The blowing of the flux is preferably started after a [Si] concentration has been lowered to 0.15 mass % and/or after the blowing of the carbon source has been completed. The above method for the pretreatment of a molten iron and refining allows the refining which does not use fluorspar both in the pretreatment of a molten iron and the decarbinization steps, the minimization of formation of a slag for dephosphorization in the decarbonization step, and the improvement of the degree of allowance of heat through the efficient addition of a carbon source into a molten iron.

Description

明 細 書 溶銑の予備処理方法及び精練方法 技術分野  Description Hot metal pretreatment method and refining method
本発明は、 上底吹き可能な精鍊容器を用いて溶銑の脱珪脱りんを 行う溶銑予備処理方法、 及び溶銑予備処理後に溶銑の脱炭処理を行 う溶銑精鍊方法に関するものである。 背景技術  The present invention relates to a hot metal pretreatment method for performing desiliconization and dephosphorization of hot metal using a refining vessel capable of being blown up and down, and a hot metal refining method for performing decarburization processing of hot metal after the hot metal pretreatment. Background art
溶銑の脱珪、 脱りん、 脱炭をすぺて同一の転炉内で同時に行う転 炉製鋼法にかわり、 脱炭に先立って溶銑の脱珪、 脱りんを脱炭とは 別の容器で行う溶銑予備処理方法が用いられるようになった。 溶銑 予備処理においては、 溶銑に酸化鉄をはじめとする固体酸素源を添 加して脱珪を行い、 次いで溶銑に脱りん用フラックスを添加して脱 りん精鍊を行う方法が当初は一般的であった。 脱りん精鍊において は、 フラックスとして石灰源を添加して高塩基度の脱りんスラグを 形成し、 酸化鉄をはじめとする固体酸素源を同じく フラックスとし て添加して脱りんを行っていた。 また、 予備脱りん精鍊容器と して は、 トーピー ドカーや取鍋を用い、 この中の溶銑に脱りん用フラッ クスをイ ンジエタショ ンして予備脱りんを行う方法が用いられてレ、 た。 なお、 固体酸素とは、 酸化鉄(FeO, Fe2 03 )中に含まれる酸素の ことであり、 固体酸素源とは、 フラックスあるいは冷却材と して用 いられる鉄鉱石、 ダス ト、 ミルスケールなど酸化鉄を含むものをい 5 。 Instead of the converter steelmaking method in which the hot metal is desiliconized, dephosphorized, and decarburized all at the same time in the same converter, prior to decarburization, the desiliconization and dephosphorization of the hot metal are carried out in a separate container from decarburization. Hot metal pretreatment methods have been used. In the pretreatment of hot metal, it is common to initially perform a desiliconization process by adding a solid oxygen source such as iron oxide to the hot metal and then dephosphorizing by adding a dephosphorizing flux to the hot metal. there were. In dephosphorization, a lime source was added as a flux to form a highly basic dephosphorized slag, and a solid oxygen source such as iron oxide was also added as a flux for dephosphorization. As a preliminarily dephosphorizing container, a torpedo car or a ladle was used, and a method of preliminarily dephosphorizing by injecting a dephosphorizing flux into the hot metal contained therein was used. Note that the solid oxygen, iron oxide and that of oxygen contained in the (FeO, Fe 2 0 3) in a solid oxygen source, iron ore, Dust which need use as a flux or coolant mill A material containing iron oxide such as a scale 5.
最近は、 溶銑予備処理容器と して上底吹きが可能な転炉型の精鍊 容器を用い、 溶銑の脱珪と脱りんを同時に行う溶銑予備処理が用い られるようになってきた。 上底吹きによる強攪拌を利用するため、 塩基度の低いスラグを用いても脱りんを促進させることができるの で、 脱珪と脱りんを同時に行う ことが可能である。 酸素源と して気 体酸素を十分に用いることができるので、 固体酸素のみを用い、 あ るいは気体酸素を用いるとしてもごく少量である従来に比較して予 備処理後の溶銑温度を高く保つことができ、 さらにトーピー ドカー を用いた予備処理に比較して処理時間を短縮できるために予備処理 中の温度ロスが少なく、 脱炭処理を含めた精鍊全体での熱裕度を確 保することができる。 予備処理精鍊用フラックスは、 精練容器内に 上方から添加する方法の他、 底吹きガスをキャリアガスとして溶銑 中に吹き込んで添加するイ ンジェクショ ンを採用することも可能で ある。 フラックスイ ンジヱクシヨ ンを採用することにより、 予備処 理における脱りん効率を向上することができる。 Recently, a converter-type refining vessel capable of top-bottom blowing has been used as a hot metal pretreatment vessel, and hot metal pretreatment for simultaneous desiliconization and dephosphorization of hot metal has been used. It has come to be. Since strong stirring by top and bottom blowing is used, dephosphorization can be promoted even with slag having a low basicity, so that desiliconization and dephosphorization can be performed simultaneously. Since gaseous oxygen can be sufficiently used as an oxygen source, the temperature of the hot metal after the pretreatment is higher than in the conventional case where only solid oxygen is used or gas oxygen is used in a very small amount. Can be maintained, and the processing time can be reduced compared to the pre-treatment using a torpedo car.Therefore, the temperature loss during the pre-treatment is small, and the overall heat tolerance including the decarburization treatment is ensured. be able to. The pretreatment refining flux may be added to the refining vessel from above by means of injection, or by injection by adding the bottom blown gas into the hot metal as a carrier gas. By employing the flux injection, the dephosphorization efficiency in the pretreatment can be improved.
溶銑脱りんにおいては、 予備処理終了時の溶銑温度が低いほど高 い脱りん能力を示す。 従って、 予備処理で気体酸素を用いることに よつて熱裕度を向上することができるといっても、 予備処理後の溶 銑温度をむやみに高めると予備処理での脱りん能力を十分に発揮で きないこと となる。  In hot metal dephosphorization, the lower the hot metal temperature at the end of pretreatment, the higher the dephosphorization capacity. Therefore, even though the thermal margin can be improved by using gaseous oxygen in the pretreatment, if the hot metal temperature after the pretreatment is increased unnecessarily, the dephosphorization ability in the pretreatment is sufficiently exhibited. You cannot do that.
溶銑脱珪脱りんにおいては、 酸素源を添加することにより精鍊を 行うので、 不可避的に溶銑中の炭素が酸化されて脱炭が進行し、 脱 炭処理時における熱裕度を失わせる一因となっている。  In hot metal desiliconization and dephosphorization, refining is performed by adding an oxygen source, so the carbon in the hot metal is inevitably oxidized and decarburization progresses, which is one of the causes of loss of heat tolerance during decarburization processing. It has become.
溶銑予備処理時あるいは脱炭精練時に溶銑中に炭素源を添加すれ ば、 脱炭処理時における熱源として活用できるため、 精練の熱裕度 を高めることが可能である。 脱炭処理時に炭素源を添加する方法と しては、 塊状の無煙炭を上方から添加する方法が考えられるが、 上 吹き送酸による発生ガスの上昇流による飛散口スが大きいという問 題がある。 また、 炭材からの S i02ィンプッ トがあるため、 脱炭処理 0108 時におけるスラグの塩基度を確保するために生石灰を増量する必要 が生じること となって好ましくない。 If a carbon source is added to the hot metal during the hot metal pretreatment or decarburization refining, it can be used as a heat source during the decarburization process, and the heat tolerance of the refining can be increased. As a method of adding a carbon source during the decarburization process, a method of adding lump anthracite from above is conceivable, but there is a problem that the outlet of the gas generated due to the upward flow of gas generated by blowing acid is large. . Moreover, because of the S i0 2 Inpu' bets from carbonaceous material, decarburization [0108] In order to secure the basicity of the slag at the time, it is necessary to increase the amount of quicklime, which is not preferable.
脱珪脱りん溶銑予備処理中に炭素源を添加する方法と して、 特開 昭 62— 170409号公報においては、 溶銑予備処理の初期に主成分 CaO にスラグ滓化性改善材 (Mn鉱石や弗化カルシウム (蛍石) 等) を配 合したフラックスを上部添加し、 脱珪フラックス (酸化鉄) を溶銑 中に吹き込み、 かつ溶銑表面に気体 Z固体酸素源を供給しつつ、 脱 珪フラックスと共に又は脱珪反応完了後に炭素源をキヤリアガスに よって溶銑中に吹き込んで溶銑の炭素濃度を高める方法が記載され ている。 CaO 系フラックスを上部添加するのは、 脱りんのために使 用する酸化鉄を含んだ CaO 系フラックスを炭素源と共に溶銑中に吹 き込むと、 炭素吹き込みに起因して溶銑中の酸素ポテンシャルが低 下し脱りん反応が阻害されるからであるとしている。  As a method for adding a carbon source during desiliconization and dephosphorization hot metal pretreatment, Japanese Patent Application Laid-Open No. Sho 62-170409 discloses a method for improving the slag slag property (Mn ore or Flux mixed with calcium fluoride (fluorite) etc. is added to the upper part, and desiliconized flux (iron oxide) is blown into the hot metal, and a gas Z solid oxygen source is supplied to the hot metal surface while the desiliconized flux is supplied. Alternatively, a method is described in which a carbon source is blown into the hot metal with a carrier gas after the completion of the desiliconization reaction to increase the carbon concentration of the hot metal. The reason for adding CaO-based flux to the upper part is that when CaO-based flux containing iron oxide used for dephosphorization is injected into the hot metal together with the carbon source, the oxygen potential in the hot metal due to the carbon injection is increased. The reason is that the dephosphorization reaction is inhibited and the phosphorus content is reduced.
精練において、 蛍石を使用することにより予備処理や脱炭処理に 使用する精鍊容器の耐火物の溶損が激しくなる。 例えば、 特開平 8 一 157921号公報の図 6に示されているよ うに、 スラグ中フッ素濃度 が高くなるほど耐火物溶損指数が高くなり、 耐火物溶損が急激に増 大することが知られている。 従って、 耐火物寿命延長の観点から蛍 石を使用しないこ とが好ましい。  In smelting, the use of fluorite increases the erosion of refractories in refining vessels used for pretreatment and decarburization. For example, as shown in FIG. 6 of JP-A-81-157921, it is known that the refractory erosion index increases as the fluorine concentration in the slag increases, and the refractory erosion increases rapidly. ing. Therefore, it is preferable not to use fluorite from the viewpoint of extending the life of refractories.
溶銑予備処理中に炭素源を溶銑に吹き込む上記特開昭 62— 170409 号公報に記載の発明においては、 フラックスを上方添加するので、 スラグ流動性の確保のために弗化カルシウム (蛍石) 等の滓化性改 善剤の添加が必須となっており、 上記蛍石不使用の方向に逆行し好 ましくない。 ここで予備処理において蛍石を使用しないと、 予備処 理での脱りん能力が不足し、 次の脱炭処理において蛍石を使用した 脱りんスラグを形成して脱りんを行う必要が生じることとなる。  In the invention described in Japanese Patent Application Laid-Open No. Sho 62-170409, in which a carbon source is blown into the hot metal during the hot metal pretreatment, the flux is added upward, so that calcium fluoride (fluorite) or the like is used to ensure slag fluidity. It is necessary to add a slag-forming improver, and it is not preferable to go back to the direction in which fluorite is not used. Here, if fluorite is not used in the pretreatment, the dephosphorization ability in the pretreatment is insufficient, and it is necessary to form dephosphorized slag using fluorite in the next decarburization process and perform dephosphorization. Becomes
脱珪と脱りんを途中排滓なしに同一容器内で行う溶銑予備処理を 実施し、 次いで脱炭精鍊を行う溶銑精鍊において、 従来の溶銑予備 処理では予備処理後の脱りんを十分に行う ことが困難であり、 脱炭 処理においてもスラグを形成して脱りんを行う必要があった。 脱炭 工程で脱りんスラグを形成することがコス ト上昇原因となり、 さら に脱炭工程の脱りんスラグ形成に蛍石の使用が必要であるため、 上 記蛍石不使用の方向に逆行すること となる。 Pretreatment of hot metal in which desiliconization and dephosphorization are performed in the same container without waste In hot metal smelting, which is followed by decarburization, it is difficult to perform sufficient dephosphorization after pretreatment with conventional hot metal pretreatment, and slag must also be formed and dephosphorized in decarburization. was there. The formation of dephosphorized slag in the decarburization process causes an increase in cost.Furthermore, the use of fluorite to form the dephosphorized slag in the decarburization process negates the direction in which fluorite is not used. It will be.
本発明は、 溶銑予備処理 · 脱炭工程ともに蛍石を使用しない精鍊 を可能にし、 脱炭工程での脱りん用スラグの形成を最小限にし、 溶 銑中に炭素源を効率よく添加して熱裕度の向上を図る溶銑予備処理 方法及び精鍊方法を提供することを目的とする。 発明の開示  The present invention enables refinement without using fluorite in the hot metal pretreatment and decarburization processes, minimizes the formation of dephosphorization slag in the decarburization process, and efficiently adds a carbon source to the hot metal. It is an object of the present invention to provide a hot metal pretreatment method and a refining method for improving the heat tolerance. Disclosure of the invention
溶銑予備処理初期の脱珪反応時期において、 脱珪用酸素源として 主に酸化鉄をキャリアガスとともに溶銑中に吹き込む従来の方法で は、 脱珪反応時期における溶銑温度の上昇が十分に得られず、 脱り ん精鍊用スラグの滓化が不十分となる。 それに対し、 脱珪用酸素源 と して気体酸素を用いると、 脱珪反応時期における溶銑温度の上昇 が顕著であり、 脱りん精鍊用スラグの滓化を十分に行う ことができ 、 脱りん反応を効率よく行う ことができる。  With the conventional method, in which iron oxide is mainly blown into the hot metal together with a carrier gas as the oxygen source for desiliconization during the early stage of the hot metal pretreatment, the hot metal temperature cannot be sufficiently increased during the desiliconization reaction. However, the slag of the refining slag becomes insufficient. On the other hand, when gaseous oxygen is used as the oxygen source for desiliconization, the temperature of the hot metal rises remarkably during the desiliconization reaction, and the slag for dephosphorization and refining can be sufficiently slagmed. Can be performed efficiently.
脱珪用酸素源と して主に上吹き気体酸素を用いると、 脱珪反応時 期に溶銑に吹き込むフラックス量を大幅に少なくすることができる 。 従って、 脱珪反応時期に熱源と しての炭素源をキャリアガスと と もに溶銑中に吹き込むこととすれば、 フラックス吹き込み開始前に 炭素源のみを溶銑中に添加することが可能になる。 石灰系成分を含 んだ脱りん用のフラックスと炭素源とを同時に吹き込むことがない ので、 吹き込む炭素によって脱りんが阻害されることがない。 また 、 炭素源と酸化鉄系フラックスとの同時吹き込みをなくすことによ り、 炭素源と酸化鉄が反応して発火する恐れがなくなる という効果 も得ることができる。 When mainly blown gaseous oxygen is used as the oxygen source for desiliconization, the amount of flux blown into the hot metal during the desiliconization reaction can be significantly reduced. Therefore, if the carbon source as a heat source is blown into the hot metal together with the carrier gas at the time of the desiliconization reaction, it becomes possible to add only the carbon source into the hot metal before the start of the flux blowing. Since the dephosphorizing flux containing lime-based components and the carbon source are not injected at the same time, the dephosphorization is not hindered by the injected carbon. In addition, by eliminating simultaneous injection of carbon source and iron oxide-based flux, This also has the effect of eliminating the risk of ignition due to the reaction between the carbon source and iron oxide.
即ち、 脱珪用酸素源として主に上吹き気体酸素を用いると同時に 脱珪反応時期に熱源としての炭素源を溶銑中に吹き込むことによ り 、 溶銑予備処理における脱りん効率の大幅向上と精鍊全体の熱裕度 の向上を同時に実現できることが明らかになった。  That is, by mainly using top-blown gaseous oxygen as the oxygen source for desiliconization and simultaneously injecting a carbon source as a heat source into the hot metal during the desiliconization reaction, the dephosphorization efficiency in the hot metal pretreatment is greatly improved and the refining is improved. It has been clarified that the overall thermal tolerance can be improved at the same time.
本発明は以上の知見に基づいてなされたものであり、 その要旨と するところは以下のとおりである。  The present invention has been made based on the above findings, and the gist thereof is as follows.
( 1 ) 上底吹き可能な精鍊容器を用い、 生石灰、 石灰石、 酸化鉄 の 1又は 2以上であって少なく とも酸化鉄を含む成分を主成分とす るフラックスを溶銑中に吹き込んで溶銑の脱珪脱りんを行う溶銑予 備処理方法において、 脱珪反応中に溶銑中に炭素源を吹き込み、 前 記フラックス吹き込み開始前に炭素源吹き込みを開始していること を特徴とする溶銑予備処理方法。  (1) Using a refining vessel that can be blown from the top to the bottom, a flux containing one or more of quick lime, limestone, and iron oxide and containing at least iron oxide as a main component is blown into the hot metal to remove hot metal. A hot metal pretreatment method for performing silicon dephosphorization, wherein a carbon source is blown into the hot metal during the desiliconization reaction, and the carbon source blowing is started before the flux blowing is started.
( 2 ) 前記フラックス吹き込みは、 〔Si〕 濃度が 0.15質量%まで 低下した後に開始することを特徴とする上記 ( 1 ) に記載の溶銑予 備処理方法。  (2) The hot metal pretreatment method according to the above (1), wherein the blowing of the flux is started after the [Si] concentration has decreased to 0.15% by mass.
( 3 ) 前記フラックス吹き込みは、 炭素源吹き込み完了後に開始 することを特徴とする上記 ( 1 ) 又は ( 2 ) に記載の溶銑予備処理 方法。  (3) The hot metal pretreatment method according to the above (1) or (2), wherein the blowing of the flux is started after the blowing of the carbon source is completed.
( 4 ) 溶銑予備処理時に蛍石を使用しないことを特徴とする上記 ( 1 ) 〜 ( 3 ) のいずれか 1つに記載の溶銑予備処理方法。  (4) The hot metal pretreatment method according to any one of the above (1) to (3), wherein fluorite is not used during the hot metal pretreatment.
( 5 ) 上記 ( 1 ) 〜 ( 4 ) のいずれか 1つに記載の溶銑予備処理 方法にて溶銑予備処理を行った後に脱炭処理を行う溶銑の精鍊方法 において、 脱炭処理に蛍石を使用しないことを特徴とする溶銑精鍊 方法。 図面の簡単な説明 (5) In the hot metal refining method of performing hot metal pretreatment by the hot metal pretreatment method according to any one of the above (1) to (4) and then performing decarburization, the fluorite is used for the decarburization process. A hot metal refining method characterized by not using it. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明で使用する溶銑予備処理炉を示す概略図である。 発明を実施するための最良の形態  FIG. 1 is a schematic view showing a hot metal pretreatment furnace used in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の溶銑予備処理には、 図 1 に示すような上底吹き可能な精 鍊容器 1 を用いる。 上吹きは、 上吹きランス 3の先端から主に酸素 ガス 8 を溶銑表面に吹き付ける。 脱珪反応時期に用いた上吹き酸素 は、 脱珪用の酸素源として使用することができる。 脱りん反応時期 においては、 上吹きは、 スラグの酸素ポテンシャルを高め復りんを 防止すると ともに、 放散熱を補い所定の温度に制御するために用い る。  For the hot metal pretreatment of the present invention, a refining vessel 1 that can be blown up and down as shown in FIG. 1 is used. The top blowing mainly blows oxygen gas 8 from the tip of the top blowing lance 3 onto the surface of the hot metal. The top-blown oxygen used during the desiliconization reaction can be used as an oxygen source for desiliconization. During the dephosphorization reaction, the upper blowing is used to increase the oxygen potential of the slag to prevent re-phosphorus, and to supplement the heat dissipated to control the temperature to a predetermined temperature.
底吹きは、 精鍊容器 1 の底部に設けられた底吹きノズル 2を用い て行う。 このノズルより酸素ガスを含むガスあるいは不活性ガスを 溶銑中に吹き込むことによ り溶銑の攪拌を行なう機能を有するほか 、 底吹きノズル 2からキヤリ ァガス 7 と ともにフラックス 9 を溶銑 中に吹き込む機能を有する。  The bottom blowing is performed using a bottom blowing nozzle 2 provided at the bottom of the purification vessel 1. In addition to having the function of stirring hot metal by injecting a gas containing oxygen gas or inert gas into the hot metal from this nozzle, it also has the function of blowing flux 9 together with carrier gas 7 from the bottom blow nozzle 2 into the hot metal. Have.
上底吹き転炉を 2基用いれば、 そのう ちの 1基を溶銑予備処理に 使用し、 残りの 1基を脱炭処理に使用することができる。 溶銑予備 処理用の転炉で予備処理を行い、 次いで溶銑を脱炭処理用の転炉に 移し替えて脱炭処理を行う。  If two top and bottom blown converters are used, one of them can be used for hot metal pretreatment and the other can be used for decarburization. Preliminary treatment is performed in a converter for hot metal pretreatment, and then the hot metal is transferred to a converter for decarburization to perform decarburization.
本発明の溶銑予備処理において、 キャリ アガスと ともに溶銑中に 吹き込むフラックスは、 生石灰、 石灰石、 酸化鉄の 1又は 2以上で あって少なく とも酸化鉄を含む成分を主成分とするフラックスであ る。 脱りんに供するフラックスは、 酸化鉄を含むと ともに生石灰や 石灰石等の CaO 源を含む。 脱りん用フラックスの吹き込みを開始す る前に、 脱珪補助として酸化鉄を主成分とするフラックスの吹き込 みを行っても良い。 フラックス成分と して用いる酸化鉄としては、 鉄鉱石、 ミルスケール、 焼結ダス トなど、 種々のものを用いること が可能である。 In the hot metal pretreatment of the present invention, the flux blown into the hot metal together with the carrier gas is one or more of quick lime, limestone, and iron oxide, and is a flux mainly containing a component containing at least iron oxide. The flux used for dephosphorization contains CaO sources such as quicklime and limestone as well as iron oxide. Before starting the dephosphorization flux blowing, a flux containing iron oxide as a main component may be blown as a desiliconization aid. As iron oxide used as a flux component, Various materials such as iron ore, mill scale, and sintering dust can be used.
溶銑予備処理の脱珪反応は、 主に上吹き気体酸素を酸素源と して 行う。 酸化鉄を含むフラックスを脱珪反応中にキャリ アガスと とも に吹き込んで脱珪用酸素源の補助と して用いても良いが、 その場合 でも脱珪初期には気体酸素のみを酸素源と して脱珪を行うものとし 、 脱珪用フラックスの吹き込みを行わない。  The desiliconization reaction in the hot metal pretreatment is mainly performed using top-blown gaseous oxygen as the oxygen source. A flux containing iron oxide may be blown together with the carrier gas during the desiliconization reaction and used as an auxiliary oxygen source for desiliconization, but even in that case, only gaseous oxygen is used as the oxygen source at the beginning of the desiliconization. Desiliconization, and do not blow the desiliconization flux.
溶銑予備処理の脱珪反応中に、 底吹きノズルから溶銑中にキヤリ ァガスと ともに炭素源を吹き込む。 炭素源と しては、 無煙炭の粉末 ゃコータス粉などを用いることができる。 前記フラックス吹き込み 開始前に炭素源吹き込みを開始する。 従って、 前記フラ ックスを吹 き込まずに炭素源を吹き込んでいる時期が必ず存在する。 炭素源を 単独で吹き込んでいるため、 炭素源を脱りん用フラックスと同時に 吹き込んだときに見られる脱りんを阻害する問題が発生するこ とが ない。  During the desiliconization reaction of the hot metal pretreatment, a carbon source is blown into the hot metal from the bottom blow nozzle together with the carrier gas. As the carbon source, anthracite powder ゃ coatus powder or the like can be used. Before starting the flux blowing, the carbon source blowing is started. Therefore, there is always a time when the carbon source is blown without blowing the flux. Since the carbon source is injected alone, the problem of dephosphorization obstruction that occurs when the carbon source is injected simultaneously with the dephosphorization flux does not occur.
本発明においては、 従来のように脱珪反応を固体酸素源によって 行うのではなく、 主に上吹き気体酸素によって行うので、 脱珪反応 中及び反応後における溶銑温度を従来より高い温度とすることがで きる。 そのため、 吹き込んだフラックスの滓化を促進することがで き、 溶銑予備処理中の脱りん反応を顕著に促進することができる。  In the present invention, since the desiliconization reaction is not performed by a solid oxygen source as in the past, but mainly by top-blown gaseous oxygen, the hot metal temperature during and after the desiliconization reaction should be higher than before. I can do it. Therefore, slagging of the injected flux can be promoted, and the dephosphorization reaction during hot metal pretreatment can be significantly promoted.
ここにおいて、 脱珪反応中とは、 溶銑中の 〔Si〕 が酸化して時間 の経過と ともに 〔Si〕 濃度が低下しつつある時期をいう。 一般に、 溶銑 〔S i〕 濃度が 0. 03質量%まで低下すると、 〔S i〕 の酸化速度が 著しく減少するので、 脱珪反応が終了したと見なすことができる。  Here, during the desiliconization reaction, the period in which [Si] in the hot metal is oxidized and the [Si] concentration is decreasing with time. In general, when the hot metal [S i] concentration is reduced to 0.03% by mass, the oxidation rate of [S i] is significantly reduced, and it can be considered that the desiliconization reaction has been completed.
フラックス吹き込み開始前に炭素源吹き込みを開始しさえすれば 、 フラ ックス吹き込み開始時期は脱珪反応中のどの時点であつても かまわない。 少なく とも脱珪反応終了時にはフラックス吹き込みを 開始しないと、 脱珪反応に続く脱りん反応を円滑に行う ことができ ない。 一方、 本発明の上記 ( 2 ) にあるように、 フラックス吹き込 みは 〔Si〕 濃度が 0. 15質量%まで低下した後に開始すると好ましい 。 〔Si〕 濃度が 0. 15質量%まで低下した以降では脱りんスラグ (フ ラックス) が存在すれば脱珪反応とともに脱りん反応も進行するの で、 〔Si〕 濃度が 0. 15質量%まで低下以降にフラックス吹き込みを 開始することにより、 脱珪反応中における脱りん反応を有効に促進 することができる。 脱珪中の 〔Si〕 濃度判定手段としては、 初期溶 銑 〔Si〕 値をもとに送酸量と脱珪反応効率から脱珪量を推定するこ とによって行う と良い。 As long as the carbon source injection is started before the flux injection is started, the flux injection start timing may be at any time during the desiliconization reaction. At least at the end of the desiliconization reaction, blow in the flux. Otherwise, the dephosphorization reaction following the desiliconization reaction cannot be performed smoothly. On the other hand, as described in the above (2) of the present invention, it is preferable to start the flux blowing after the [Si] concentration has decreased to 0.15% by mass. After the [Si] concentration has decreased to 0.15% by mass, if there is dephosphorized slag (flux), the dephosphorization reaction proceeds together with the desiliconization reaction, so that the [Si] concentration can be reduced to 0.15% by mass. By starting the flux injection after the decrease, the dephosphorization reaction during the desiliconization reaction can be effectively promoted. The means for determining the [Si] concentration during desiliconization may be determined by estimating the amount of desiliconization from the amount of acid supply and the efficiency of desiliconization reaction based on the initial molten iron [Si] value.
脱珪反応時期において、 炭素源とフラックスを同時に吹き込む時 期が存在しても本発明の効果を享受することはできる。 しかし、 本 発明の上記 ( 3 ) にあるよ うに、 炭素源の吹き込みを完了した後に フラックス吹き込みを開始することとすると、 脱りん用フラックス と炭素源とを同時に吹き込むことによる脱りんフラックスの無駄を 省く ことができると ともに、 さらに酸化鉄を含むフラックスと炭素 源とを同時に吹き込んだときに見られる発火の危険性を回避するこ とができるのでよ り好ましい。  The effect of the present invention can be enjoyed even if there is a time when the carbon source and the flux are simultaneously blown during the desiliconization reaction. However, as described in the above (3) of the present invention, if the blowing of the flux is started after the blowing of the carbon source is completed, the waste of the dephosphorizing flux due to the simultaneous blowing of the dephosphorizing flux and the carbon source is reduced. This is more preferable because it can eliminate the risk of ignition that can be avoided when simultaneously injecting a flux containing iron oxide and a carbon source at the same time.
本発明は、 上吹き気体酸素を用いて脱珪を行うので脱珪反応後の 溶銑温度が高く脱りんスラグの滓化が良好であるため、 その後の脱 りん反応が良好に進行する。 同時に、 炭素源の吹き込みを行うので 精練の熱裕度を上げることができるため溶銑予備処理後の脱りん終 了時における溶銑温度を低下させることが可能になる。 脱りん終了 時の溶銑温度を低下させると、 復りんを防止することにより脱りん 能力を向上することが可能になる。 このよ うに本発明は溶銑予備処 理における脱りんに有利に働くため、 本発明の上記 ( 4 ) にあるよ うに、 溶銑予備処理に蛍石を使用せずに所定の脱りん反応を行わせ 画 2/10108 ることが可能になる。 In the present invention, since the desiliconization is performed using the top-blown gaseous oxygen, the hot metal temperature after the desiliconization reaction is high and the slag of the dephosphorized slag is good, so that the subsequent dephosphorization reaction proceeds well. At the same time, since the carbon source is blown, the heat tolerance of refining can be increased, so that the hot metal temperature at the end of dephosphorization after hot metal pretreatment can be lowered. By lowering the hot metal temperature at the end of dephosphorization, it is possible to improve dephosphorization ability by preventing rephosphorization. As described above, since the present invention works favorably for dephosphorization in hot metal pretreatment, as described in (4) of the present invention, a predetermined dephosphorization reaction is performed without using fluorite for hot metal pretreatment. 2/10108
本発明においては、 溶銑予備処理における脱りん能力が優れてい るので、 脱炭処理において追加の脱りん処理を行う必要がない。 従 つて、 本発明の上記 ( 5 ) にあるように、 脱炭処理に蛍石を使用せ ずに溶鋼中のりん濃度を所定の濃度まで低下させることが可能にな る。  In the present invention, since the dephosphorization ability in the hot metal pretreatment is excellent, it is not necessary to perform an additional dephosphorization treatment in the decarburization treatment. Therefore, as described in the above (5) of the present invention, it becomes possible to reduce the phosphorus concentration in the molten steel to a predetermined concentration without using fluorite for the decarburization treatment.
本発明においては、 溶銑予備処理中に炭素源を添加して精練の熱 裕度の向上を図っているので、 スクラップ等の冷鉄源装入比率を上 げることが可能であり、 また脱炭処理において Mn鉱石を添加して高 価な Mn合金鉄の代替とすることが可能になる。 さ らに、 脱炭処理に おいて脱りんスラグを形成する必要がなくスラグ量が少ないので、 Mn鉱石の Mn歩留を向上させることが可能になる。 実施例  In the present invention, since the carbon source is added during the hot metal pretreatment to improve the heat tolerance of refining, it is possible to increase the charging ratio of the cold iron source such as scrap, In the coal treatment, Mn ore can be added to replace expensive Mn alloy iron. Furthermore, since there is no need to form dephosphorized slag in the decarburization treatment and the amount of slag is small, it is possible to improve the Mn yield of Mn ore. Example
280トン上底吹き転炉を 2基用い、 1基を図 1 に示すような溶銑 予備処理用の精鍊容器 1 と して、 もう 1基を脱炭処理用の精練容器 として使用し、 高炭低りん鋼の溶製を行った。  Using two 280-ton top and bottom blown converters, one as a refining vessel 1 for hot metal pretreatment as shown in Fig. 1 and the other as a refining vessel for decarburization Low phosphorus steel was melted.
上吹きについては、 上吹きランス 3を用いて酸素ガス 8を溶銑 5 に吹き付ける。 底吹きは、 転炉の底部に設けた 6個の二重管底吹き ノズル 2を用い、 内管からは酸素ガスあるいは不活性ガスを溶銑中 に吹き込む。 内管と外管との間の空間からは、 内管からの酸素ガス 吹き込み時には冷却ガスとして炭化水素ガスを吹き込み、 内管から の不活性ガス吹き込み時には窒素等の不活性ガスを吹き込む。 溶銑 予備処理炉においては、 フラックスホッパー 4に貯蔵したフラック ス 9を底吹き羽口 2からキヤリァガス 7 と ともに吹き込むことが可 能である。 フラックス 9 として炭素源 9cや生石灰 9a、 焼結ダス ト 9b を用いる。 このとき、 キャリ アガス 7 としては不活性ガスを用いる 底吹き羽口からキャリ アガス 7 とともに吹き込む炭素源 と して は、 FC (Fixed Carbon (石炭中固定炭素) ) =80質量%, VM (Vola tile Matter (石炭中揮発分) ) = 6質量%, Si02 = 6.7質量%の 無煙炭を用いた。 また、 同様にして吹き込むフラックスとしては、 生石灰粉 9aと焼結ダス ト 9bを質量比で 1 : 1 に配合したもの、 ある いは焼結ダス ト 9b単独を用いた。 焼結ダス トの組成は、 T.Fe = 46.7 質量%, CaO = 6質量0/。, A1203 = 2.5質量%, Si02 = 5.2質量% であった。 吹き込み材料の粒度はいずれも 1.5ηπη以下と した。 脱り ん反応時期における上吹きはスラグ 6の酸素ポテンシャルを高め復 りんを防止すると ともに、 放散熱を補い所定の温度に制御するよう に流量を設定した。 In the case of top blowing, oxygen gas 8 is blown onto hot metal 5 using top blowing lance 3. For bottom blowing, six double pipe bottom blowing nozzles 2 provided at the bottom of the converter are used, and oxygen gas or inert gas is blown into the hot metal from the inner pipe. From the space between the inner tube and the outer tube, a hydrocarbon gas is blown as a cooling gas when oxygen gas is blown from the inner tube, and an inert gas such as nitrogen is blown when an inert gas is blown from the inner tube. In the hot metal pretreatment furnace, the flux 9 stored in the flux hopper 4 can be blown together with the carrier gas 7 from the bottom blowing tuyere 2. As the flux 9, a carbon source 9c, quicklime 9a, and sintered dust 9b are used. At this time, an inert gas is used as the carrier gas 7 FC (Fixed Carbon (fixed carbon in coal)) = 80% by mass, VM (Vola tile Matter (volatile matter in coal)) = 6% by mass, Si0 using 2 = 6.7 wt% anthracite. As the flux to be blown in the same way, a mixture of quicklime powder 9a and sintered dust 9b in a mass ratio of 1: 1 or sintered dust 9b alone was used. The composition of the sintered Dust, T.Fe = 46.7 wt%, CaO = 6 mass 0 /. , A1 2 0 3 = 2.5 wt%, and the Si0 2 = 5.2 mass%. The particle size of the blowing material was set to 1.5ηπη or less. The top blowing during the degassing reaction time increased the oxygen potential of the slag 6 to prevent reversion, and set the flow rate so as to compensate for the heat dissipated and control the temperature to a predetermined temperature.
表 1 には各実施例の主に予備処理における炭素源ゃフラックスの 吹き込み状況を示している。 表 2には各実施例の詳細な原単位や成 分 · 温度実績を示している。 本発明例 1, 2が本発明を適用した例 であり、 比較例 1〜 4が従来技術を用いた例である。 Table 1 shows the injection status of the flux of carbon source and flux mainly in the pretreatment in each example. Table 2 shows the detailed basic unit, component and temperature results for each example. Examples 1 and 2 of the present invention are examples to which the present invention is applied, and Comparative Examples 1 to 4 are examples using the conventional technology.
〔表 1〕 〔table 1〕
予備処理炉 脱炭炉 脱珪期 脱りん期 終了温度  Pretreatment furnace Decarburization furnace Desiliconization period Dephosphorization period End temperature
本発明例 粉炭吹き込み CaO+焼結ダス ト 通常 炭材添加Example of the present invention Pulverized coal injection CaO + sintered dust Normal Carbon material added
1 吹き込み なし 本発明例 [Si] 0. 15%まで [Si] 0. 15%以降 通常 炭材添加1 Blowing None Example of the present invention [Si] 0.15% or less [Si] 0.15% or more Normal Carbon material added
2 粉炭吹き込み Ca0+焼結ダス ト吹き込み なし 比較例 1 炭 CaO+焼結ダス ト 通常 炭材添加 2 Pulverized coal injection Ca0 + sintering dust injection None Comparative Example 1 Charcoal CaO + sintering dust Normal Carbon material added
+焼結ダス ト吹き込み 吹き込み なし 比較例 2 焼結ダス ト吹き込み Ca0+焼結ダス ト 通常 炭材添加 吹き込み (塊の上方 添加) 比較例 3 フラックス類 フラックス類 通常 炭材添加 吹き込みなし 吹き込みなし なし 比較例 4 フラックス類 フラックス類 終了温度 炭材添加 吹き込みなし 吹き込みなし アップ なし Comparative Example 2 Sintered dust injected Ca0 + Sintered dust Normally carbon material added Injection (added above lump) Comparative Example 3 Fluxes Fluxes Normally carbonaceous material added No blown None Comparative Example 4 Fluxes Fluxes Finish temperature Carbon material added No blowing No blowing Up None
〔表 2〕 (Table 2)
本発明 本発明 比較例 比較例 比較例 比較例 例 1 例 2 1 2 3 4 予 溶銑量(t/ch) 282 279 280 283 280 278 備 初期温度 C) 1301 1302 1299 1300 1300 1301 処 初期 〔C〕 (質量%) 4.59 4.61 4.62 4.63 4.59 4.58 理 初期 〔P〕 (質量。/。) 0.101 0.102 0.100 0.102 0.100 0.101 炉 粉炭原単位(kg/t) 7.1 3.6 7.1 0 0 0 粉炭吹込時間(min) 4 2 4  Inventive invention Inventive comparative example Comparative example Comparative example Comparative example Example 1 Example 2 1 2 3 4 Pre-hot metal (t / ch) 282 279 280 283 280 278 278 Equipment Initial temperature C) 1301 1302 1299 1300 1300 1301 Treatment Initial (C) (Mass%) 4.59 4.61 4.62 4.63 4.59 4.58 Initial stage [P] (mass./.) 0.101 0.102 0.100 0.102 0.100 0.101 Furnace Basic unit of coal (kg / t) 7.1 3.6 7.1 0 0 0 Pulverized coal injection time (min) 4 2 Four
Ca0+焼結ダス ト 17.8 17.8 17.8 17.8 0 0 原単位(kg/t)  Ca0 + Sintered dust 17.8 17.8 17.8 17.8 0 0 Basic unit (kg / t)
CaO上方装入 5.9 5.9 5.9 5.9 13.9 13.9 原単位(kg/t)  CaO upper charging 5.9 5.9 5.9 5.9 13.9 13.9 Basic unit (kg / t)
上吹き酸素 15.8 15.8 15.0 15.0 17.0 17.0 原単位(Nm3/t) Top blowing oxygen 15.8 15.8 15.0 15.0 17.0 17.0 Basic unit (Nm 3 / t)
全処理時間(min) 14 14 14 14 14 14 処理後温度(°C) 1339 1341 1342 1339 1340 1370 処理後 〔C〕 (質量%) 4.03 3.87 4.01 3.42 3.41 3.39 処理後 〔P〕 (質量%) 0.012 0.010 ' 0.018 0.016 0.020 0.025 Total treatment time (min) 14 14 14 14 14 14 Temperature after treatment (° C) 1339 1341 1342 1339 1340 1370 After treatment [C] (% by mass) 4.03 3.87 4.01 3.42 3.41 3.39 After treatment [P] (% by mass) 0.012 0.010 '0.018 0.016 0.020 0.025
CaF2添加有無 なし なし なし なし なし なし 脱 初期 〔C〕 (質量%) 4.03 3.87 4.01 3.42 3.41 3.39 炭 初期 〔Mn〕 (質量%) 0.100 0.101 0.097 0.102 0.101 0.098 炉 炭材原単位(kg/t) 0 0 0 14.2 0 0 スラダボリ ユーム 20 20 30 35 40 40 Addition of CaF 2 None None None None None None De-initialized [C] (% by mass) 4.03 3.87 4.01 3.42 3.41 3.39 Charcoal initial [Mn] (% by mass) 0.100 0.101 0.097 0.102 0.101 0.098 Furnace Basic unit of carbon material (kg / t) 0 0 0 14.2 0 0 Sladaborg Yum 20 20 30 35 40 40
Mn鉱石原単位(kg/t) 10 10 10 10 0 5 吹止 Temp. (。C) 1689 1684 1687 1690 1688 1683 吹止 〔C〕 (質量%) 0.451 0.448 0.450 0.449 0.448 0.447 吹止 〔P〕 (質量0 /。) 0.012 0.010 0.012 0.011 0.012 0.013 吹止 〔Mn〕 (質量%) 0.384 0.381 0.305 0.282 0.100 0.178Mn ore intensity ( kg / t) 10 10 10 10 0 5 Blow-off Temp. (.C) 1689 1684 1687 1690 1688 1683 Blow-off [C] (% by mass) 0.451 0.448 0.450 0.449 0.448 0.447 Blow-off [P] (Mass 0 /.) 0.012 0.010 0.012 0.011 0.012 0.013 Blow [Mn] (mass%) 0.384 0.381 0.305 0.282 0.100 0.178
Mn歩留(%) 71 70 52 45 40Mn yield (%) 71 70 52 45 40
CaF2原単位(kg/t) なし なし 2 2 5 5 予備処理終了温度は比較例 4以外はすべて 1340°C狙いとし、 比較 例 4のみ 30°Cァップした 1370°C狙いと した。 予備処理終了温度の調 整は、 予備処理中に上方投入する鉄鉱石の投入原単位を調整するこ とによって行った。 ただし、 脱りん反応開始前あるいは開始直後に 鉄鉱石を投入すると、 溶銑温度低下によって脱りんスラグの滓化不 良を起こすこと となるので、 鉄鉱石の投入はできるだけ脱りん反応 の後期に行う と良い。 脱炭処理においては、 熱裕度が存在する場合 には Mn鉱石を添加して Mn合金鉄原単位の削減を行った。 CaF 2 basic unit (kg / t) None None 2 2 5 5 The end temperature of the pretreatment was set to 1340 ° C except for Comparative Example 4, and the target of 1370 ° C was increased by 30 ° C only in Comparative Example 4. Adjustment of the pretreatment end temperature was performed by adjusting the unit consumption of iron ore charged upward during the pretreatment. However, if iron ore is introduced before or immediately after the start of the dephosphorization reaction, the slag formation of the dephosphorized slag will occur due to a drop in hot metal temperature, so iron iron ore should be introduced as late as possible in the dephosphorization reaction. good. In the decarburization treatment, if heat tolerance exists, Mn ore was added to reduce the unit consumption of Mn alloy iron.
本発明例 1は、 脱珪反応時期には上吹き酸素のみによって脱珪を 行い、 一方で脱珪反応時期全体にわたって炭素源を吹き込んだ。 脱 りん反応時期においては脱りん用フラックスと して生石灰粉と焼結 ダス ト配合剤の吹き込みを行った。 本発明例 2は、 〔S i〕 濃度が 0. 15質量%まで低下するまでに炭素源の吹き込みを完了し、 〔S i〕 濃 度が 0. 15質量%まで低下してから脱りん終了まで生石灰粉と焼結ダ ス ト配合剤の吹き込みを行った。 それ以外の条件は本発明例 1 と同 様である。  In Example 1 of the present invention, desiliconization was performed only by the upwardly blown oxygen during the desiliconization reaction time, while a carbon source was blown over the entire desiliconization reaction time. At the time of the dephosphorization reaction, quicklime powder and a sinter dust mixture were blown in as fluxes for dephosphorization. In Invention Example 2, the blowing of the carbon source was completed before the [S i] concentration was reduced to 0.15% by mass, and the dephosphorization was completed after the [S i] concentration was reduced to 0.15% by mass. Until then, quicklime powder and a sinter dust compounding agent were injected. The other conditions are the same as in Example 1 of the present invention.
比較例 1 は、 脱珪反応時期に炭素源と焼結ダス ト とを底吹きにて 吹き込み、 上吹き酸素と焼結ダス トの両方を脱珪用酸素源とした。 脱りん反応時期においては脱りん用フラックスとして生石灰粉と焼 結ダス ト配合剤の吹き込みを行った。 比較例 2は、 溶銑予備処理の 脱珪反応時期の炭素源吹き込みを行わず、 かわりに脱炭処理時に塊 状の無煙炭を上方から投入した。 ここで、 脱炭処理時における炭素 源投入を底吹きノズルからの吹き込みによって行おう とすると、 脱 炭処理時の吹き止め温度が高くなるため、 底吹きノズルの寿命が短 く コス トアップとなると考えられるので、 無煙炭の上方投入を採用 した。 溶銑 〔C〕 アップ量を実施例 1、 比較例 1 と同等とするため には、 吹き込みによる方法と比較して 2倍の原単位の炭素源投入が 必要であった。 それ以外の条件は比較例 1 と同様である。 比較例 3 は、 溶銑予備処理時にフラックス類の吹き込みを行わず、 脱珪は上 吹き酸素のみを酸素源と して行い、 予備処理開始時に生石灰を上方 投入して脱りんスラグと した。 比較例 4は、 予備処理終了温度を 30 。C了ップの 1370 °C狙いと した以外は比較例 3 と同様である。 In Comparative Example 1, a carbon source and a sintering dust were blown from the bottom during the desiliconization reaction, and both the top-blown oxygen and the sintering dust were used as the desiliconization oxygen source. At the time of the dephosphorization reaction, quicklime powder and a sintering dust mix were blown in as flux for dephosphorization. In Comparative Example 2, the carbon source was not injected during the desiliconization reaction time of the hot metal pretreatment, but instead lump anthracite was injected from above during the decarburization treatment. Here, it is thought that if the carbon source is supplied by blowing from the bottom blow nozzle during the decarburization process, the blow-off temperature during the decarburization process becomes high, and the life of the bottom blow nozzle will be short and the cost will increase. Therefore, the upward injection of anthracite was adopted. In order to increase the amount of hot metal (C) equivalent to that in Example 1 and Comparative Example 1, it was necessary to use twice as much carbon unit as the unit used in the injection method. Was needed. Other conditions are the same as in Comparative Example 1. In Comparative Example 3, flux was not injected during the hot metal pretreatment, and desiliconization was performed using only the upper-blown oxygen as the oxygen source. At the start of the pretreatment, quick lime was charged upward to form dephosphorized slag. In Comparative Example 4, the pretreatment end temperature was 30. It is the same as Comparative Example 3 except that the target of 1370 ° C at the end of C was set.
まず、 脱珪反応時期における現象について、 本発明例 1 と比較例 1 , 2 との間で対比を行う。  First, the phenomenon at the desiliconization reaction time is compared between the inventive example 1 and the comparative examples 1 and 2.
比較例 2においては、 脱珪反応時期に酸素ガス上吹きと焼結ダス ト吹き込みを行っている。 吹き込んだ焼結ダス ト中の酸化鉄は、 溶 銑中の 〔S i〕 を酸化すると ともに一部溶銑中 〔C〕 を酸化して COガ スとする。 酸化鉄との反応はいずれも吸熱反応であり、 脱珪反応終 了時における溶銑温度を低下させる。 溶銑中の 〔C〕 濃度の低下を もきたす。  In Comparative Example 2, oxygen gas top blowing and sinter dust blowing were performed during the desiliconization reaction. The iron oxide in the blown sinter dust oxidizes [S i] in the hot metal and also partially oxidizes [C] in the hot metal to form CO gas. All reactions with iron oxide are endothermic reactions and lower the hot metal temperature at the end of the desiliconization reaction. It also lowers the [C] concentration in the hot metal.
比較例 1 においては、 比較例 2 と同様に溶銑中の 〔S i〕 と 〔C〕 が焼結ダス ト中の酸化鉄と反応し、 これは吸熱反応である。 比較例 1においてはさ らに、 脱珪反応時期に炭素源を吹き込んでいるので 、 溶銑中 〔C〕 は常に飽和に保たれる。 〔C〕 と酸化鉄との反応は 〔C〕 濃度が高いほど進行するので、 比較例 2よ り以上に 〔C〕 と 酸化鉄との反応が進行し、 脱珪反応時期の温度低下の度合いが大き くなる。 また、 溶銑中 〔C〕 が飽和に保たれているため、 スラグ中 の Fe O を還元しやすく、 Fe O 濃度が低い S i 02リ ツチな FeO _ S i 02系 スラグとなるので、 スラグ融点が上がってスラグの滓化性が損なわ れるという現象も発生する。 In Comparative Example 1, as in Comparative Example 2, [S i] and [C] in the hot metal reacted with the iron oxide in the sintered dust, and this was an endothermic reaction. In Comparative Example 1, since a carbon source was blown during the desiliconization reaction, [C] in the hot metal was always kept saturated. Since the reaction between [C] and iron oxide proceeds as the [C] concentration increases, the reaction between [C] and iron oxide proceeds more than in Comparative Example 2, and the degree of temperature decrease during the desiliconization reaction Becomes larger. Further, since the molten iron (C) is kept in saturation, easily reducing the Fe O in the slag, since Fe O concentration is lower S i 0 2 Li Tutsi of FeO _ S i 0 2 slag, A phenomenon also occurs in which the melting point of the slag rises and the slag slag property is impaired.
本発明例 1においては、 脱珪反応時期に焼結ダス トを吹き込まず 、 脱珪反応を上吹き酸素ガスのみで行う。 溶銑中 〔S i〕 と酸素ガス との反応は発熱反応であるため、 比較例 1, 2 と対比して発熱量が 大きく、 脱珪反応終了時の溶銑温度を高くすることができる。 炭素 源吹き込みによって 〔C〕 が飽和に保たれているためスラグの FeO を還元しやすい点は比較例 1 と同様であるが、 比較例 1 と対比して 上吹き酸素ガスが多いため、 上吹き酸素による FeO 生成量が多く、 スラグを低融点の FeO —Si 02系スラグに保持することができる。 以 上の理由により、 本発明例 1においては、 脱珪反応終了時における スラグを滓化の良好なスラグとすることができ、 その後に続く脱り ん反応を有利に進行させることが可能になる。 In Example 1 of the present invention, the desiliconization reaction is performed using only the top-blown oxygen gas without blowing sintering dust during the desiliconization reaction time. Since the reaction between the hot metal [Si] and the oxygen gas is an exothermic reaction, the calorific value is larger than in Comparative Examples 1 and 2, and the hot metal temperature at the end of the desiliconization reaction can be increased. carbon The fact that [C] is kept saturated by the source injection makes it easy to reduce FeO in the slag as in Comparative Example 1. can be FeO production amount by many, to retain the slag FeO -Si 0 2 slag of low melting point. For the above reasons, in Example 1 of the present invention, the slag at the end of the desiliconization reaction can be made into a slag with good slagging, and the subsequent degassing reaction can advantageously proceed. .
次に各実施例の脱りん状況について説明する。  Next, the dephosphorization status of each embodiment will be described.
本発明例 1 においては、 脱珪反応時期には酸化鉄系フラックスを 吹き込まずに上吹き酸素のみで脱珪反応を行っているため、 脱りん 反応開始時の溶銑温度が高い。 さらに、 脱りん反応時期において添 加する脱りんフラックスは、 上方投入ではなく溶銑中にキャリ アガ スとともに吹き込んでいるので、 溶銑温度ァップとの相乗効果で、 蛍石を使用 'しなくても良好な脱りん反応を進行させることができる 。 また、 炭素源吹き込みと脱りんフラ ックス吹き込みを別々のタイ ミ ングで行っているので、 吹き込んだ炭素源が脱りんを阻害するこ ともない。 また、 溶銑予備処理終了時の温度も 1339°Cに抑えられて いるので、 処理後 〔P〕 濃度を 0. 012質量%まで低下することがで きた。 そのため、 引き続く脱炭処理において追加の脱りんを行う必 要はないが、 ダス トの低減を目的に 20kg/ t のスラグを生成させて 脱炭処理を行った。 蛍石無添加とすることができたので、 スラグか らのフッ素の溶出の心配はなく、 スラグの有効利用が可能であった 本発明例 2おいては、 本発明例 1 の条件に加え、 〔Si〕 濃度が 0. 15質量%まで低下するまでに炭素源吹き込みを完了して、 脱りんフ ラックス吹き込みを開始している。 このため、 脱珪反応後半におい ても脱りん反応を進行させることが可能になり、 予備処理トータル としての脱りん反応を促進させることができた。 その結果、 予備処 理後 〔P〕 濃度を 0. 010質量%まで低下することができた。 一方、 炭素源吹き込み時間が短かったので、 炭素源吹き込み原単位は本発 明例 1 の 1 Z 2にと どまった。 In Example 1 of the present invention, at the time of the desiliconization reaction, since the desiliconization reaction is performed only with the top-blown oxygen without blowing the iron oxide-based flux, the hot metal temperature at the start of the dephosphorization reaction is high. Furthermore, since the dephosphorization flux added during the dephosphorization reaction is blown into the hot metal together with the carrier gas instead of being injected upward, the synergistic effect with the hot metal temperature gap makes it unnecessary to use fluorite. A dephosphorization reaction can proceed. Also, since the carbon source injection and the dephosphorization flux injection are performed at different times, the injected carbon source does not inhibit dephosphorization. In addition, the temperature at the end of the hot metal pretreatment was kept at 1339 ° C, so that the [P] concentration after the treatment could be reduced to 0.012% by mass. For this reason, it is not necessary to perform additional dephosphorization in the subsequent decarburization treatment, but decarburization treatment was performed by generating 20 kg / t slag to reduce dust. Since fluorite was not added, there was no concern about elution of fluorine from the slag, and the slag could be effectively used. [Carbon source blowing was completed before the [Si] concentration dropped to 0.15% by mass, and dephosphorizing flux blowing was started. This makes it possible for the dephosphorization reaction to proceed even in the latter half of the desiliconization reaction. Was able to accelerate the dephosphorization reaction. As a result, it was possible to reduce the [P] concentration to 0.010% by mass after the pretreatment. On the other hand, because the carbon source injection time was short, the carbon source injection unit remained at 1 Z2 in Example 1 of the present invention.
比較例 1 においては、 脱珪用酸素源と して焼結ダス トを吹き込ん で使用しているため、 脱りん開始時の溶銑温度を十分に上昇させる ことができず、 予備処理後の 〔P〕 濃度が 0. 018質量%までしか低 下しなかった。 そのため、 脱炭処理時のスラグ量を 30kgZ t とし、 さらに蛍石を 2 kg / t添加して追加的脱りん処理を行った。 In Comparative Example 1, since the sintering dust was blown and used as the oxygen source for desiliconization, the hot metal temperature at the start of dephosphorization could not be sufficiently increased, and the (P The concentration decreased only to 0.018% by mass. Therefore, the amount of slag during decarburization and 30k g Z t, was further fluorite 2 kg / t added to additional dephosphorization treatment.
比較例 2は、 比較例 1 と対比して脱珪時の炭素源吹き込みを行つ ていないので、 予備処理後の 〔P〕 濃度が 0. 016質量%と比較例 1 より若干良好であった。 炭素源吹き込みを行っていないので、 酸素 ポテンシャルを高めることができるためである。 一方、 脱炭処理で 投入した無煙炭からの S i02ィンプッ トがある.ため、 スラグ塩基度確 保のためにスラグ量を 35kg/ t にアップする必要があった。 In Comparative Example 2, since the carbon source was not blown during desiliconization in comparison with Comparative Example 1, the [P] concentration after the pretreatment was 0.016% by mass, which was slightly better than Comparative Example 1. . Because the carbon source is not injected, the oxygen potential can be increased. On the other hand, there are S i0 2 Inpu' bets from anthracite was introduced by decarburization. Therefore, it was necessary to increase the amount of slag to 35 kg / t for the slag basicity secure.
比較例 3は脱りんフラックスを吹き込まずに上方添加としている ので、 予備処理後 〔P〕 濃度が 0. 020質量%までしか低下しなかつ た。 そのため、 脱炭処理において 40kgZ t のスラグを形成するとと もに蛍石を 5 kg/ t添加して追加的脱りん処理を行った。  In Comparative Example 3, since the dephosphorization flux was not added but added upward, the concentration of [P] decreased only to 0.002% by mass after the pretreatment. Therefore, in the decarburization treatment, slag of 40 kgZt was formed, and fluorite was added at 5 kg / t to perform additional dephosphorization treatment.
比較例 4は、 比較例 3 と対比して予備処理後温度を 1370°Cと高い 温度と したので、 予備処理後 〔P〕 濃度は 0. 025質量%と最も高い 値となった。 そのため、 脱炭処理において 40kg/ t のスラグを形成 すると ともに蛍石を 5 kg/ t添加して追加的脱りん処理を行った。 各実施例の熱裕度改善状況と Mn鉱石添加実績について対比する。 本発明例 1 , 2、 比較例 1, 2においては、 溶銑予備処理又は脱 炭処理において炭素源を添加した結果として熱裕度が改善され、 脱 炭処理において Mn鉱石を 10kg/ t投入して Mn合金鉄の削減を図るこ とができた。 本発明例 1 , 2については、 脱炭処理時に形成するス ラグ量を最小とすることができたので、 Mn鉱石の Mn歩留も 70 %前後 という良好な成績を上げることができた。 In Comparative Example 4, since the temperature after the pretreatment was set to 1370 ° C., which was higher than that in Comparative Example 3, the [P] concentration after the pretreatment reached the highest value of 0.025% by mass. Therefore, slag of 40 kg / t was formed in the decarburization process, and 5 kg / t of fluorite was added to perform additional dephosphorization. The improvement of the heat tolerance of each example and the results of Mn ore addition are compared. In Examples 1 and 2 of the present invention and Comparative Examples 1 and 2, the heat tolerance was improved as a result of adding a carbon source in the hot metal pretreatment or decarburization treatment, and Mn ore was charged at 10 kg / t in the decarburization treatment. Reduction of Mn alloy iron I was able to. In Examples 1 and 2 of the present invention, the amount of slag formed during the decarburization treatment could be minimized, so that the Mn yield of the Mn ore could be improved to about 70%.
これに対し、 比較例 3は炭素源添加を行っていないので熱裕度が 不足し Mn鉱石を添加できなかった。 また、 比較例 4については予備 処理終了温度を上昇して熱裕度向上を図ったものの、 脱炭処理にお いて大量のスラグを生成したために熱裕度が低下し、 Mn鉱石を 5 kg / t しか添加できなかった。  On the other hand, in Comparative Example 3, since the carbon source was not added, the heat tolerance was insufficient and Mn ore could not be added. In Comparative Example 4, although the pre-treatment end temperature was raised to improve the heat tolerance, the heat tolerance decreased due to the large amount of slag generated in the decarburization treatment, and the Mn ore was reduced to 5 kg / min. Only t could be added.
以上まとめると、 本発明例 1, 2においては、 脱珪には固体酸素 源を用いず、 脱りんには溶銑に吹き込んだフラックスを使用してい るため、 予備処理において高い脱りん能力を実現することができた 。 また、 脱珪時に脱りんフラックス吹き込み前の別のタイ ミ ングに 炭素源を吹き込んでいるので、 脱りん能力を阻害することなく溶銑 中に炭素を高歩留で添加して精練の熱裕度を増大させることができ た。  In summary, in Examples 1 and 2 of the present invention, a solid oxygen source was not used for desiliconization, and a flux blown into hot metal was used for dephosphorization, so that a high dephosphorization capacity was achieved in the pretreatment. I was able to. In addition, since the carbon source is blown into the separate timing before the dephosphorization flux is blown during the desiliconization, carbon is added to the hot metal at a high yield without impairing the dephosphorization ability, and the heat tolerance of refining Could be increased.
実施例 1の条件と比較例 3の条件で各々 20chづっ連続した操業を 実施し、 耐火物溶損量を比較した。 その結果、 脱炭炉で蛍石を 5 kg / t使用した比較例 2に比べ、 蛍石を使用しない実施例 1の方が脱 炭炉耐火物溶損量が 30 %少ないことが確認でき、 耐火物コス ト低減 に役立った。 産業上の利用可能性  Under the conditions of Example 1 and Comparative Example 3, continuous operation was performed for each of 20 channels, and the amount of refractory erosion was compared. As a result, it was confirmed that in Example 1, which did not use fluorite, the amount of erosion loss of the decarburization furnace refractories was 30% less than that of Comparative Example 2, which used 5 kg / t of fluorite in the decarburization furnace. It helped to reduce refractory costs. Industrial applicability
本発明は、 上底吹き可能な精鍊容器を用いて脱珪脱りんを行う溶 銑予備処理の後に脱炭処理を行う溶銑精鍊方法において、 主に上吹 き気体酸素を用いて脱珪を行い、 脱珪反応中に溶銑中に炭素源を吹 き込み、 その後脱りんフラックスの吹き込みを行うので、 溶銑中に 炭素を高歩留で添加して精練の熱裕度を増大させることができ、 さ らに予備処理において高い脱りん能力を実現することができる。 本発明において、 〔S i〕 濃度が 0. 15質量%まで低下した後に脱り んフラ ックス吹き込みを開始すると、 脱珪反応期間中にも脱りん反 応を起こさせることができ、 予備処理における脱りん能力を向上す ることができる。 The present invention relates to a hot metal refining method in which decarburization is performed after hot metal pretreatment in which desiliconization and dephosphorization is performed using a top and bottom blown refining vessel. However, during the desiliconization reaction, a carbon source is blown into the hot metal and then a dephosphorizing flux is blown, so that carbon can be added to the hot metal at a high yield to increase the heat tolerance of refining. Sa Furthermore, a high dephosphorization ability can be realized in the pretreatment. In the present invention, if the degassing flux is started after the [Si] concentration has dropped to 0.15% by mass, the dephosphorization reaction can be caused even during the desiliconization reaction, and The ability to remove phosphorus can be improved.
本発明は、 炭素源吹き込み後に脱りんフラックス吹き込みを開始 するこ とによ り、 脱りん能力を阻害することなく溶銑中に炭素を高 歩留で添加して精練の熱裕度を増大させることができ、 かつ発火の 危険性を回避するこ とができる。  The present invention is to increase the thermal tolerance of refining by adding carbon into hot metal at a high yield without impairing the dephosphorization ability by starting the dephosphorization flux injection after the carbon source injection. And the risk of ignition can be avoided.
本発明は、 溶銑予備処理における脱りん性能を向上させた結果と して、 溶銑予備処理において蛍石を使用せず、 また脱炭処理時にお いても蛍石を使用せずに精鍊を行う ことが可能になる。 これにより 、 耐火物溶損量を削減し、 耐火物コス トを低減することができる。  As a result of improving the dephosphorization performance in the hot metal pretreatment, the present invention is to perform the purification without using the fluorite in the hot metal pretreatment and without using the fluorite even in the decarburization process. Becomes possible. Thereby, the amount of refractory erosion can be reduced and the cost of refractory can be reduced.

Claims

請 求 の 範 囲 The scope of the claims
1 . 上底吹き可能な精鍊容器を用い、 生石灰、 石灰石、 酸化鉄の 1又は 2以上であって少なく とも酸化鉄を含む成分を主成分とする フラ ックスを溶銑中に吹き込んで溶銑の脱珪脱りんを行う溶銑予備 処理方法において、 脱珪反応中に溶銑中に炭素源を吹き込み、 前記 フラックス吹き込み開始前に炭素源吹き込みを開始していることを 特徴とする溶銑予備処理方法。 1. Using a refining vessel capable of being blown from the bottom to the top, de-siliconize the hot metal by injecting into the hot metal a flux that is one or more of quick lime, limestone, and iron oxide and contains at least a component containing iron oxide. A hot metal pretreatment method for dephosphorizing, wherein a carbon source is blown into the hot metal during the desiliconization reaction, and the carbon source blowing is started before the flux blowing is started.
2 . 前記フラ ックス吹き込みは、 〔Si〕 濃度が 0. 15質量%まで低 下した後に開始することを特徴とする請求の範囲第 1項に記載の溶 銑予備処理方法。  2. The hot metal pretreatment method according to claim 1, wherein the flux blowing is started after the [Si] concentration has decreased to 0.15% by mass.
3 . 前記フラ ックス吹き込みは、 炭素源吹き込み完了後に開始す ることを特徴とする請求の範囲第 1項又は第 2項に記載の溶銑予備 処理方法。  3. The hot metal pretreatment method according to claim 1, wherein the blowing of the flux is started after the blowing of the carbon source is completed.
4 . 溶銑予備処理時に蛍石を使用しないことを特徴とする請求の 範囲第 1項〜第 3項のいずれか 1項に記載の溶銑の予備処理方法。  4. The pretreatment method for hot metal according to any one of claims 1 to 3, wherein fluorite is not used at the time of pretreatment of hot metal.
5 . 請求の範囲第 1項〜第 4項のいずれか 1項に記載の溶銑予備 処理方法にて溶銑予備処理を行った後に脱炭処理を行う溶銑の精鍊 方法において、 脱炭処理に蛍石を使用しないことを特徵とする溶銑 精練方法。  5. A method for refining hot metal, which comprises performing a hot metal pretreatment by the hot metal pretreatment method according to any one of claims 1 to 4 and then performing a decarburization process. A hot metal refining method characterized by using no iron.
PCT/JP2002/010108 2001-09-27 2002-09-27 Method for pretreatment of molten iron and method for refining WO2003029498A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020047004598A KR100658807B1 (en) 2001-09-27 2002-09-27 Method for pretreatment of molten iron and method for refining
EP02772944.1A EP1457574B1 (en) 2001-09-27 2002-09-27 Method for pretreatment of molten iron and method for refining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-295874 2001-09-27
JP2001295874A JP3854482B2 (en) 2001-09-27 2001-09-27 Hot metal pretreatment method and refining method

Publications (1)

Publication Number Publication Date
WO2003029498A1 true WO2003029498A1 (en) 2003-04-10

Family

ID=19117229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010108 WO2003029498A1 (en) 2001-09-27 2002-09-27 Method for pretreatment of molten iron and method for refining

Country Status (4)

Country Link
EP (1) EP1457574B1 (en)
JP (1) JP3854482B2 (en)
KR (1) KR100658807B1 (en)
WO (1) WO2003029498A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100909691B1 (en) * 2002-12-18 2009-07-29 주식회사 포스코 Molten steel delineation method using high purity iron oxide in vacuum degassing facility
JP4735169B2 (en) * 2005-09-30 2011-07-27 Jfeスチール株式会社 Hot metal dephosphorization method
JP5689024B2 (en) * 2010-06-07 2015-03-25 株式会社神戸製鋼所 Dephosphorization method of hot metal using dust
KR101529843B1 (en) 2011-12-20 2015-06-17 제이에프이 스틸 가부시키가이샤 Converter steelmaking method
JP5979017B2 (en) * 2012-01-19 2016-08-24 Jfeスチール株式会社 Hot metal refining method
CN115574554A (en) * 2022-09-27 2023-01-06 首钢集团有限公司 Lime powder drying device, converter and lime powder blowing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221511A (en) * 1984-04-17 1985-11-06 Nippon Steel Corp Method for carburizing and melt-refining molten iron
JPH02228412A (en) * 1989-02-28 1990-09-11 Kobe Steel Ltd Pretreatment of molten iron
JPH07278636A (en) * 1994-04-13 1995-10-24 Nippon Steel Corp Desiliconizing method of molten iron
JPH0920914A (en) * 1995-06-30 1997-01-21 Nippon Steel Corp Pretreatment for molten iron

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170409A (en) * 1986-01-21 1987-07-27 Kobe Steel Ltd Preliminary treatment of molten iron
WO1995001458A1 (en) * 1993-06-30 1995-01-12 Nippon Steel Corporation Steel manufacturing method using converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221511A (en) * 1984-04-17 1985-11-06 Nippon Steel Corp Method for carburizing and melt-refining molten iron
JPH02228412A (en) * 1989-02-28 1990-09-11 Kobe Steel Ltd Pretreatment of molten iron
JPH07278636A (en) * 1994-04-13 1995-10-24 Nippon Steel Corp Desiliconizing method of molten iron
JPH0920914A (en) * 1995-06-30 1997-01-21 Nippon Steel Corp Pretreatment for molten iron

Also Published As

Publication number Publication date
EP1457574A4 (en) 2006-02-15
JP2003105418A (en) 2003-04-09
EP1457574A1 (en) 2004-09-15
KR100658807B1 (en) 2006-12-19
KR20040033326A (en) 2004-04-21
EP1457574B1 (en) 2018-05-30
JP3854482B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
JP5440733B2 (en) Hot metal refining method
WO1995001458A1 (en) Steel manufacturing method using converter
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JP2004190101A (en) Method for pre-treating molten iron
JP6693536B2 (en) Converter steelmaking method
JPH0437132B2 (en)
JP2000160233A (en) Method for desulfurize-refining stainless steel
JP6665884B2 (en) Converter steelmaking method
JP2013227664A (en) Molten iron preliminary treatment method
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JP3458890B2 (en) Hot metal refining method
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JPH0437135B2 (en)
JP3158912B2 (en) Stainless steel refining method
JPH0557327B2 (en)
JP2003105419A (en) Method for pretreating molten iron
JPH116006A (en) Sub raw material charging method into converter
JP4356275B2 (en) Hot metal refining method
JPH0437137B2 (en)
JPH0433844B2 (en)
JP2755027B2 (en) Steelmaking method
JPH0437134B2 (en)
JP2005048238A (en) Method for dephosphorizing molten iron
JPH0841519A (en) Steelmaking method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047004598

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002772944

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002772944

Country of ref document: EP