JP6665884B2 - Converter steelmaking method - Google Patents

Converter steelmaking method Download PDF

Info

Publication number
JP6665884B2
JP6665884B2 JP2018078913A JP2018078913A JP6665884B2 JP 6665884 B2 JP6665884 B2 JP 6665884B2 JP 2018078913 A JP2018078913 A JP 2018078913A JP 2018078913 A JP2018078913 A JP 2018078913A JP 6665884 B2 JP6665884 B2 JP 6665884B2
Authority
JP
Japan
Prior art keywords
converter
slag
hot metal
iron source
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078913A
Other languages
Japanese (ja)
Other versions
JP2018188730A (en
Inventor
菊池 直樹
直樹 菊池
憲治 中瀬
憲治 中瀬
洋晴 井戸
洋晴 井戸
錦織 正規
正規 錦織
三木 祐司
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018188730A publication Critical patent/JP2018188730A/en
Application granted granted Critical
Publication of JP6665884B2 publication Critical patent/JP6665884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、転炉内に装入された溶銑を酸素吹錬して、溶銑から溶鋼を溶製する転炉製鋼方法に関する。   The present invention relates to a converter steelmaking method for smelting molten steel from hot metal by oxygen-blowing hot metal charged in a converter.

製鋼スラグの発生量の低減、及び、溶鋼の品質向上のために、転炉で脱炭精錬する前に、溶銑に対して脱珪処理、脱燐処理、脱硫処理の予備処理が行われている。そのうちで転炉を用いた溶銑の脱燐処理では、酸素ガス供給流量(「送酸速度」ともいう)を大きくすることができ、高速処理が可能である。一方、溶鋼の生産量を増加する場合は、本来、脱炭精錬に使用する転炉を用いて予備処理を行うので、転炉を用いた溶銑の脱燐処理は困難となる。   To reduce the amount of steelmaking slag generated and improve the quality of molten steel, pretreatment of desiliconization, dephosphorization, and desulfurization is performed on hot metal before decarburization and refining in a converter. . Among them, in the dephosphorization treatment of hot metal using a converter, the supply flow rate of oxygen gas (also referred to as “acid supply rate”) can be increased, and high-speed treatment is possible. On the other hand, when increasing the production amount of molten steel, since the preliminary treatment is originally performed using a converter used for decarburization refining, the dephosphorization treatment of the hot metal using the converter becomes difficult.

また、製鋼工程における炭酸ガスの発生量低減のためには、鉄源として冷鉄源を配合して溶銑比率を低下することが有効である。転炉設備はスクラップシュートなどを用いて多量の冷鉄源の投入が可能であるが、冷鉄源を溶解するための熱補償が転炉での精錬で必要となる。   In order to reduce the amount of carbon dioxide generated in the steelmaking process, it is effective to mix a cold iron source as an iron source to lower the hot metal ratio. The converter equipment can supply a large amount of cold iron source using a scrap chute or the like, but heat compensation for melting the cold iron source is required for refining in the converter.

溶銑の脱燐処理は送酸しながら生石灰などのCaO系媒溶剤を添加して行うが、溶銑中の炭素も酸化除去され、その結果、溶銑の潜熱が低下する。したがって、転炉での脱炭精錬で高価なFe−Si合金などの発熱材の添加を行わない前提では、溶銑に対して脱燐処理を実施せずに冷鉄源の溶解を促進するか、脱燐処理の実施かの選択を行う必要がある。   The dephosphorization treatment of the hot metal is performed by adding a CaO-based solvent such as quicklime while feeding the acid, but also carbon in the hot metal is oxidized and removed, and as a result, the latent heat of the hot metal decreases. Therefore, on the premise that the heating material such as an expensive Fe-Si alloy is not added in the decarburization refining in the converter, the melting of the cold iron source is promoted without performing the dephosphorization treatment on the hot metal, It is necessary to select whether to perform the dephosphorization treatment.

従来、転炉での溶銑脱燐と冷鉄源の溶解とを合理的に両立させる目的で、特許文献1及び特許文献2には、脱珪・脱燐処理及び脱炭精錬を、脱珪・脱燐処理で生成したスラグを排滓する排滓工程を挟んで1つの転炉で連続して行う転炉製鋼方法が提案されている。この精錬方法では脱珪・脱燐処理後に転炉を傾動させて排滓し、引き続き脱炭精錬を実施し、脱炭精錬後のスラグは炉内に残留させて次のチャージの溶銑を装入し、次のチャージの脱珪・脱燐処理を開始している。   Conventionally, Patent Documents 1 and 2 disclose desiliconization / dephosphorization treatment and decarburization refining, and desiliconization / 2. Description of the Related Art A converter steelmaking method has been proposed in which a slag generated by a dephosphorization treatment is continuously discharged in one converter with a discharge step interposed therebetween. In this refining method, after the desiliconization and dephosphorization treatment, the converter is tilted to discharge the waste, followed by decarburization refining, and the slag after the decarburization refining remains in the furnace to charge the hot metal of the next charge Then, desiliconization and dephosphorization of the next charge is started.

一方、特許文献3、特許文献4、特許文献5、特許文献6には、転炉を用いた溶銑の予備処理において、前半の脱珪処理後に転炉を傾動させて脱珪処理で生成したスラグを排滓し、引き続き、転炉内に残留させた脱珪処理後の溶銑及びスラグに対してCaO系媒溶剤を添加するとともに酸素ガスを吹錬して溶銑の脱燐処理を行う、溶銑の予備処理方法が提案されている。尚、炉内のスラグを一旦排出し、新たなスラグを炉内に形成する、特許文献1〜6で開示される精錬方法を、「ダブルスラグ法」とも称している。   On the other hand, Patent Literature 3, Patent Literature 4, Patent Literature 5, and Patent Literature 6 disclose, in a pretreatment of hot metal using a converter, slag generated by desiliconization by tilting the converter after the first half of desiliconization. Of the hot metal after the desiliconization treatment and the slag remaining in the converter are subjected to a dephosphorization treatment of the hot metal by blowing an oxygen gas and blowing oxygen gas. A pre-treatment method has been proposed. The refining method disclosed in Patent Documents 1 to 6, in which slag in the furnace is once discharged and new slag is formed in the furnace, is also referred to as "double slag method".

また、特許文献7には、転炉製鋼工程における冷鉄源溶解の効率向上を目的として、転炉内に冷鉄源と溶銑を装入する第1工程と、酸素ガスを吹込んで脱珪処理及び脱炭精錬を行う第2工程と、次いで酸素ガスの吹込みを停止して転炉内に比表面積0.5〜11.0m/tonの冷鉄源を装入する第3工程と、次いで転炉内に生石灰を装入した後に酸素ガスを吹込んで脱炭精錬と同時に脱燐処理を行ない、更に、出鋼する第4工程と、を有する精錬方法が提案されている。つまり、1回の転炉精錬で、冷鉄源を転炉内に2回装入する技術が提案されている。 Patent Document 7 discloses a first step of charging a cold iron source and hot metal into a converter, and a desiliconization treatment by blowing oxygen gas in order to improve the efficiency of melting the cold iron source in the converter steelmaking process. And a second step of performing decarburization refining, and then a third step of stopping the supply of oxygen gas and charging a cold iron source having a specific surface area of 0.5 to 11.0 m 2 / ton in the converter. Next, there is proposed a refining method having a fourth step in which quick lime is charged into a converter, oxygen gas is blown into the converter, decarburization and refining are performed simultaneously with decarburization refining, and further, tapping is performed. That is, a technique has been proposed in which the cold iron source is charged twice into the converter with one converter refining.

特開2000−328123号公報JP 2000-328123 A 特開2001−192720号公報JP 2001-192720 A 特開2013−189714号公報JP 2013-189714 A 国際公開第2013/012039号WO 2013/012039 特開2013−231237号公報JP 2013-231237 A 特開2013−227664号公報JP 2013-227664 A 特開2013−133484号公報JP 2013-133484 A

しかしながら、上記従来技術には以下の問題がある。   However, the above prior art has the following problems.

即ち、特許文献1、2に開示される、転炉製鋼方法にダブルスラグ法を適用した、脱珪・脱燐処理→排滓工程→脱炭精錬の場合には、前半の脱珪・脱燐処理の段階で溶銑の燐濃度が十分に低下せず、且つ、排滓を完全に行うことはできないために、後半の脱炭精錬では溶製される溶鋼の低燐化が困難であるという問題がある。   That is, in the case of desiliconization and dephosphorization treatment → drainage process → decarburization refining in which the double slag method is applied to the converter steelmaking method disclosed in Patent Documents 1 and 2, the desiliconization / dephosphorization in the first half is performed. The problem is that it is difficult to reduce the phosphorus in the molten steel in the latter half of the decarburization refining because the phosphorus concentration of the hot metal does not drop sufficiently at the stage of treatment and the waste cannot be completely discharged. There is.

一方、特許文献3〜6に開示される、溶銑予備処理にダブルスラグ法を適用した、脱珪処理→排滓→脱燐処理の場合には、脱燐処理後の溶銑の燐濃度を低くすることができ、且つ、脱炭精錬は別の転炉で行うために、溶製される溶鋼の低燐化が可能であるが、2基の転炉を用いるために生産性が低いという問題がある。   On the other hand, in the case of the desiliconization treatment → the waste → the dephosphorization treatment that applies the double slag method to the hot metal pretreatment disclosed in Patent Documents 3 to 6, the phosphorus concentration of the hot metal after the dephosphorization treatment is reduced. In addition, since decarburization and refining are performed in another converter, it is possible to reduce the phosphorous of the molten steel to be produced, but there is a problem that productivity is low because two converters are used. is there.

特許文献7に開示される、冷鉄源を転炉内に2回装入する技術では、2回目の冷鉄源装入時に炉内に脱珪処理で生成した低塩基度で高粘性のスラグが存在するので、装入した冷鉄源が炉内のスラグでコーテイングされた状態となり、精錬中の溶解効率が低下するという問題がある。   According to the technology disclosed in Patent Document 7 in which a cold iron source is charged twice into a converter, a low basicity, high viscosity slag generated by desiliconization in the furnace at the time of the second cold iron source charging. , There is a problem that the charged cold iron source is coated with slag in the furnace, and the melting efficiency during refining is reduced.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、1基の転炉を用い、転炉内に装入された溶銑を酸素吹錬して、溶銑から溶鋼を溶製する転炉製鋼方法において、溶製される溶鋼の燐濃度を低くすることができると同時に、転炉の生産性及び冷鉄源の溶解効率を高めることのできる転炉製鋼方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to use a single converter, oxygen-blown hot metal charged in the converter, and produce molten steel from the hot metal. In the converter steelmaking method, by providing a converter steelmaking method capable of lowering the phosphorus concentration of the molten steel to be melted and increasing the productivity of the converter and the melting efficiency of the cold iron source. is there.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]1基の転炉で溶銑を精錬して溶銑から溶鋼を溶製する転炉製鋼方法であって、転炉内に溶銑を装入する第1工程と、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内の溶銑を脱珪処理する第2工程と、転炉を傾動させて第2工程で生成したスラグの少なくとも一部を転炉から排滓する第3工程と、転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱燐処理する第4工程と、転炉を再度傾動させて第4工程で生成したスラグの少なくとも一部を転炉から排滓する第5工程と、転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱炭精錬する第6工程と、からなり、第6工程で発生したスラグを転炉内に残留させた状態で次のチャージの第1工程を行って、第6工程で発生したスラグを次のチャージの脱珪処理でCaO系媒溶剤として再利用する転炉製鋼方法。
[2]第3工程で排滓するスラグと第5工程で排滓するスラグとを、同一のスラグ保持容器に排滓する、上記[1]に記載の転炉製鋼方法。
[3]第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の期間のうちの少なくとも1つの期間で、冷鉄源を転炉内へ装入する、上記[1]または上記[2]に記載の転炉製鋼方法。
[4]第1工程で転炉内に溶銑を装入する前に冷鉄源を転炉内に装入し、更に、第3工程の後及び/または第5工程の後に、転炉内に冷鉄源を装入する、上記[1]または上記[2]に記載の転炉製鋼方法。
[5]第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の各期間における冷鉄源の装入量は、いずれの期間も、転炉に装入する総鉄源の10質量%以下とする、上記[3]または上記[4]に記載の転炉製鋼方法。
The gist of the present invention for solving the above problems is as follows.
[1] A converter steelmaking method for refining hot metal in one converter to produce molten steel from the hot metal, wherein a first step of charging the hot metal into the converter and a CaO-based medium in the converter A second step of supplying a solvent and supplying oxygen gas to the hot metal from the top blow lance while stirring the hot metal in the converter with the bottom blown gas to desiliconize the hot metal in the converter; and A third step of tilting and discharging at least a part of the slag generated in the second step from the converter, returning the converter to an upright position, supplying a CaO-based solvent into the converter, and A fourth step in which oxygen gas is supplied to the hot metal from the upper blowing lance while the hot metal in the inside is stirred by the bottom blow gas to remove the hot metal remaining in the converter, and the fourth step is performed by tilting the converter again. A fifth step of discharging at least a part of the slag generated in the step from the converter, returning the converter to the upright position, and placing C in the converter. The sixth method of supplying an O-based solvent and supplying oxygen gas to the hot metal from the top blowing lance while stirring the hot metal in the converter with the bottom blown gas to decarburize and refine the hot metal remaining in the converter. The first step of the next charge is performed in a state where the slag generated in the sixth step remains in the converter, and the slag generated in the sixth step is desiliconized in the next charge. A converter steelmaking method that is reused as a CaO-based solvent.
[2] The converter steelmaking method according to [1], wherein the slag discharged in the third step and the slag discharged in the fifth step are discharged in the same slag holding container.
[3] Before the hot metal is charged into the converter in the first step, after the third step, and in at least one of the periods after the fifth step, the cold iron source is loaded into the converter. The converter steelmaking method according to the above [1] or [2].
[4] Before the hot metal is charged into the converter in the first step, a cold iron source is charged into the converter, and after the third step and / or after the fifth step, the cold iron source is charged into the converter. The converter steelmaking method according to the above [1] or [2], wherein a cold iron source is charged.
[5] Before the hot metal is charged into the converter in the first step, after the third step, and after the fifth step, the charging amount of the cold iron source in each period The converter steelmaking method according to the above [3] or [4], wherein the content is set to 10% by mass or less of the total iron source charged into the converter.

本発明によれば、1基の転炉で溶銑から溶鋼を溶製する転炉製鋼方法において、脱珪処理、脱燐処理及び脱炭精錬を別々に実施し、且つ、脱珪処理及び脱燐処理の後にはそれぞれ排滓を行い、炉内にスラグを3回形成させるので、溶銑に含有されていた燐の炉外への排出が促進され、脱炭精錬後の溶鋼の燐濃度を安定して低くすることが実現される。また、脱炭精錬で生成する脱炭スラグを炉内に残留させて、次のチャージの脱珪処理にCaO源として再利用するので、系外に排出されるスラグは脱珪スラグ及び脱燐スラグだけとなり、スラグの排出量が軽減されるのみならず、前のチャージの脱炭スラグの有する熱量及び鉄分を次のチャージの脱珪処理において回収することができ、回収した熱量によって冷鉄源の溶解が促進され、また、回収した鉄分によって鉄歩留まりが向上する。更に、本発明では、1基の転炉を用いて炉内の溶湯を炉外に排出することなく精錬するので、転炉の生産性の低下が抑制される。   According to the present invention, in a converter steelmaking method for producing molten steel from hot metal in one converter, desiliconization, dephosphorization, and decarburization refining are separately performed, and desiliconization and dephosphorization are performed. After the treatment, each waste is discharged and slag is formed in the furnace three times, so the discharge of the phosphorus contained in the hot metal to the outside of the furnace is promoted, and the phosphorus concentration of the molten steel after the decarburization refining is stabilized. Lowering is realized. In addition, the decarburized slag generated in the decarburization refining is left in the furnace and reused as a CaO source for the desiliconization of the next charge, so the slag discharged outside the system is desiliconized slag and dephosphorized slag. Not only the amount of slag discharged is reduced, but also the calorific value and iron content of the decarburized slag of the previous charge can be recovered in the desiliconization process of the next charge, and the recovered calorific value Dissolution is promoted, and the recovered iron content improves the iron yield. Furthermore, in the present invention, since the molten metal in the furnace is refined without discharging it from the furnace using one converter, a decrease in the productivity of the converter is suppressed.

また、本発明においては、冷鉄源を複数回に分けて添加可能であり、冷鉄源の溶解が促進され、炭酸ガス発生量の軽減に寄与する。   Further, in the present invention, the cold iron source can be added in a plurality of portions, and the dissolution of the cold iron source is promoted, which contributes to reducing the amount of carbon dioxide gas generated.

本発明に係る転炉製鋼方法を実施する際に用いる転炉の概略断面図である。It is a schematic sectional view of a converter used when performing a converter steelmaking method concerning the present invention. 本発明に係る転炉製鋼方法を工程順に示す概略図である。It is a schematic diagram showing a converter steelmaking method concerning the present invention in order of a process.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明に係る転炉製鋼方法を実施する際に用いる転炉の概略断面図であり、図2は、本発明に係る転炉製鋼方法を工程順に示す概略図である。尚、図1は、図2−(C)の第2工程の脱珪処理を示す図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic sectional view of a converter used when carrying out the converter steelmaking method according to the present invention, and FIG. 2 is a schematic diagram showing the converter steelmaking method according to the present invention in the order of steps. FIG. 1 is a view showing the silicon removal treatment in the second step of FIG.

本発明に係る転炉製鋼方法では、図1に示すような上底吹き可能な転炉1を用いる。上吹きは、転炉1の内部を昇降可能な上吹きランス2を介して、上吹きランス2の先端から酸素源として酸素含有ガスを溶銑5に向けて供給して行われる。酸素含有ガスとしては、酸素ガス、酸素富化空気、空気、酸素ガスと不活性ガスとの混合ガスを使用することができる。図1では、酸素含有ガスとして酸素ガス8を使用した例を示している。ここで、酸素ガス8とは工業用純酸素である。底吹きは、転炉1の底部に設けられた底吹き羽口3を介して行われる。底吹きガス9としては、酸素ガスを含むガスでも、或いはアルゴンガスや窒素ガスなどの不活性ガスのみでもよく、溶銑中に吹き込むことにより溶銑5の攪拌を強化して冷鉄源の溶解を促進する機能を有するものであればよい。   In the converter steelmaking method according to the present invention, a converter 1 capable of being blown up and down as shown in FIG. 1 is used. The upper blowing is performed by supplying an oxygen-containing gas as a source of oxygen toward the hot metal 5 from the tip of the upper blowing lance 2 through an upper blowing lance 2 that can move up and down inside the converter 1. As the oxygen-containing gas, oxygen gas, oxygen-enriched air, air, and a mixed gas of oxygen gas and inert gas can be used. FIG. 1 shows an example in which oxygen gas 8 is used as the oxygen-containing gas. Here, the oxygen gas 8 is industrial pure oxygen. The bottom blowing is performed through a bottom blowing tuyere 3 provided at the bottom of the converter 1. The bottom-blown gas 9 may be a gas containing oxygen gas or only an inert gas such as argon gas or nitrogen gas, and is blown into the hot metal to enhance the stirring of the hot metal 5 to promote melting of the cold iron source. What is necessary is just to have the function to perform.

本発明においては、溶銑5の精錬に1基の転炉1を使用し、溶銑予備処理のうちの脱珪処理、脱燐処理を実施し、且つ、脱珪処理後及び脱燐処理後に排滓を実施し、更に、脱燐処理を施した溶銑に対して脱炭精錬を実施して、溶銑から溶鋼を溶製する。   In the present invention, one converter 1 is used for refining the hot metal 5, desiliconization processing and dephosphorization processing of the hot metal pretreatment are performed, and waste is discharged after the desiliconization processing and after the dephosphorization processing. Is performed, and further, decarburization refining is performed on the hot metal that has been subjected to the dephosphorization treatment, and molten steel is produced from the hot metal.

本発明に係る転炉製鋼方法では、図2−(A)に示すように、転炉1にスクラップシュート10を介して冷鉄源7を装入する。本発明では、転炉1で行われた前チャージの脱炭精錬で生成したスラグ(「脱炭スラグ」という)を転炉内に残留させることを必須としており、したがって、脱炭スラグが残留する転炉1の内部に冷鉄源7を装入することになるが、図2−(A)は、定期修理後などの操業が開始された1チャージ目の状態(前チャージの脱炭スラグが存在しない状態)を示している。   In the converter steelmaking method according to the present invention, a cold iron source 7 is charged into a converter 1 via a scrap chute 10 as shown in FIG. In the present invention, it is essential that the slag (referred to as “decarburized slag”) generated in the decharging and refining of the pre-charge performed in the converter 1 remain in the converter, and thus the decarburized slag remains. The cold iron source 7 will be charged inside the converter 1. FIG. 2- (A) shows the state of the first charge (operation of the decharging slag of the previous charge is performed) after the start of operation such as after periodic repair. Absent state).

尚、冷鉄源7の転炉1への装入は本発明を実施する上で必須条件ではないが、製鋼工程における炭酸ガスの発生量を低減するために、冷鉄源7の転炉1への装入を行うことが好ましい。   Note that charging of the cold iron source 7 into the converter 1 is not an essential condition for carrying out the present invention, but in order to reduce the amount of carbon dioxide gas generated in the steelmaking process, the converter 1 of the cold iron source 7 is required. It is preferable to carry out charging.

次いで、図2−(B)に示すように、転炉1に、装入鍋11を介して高炉から出銑され、必要に応じて脱硫処理の施された溶銑5(以下、「高炉溶銑5」と記す)を装入する(第1工程)。   Next, as shown in FIG. 2 (B), hot metal 5 (hereinafter, referred to as “blast furnace hot metal 5”) that has been tapped from a blast furnace via a charging pan 11 and desulfurized as necessary, ") (First step).

その後、この転炉内の高炉溶銑5に、酸素源として酸素ガス8を供給して、図2−(C)に示すように、脱珪処理を実施する(第2工程)。高炉溶銑5に含有される珪素と酸素源中の酸素とが反応(Si+2O→SiO)して脱珪処理が進行する。この脱珪反応による珪素の酸化熱で溶銑温度が上昇し、溶銑中の冷鉄源7の溶解が促進される。 Thereafter, an oxygen gas 8 is supplied as an oxygen source to the blast furnace molten iron 5 in this converter to perform a desiliconization treatment as shown in FIG. 2- (C) (second step). The silicon contained in the blast furnace molten iron 5 reacts with the oxygen in the oxygen source (Si + 2O → SiO 2 ), and the desiliconization process proceeds. The hot metal temperature rises due to the heat of oxidation of silicon by the desiliconization reaction, and the dissolution of the cold iron source 7 in the hot metal is promoted.

本発明では、この転炉1で行われた前チャージの脱炭精錬で生成した脱炭スラグをCaO源として転炉内に残留させており、脱珪反応によって生成するSiOは、炉内の前チャージの脱炭スラグと反応してスラグ6が生成される。脱珪処理において生成するスラグ6は「脱珪スラグ」とも呼ばれるので、以下、脱珪処理で生成するスラグ6を「脱珪スラグ6」と記す。 In the present invention, the decarburization slag generated in the decarburization refining before charge made in this converter 1 is allowed to remain in the converter in a CaO source, SiO 2 produced by desiliconization reactions in the furnace The slag 6 is generated by reacting with the pre-charged decarburized slag. Since the slag 6 generated in the desiliconization treatment is also referred to as “desiliconization slag”, the slag 6 generated in the desiliconization treatment is hereinafter referred to as “desiliconization slag 6”.

脱珪処理においては、脱珪スラグ6の塩基度([質量%CaO]/[質量%SiO])(以下、単に「塩基度」とのみ表示することもある)を0.5以上、好ましくは0.8以上に保持する。脱珪スラグ6の塩基度を0.5以上に制御する理由は、脱珪スラグ6の塩基度が0.5未満になると、脱珪処理中に、前チャージの脱炭スラグに含有されていた3CaO・Pなる燐酸化物が分解し、分解した燐が高炉溶銑5に戻り(この現象を「復燐」という)、脱珪処理後の溶銑14の燐濃度が脱珪処理前よりも高くなることが起こるからである。脱珪スラグ6の塩基度が高くなるほど復燐は起こらず、したがって、脱珪スラグ6の塩基度を0.8以上にすることが好ましい。 In the desiliconization treatment, the basicity ([% by mass CaO] / [% by mass SiO 2 ]) of the desiliconized slag 6 (hereinafter, sometimes referred to simply as “basicity”) is 0.5 or more, preferably. Is maintained at 0.8 or more. The reason for controlling the basicity of the desiliconized slag 6 to 0.5 or more is that when the basicity of the desiliconized slag 6 is less than 0.5, it was contained in the pre-charged decarburized slag during the desiliconization treatment. The phosphor of 3CaO.P 2 O 5 is decomposed, and the decomposed phosphorus returns to the blast furnace hot metal 5 (this phenomenon is referred to as “rephosphorization”), and the phosphorus concentration of the hot metal 14 after the desiliconization treatment is higher than that before the desiliconization treatment. This is because it can be high. Phosphorus reversion does not occur as the basicity of the desiliconized slag 6 increases. Therefore, the basicity of the desiliconized slag 6 is preferably set to 0.8 or more.

脱珪処理で生成するSiOによって炉内に残留する前チャージの脱炭スラグは希釈され、炉内に生成する脱珪スラグ6の塩基度は徐々に低下していくが、残留させた前チャージの脱炭スラグの塩基度は2.5〜5.0と高塩基度であるので、通常は、炉内に生成する脱珪スラグ6の塩基度は0.5以上に確保される。 The decarbonized slag of the pre-charge remaining in the furnace is diluted by SiO 2 generated by the de-siliconization treatment, and the basicity of the de-siliconized slag 6 generated in the furnace is gradually reduced. Since the basicity of the decarburized slag is as high as 2.5 to 5.0, the basicity of the desiliconized slag 6 generated in the furnace is usually maintained at 0.5 or more.

但し、定期修理後などの操業が開始された1チャージ目の場合は、炉内に前チャージの脱炭スラグは残留せず、したがって、脱珪スラグ6の塩基度を0.5以上に調整することが必要である。また、前チャージの脱炭スラグを残留させた場合も、脱珪スラグ6の塩基度を0.5以上に調整しなければならない場合も起こり得る。   However, in the case of the first charge after the start of operation such as after regular repair, the decarburized slag of the previous charge does not remain in the furnace, and therefore, the basicity of the desiliconized slag 6 is adjusted to 0.5 or more. It is necessary. In addition, there may be a case where the decarburized slag of the pre-charge is left or a case where the basicity of the desiliconized slag 6 must be adjusted to 0.5 or more.

このように、脱珪スラグ6の塩基度を0.5以上に調整する場合には、脱珪処理前及び/または脱珪処理中にCaO系媒溶剤を転炉1に添加する。CaO系媒溶剤の添加量は過剰に多くする必要はなく、脱珪スラグ6の塩基度の上限を1.5程度とすればよい。   As described above, when the basicity of the desiliconization slag 6 is adjusted to 0.5 or more, a CaO-based solvent is added to the converter 1 before and / or during the desiliconization. The addition amount of the CaO-based solvent does not need to be excessively large, and the upper limit of the basicity of the desiliconized slag 6 may be set to about 1.5.

脱珪処理におけるCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。また、脱炭スラグを冷却して固化させ、固化した脱炭スラグを破砕し、または、破砕せず、塊状または粉体状の脱炭スラグをCaO系媒溶剤として使用することもできる。   As the CaO-based solvent in the desiliconization treatment, quicklime, dolomite, calcium carbonate and the like can be used. Further, the decarburized slag may be cooled and solidified, and the solidified decarburized slag may be crushed, or the lumped or powdered decarburized slag may be used as the CaO-based medium solvent without crushing.

脱珪処理のための酸素源としては、上吹きランス2からの酸素ガス8のみでもよく、また、酸素ガス8に酸化鉄(図示せず)を併用してもよい。短時間で行われる脱珪処理中に目標とする塩基度の脱珪スラグ6を形成させるためには、CaO系媒溶剤の滓化を促進させる機能を有する酸化鉄を使用することが効果的であるが、本発明では、CaO系媒溶剤として、溶融状態の脱炭スラグを使用するので、酸素ガス8のみを用いて脱珪処理を行っても、十分に目標とする塩基度の脱珪スラグ6を形成させることができる。更に、精錬容器として、強攪拌が可能な転炉1を使用するので、酸素ガス8のみを用いても、十分に目標とする塩基度の脱珪スラグ6を形成させることができる。   As an oxygen source for the desiliconization treatment, only the oxygen gas 8 from the upper blowing lance 2 may be used, or iron oxide (not shown) may be used in combination with the oxygen gas 8. In order to form the desiliconized slag 6 having the target basicity during the desiliconization treatment performed in a short time, it is effective to use iron oxide having a function of promoting slagging of the CaO-based solvent. However, in the present invention, since the decarburized slag in the molten state is used as the CaO-based solvent, even if the desiliconization treatment is performed using only the oxygen gas 8, the desiliconized slag having the target basicity sufficient can be obtained. 6 can be formed. Further, since the converter 1 capable of strong stirring is used as a refining vessel, the desiliconized slag 6 having a sufficiently basic basicity can be formed even when only the oxygen gas 8 is used.

この脱珪処理のあとに、図2−(D)に示すように、転炉1を傾動させて、排滓工程を設け、脱珪処理で発生した、SiOを大量に含む脱珪スラグ6の少なくとも一部を転炉1の炉口からスラグ保持容器に(図示せず)に排出する(第3工程)。 After the desiliconization treatment, as shown in FIG. 2D, the converter 1 is tilted to provide a waste disposal step, and the desiliconization slag 6 containing a large amount of SiO 2 generated in the desiliconization treatment is provided. Is discharged from the furnace opening of the converter 1 to a slag holding vessel (not shown) (third step).

脱珪処理で発生したSiOを極力炉外に排出するために、排滓率(排滓率(質量%)=(排出スラグ質量)×100/(脱珪処理終了時の炉内スラグ質量))を50質量%以上とすることが好ましい。50質量%以上の排滓率を確保するために、脱珪スラグ6の塩基度を0.5〜1.1の範囲に調整し、且つ、脱珪スラグ6の温度を1280℃以上に調整することが好ましい。 In order to discharge the SiO 2 generated by the desiliconization process to the outside of the furnace as much as possible, a waste rate (a waste rate (mass%) = (mass of discharged slag) × 100 / (mass slag mass at the end of the desiliconization process)) ) Is preferably 50% by mass or more. In order to secure a waste rate of 50% by mass or more, the basicity of the desiliconized slag 6 is adjusted to a range of 0.5 to 1.1, and the temperature of the desiliconized slag 6 is adjusted to 1280 ° C or more. Is preferred.

脱珪スラグ6の排滓後、転炉1を、炉口を上方に向けた直立位置に戻し、転炉内に残留させた脱珪処理後の溶銑14(以下、「脱珪溶銑14」と記す)にCaO系媒溶剤及び酸素源を供給して、図2−(E)に示すように、脱珪溶銑14に対して脱燐処理を実施する(第4工程)。脱燐処理において生成するスラグは「脱燐スラグ」とも呼ばれるので、以下、脱燐処理で生成するスラグ12を「脱燐スラグ12」と記す。   After the desiliconization slag 6 is discharged, the converter 1 is returned to the upright position with the furnace port facing upward, and the desiliconized hot metal 14 remaining in the converter (hereinafter referred to as “siliconized hot metal 14”). 2), a CaO-based solvent and an oxygen source are supplied, and as shown in FIG. 2- (E), the desiliconized hot metal 14 is subjected to a dephosphorization treatment (fourth step). The slag generated in the dephosphorization treatment is also called “dephosphorization slag”, and hence the slag 12 generated in the dephosphorization treatment will be referred to as “dephosphorization slag 12”.

脱燐処理においては、炉内の脱燐スラグ12の塩基度は1.5〜3.5の範囲に調整する。脱燐スラグ12の塩基度が高いほど燐酸化物(3CaO・Pなる)の吸収能が高くなって脱燐反応が促進されるので、脱燐反応を促進するために、脱燐スラグ12の塩基度を1.5以上に制御する。一方、脱燐スラグ12の塩基度が3.5を超えると、脱燐スラグ12の滓化性が悪くなり、脱燐反応が遅くなるので、脱燐スラグ12の塩基度を3.5以下に制御する。 In the dephosphorization treatment, the basicity of the dephosphorization slag 12 in the furnace is adjusted to a range of 1.5 to 3.5. Since higher basicity of dephosphorization slag 12 phosphorus oxides (3CaO · P 2 O 5 becomes) absorbing power becomes high dephosphorization reaction is accelerated, in order to promote the dephosphorization reaction, dephosphorization slag 12 Is controlled to 1.5 or more. On the other hand, if the basicity of the dephosphorized slag 12 exceeds 3.5, the slagging property of the dephosphorized slag 12 deteriorates, and the dephosphorization reaction becomes slow. Therefore, the basicity of the dephosphorized slag 12 is reduced to 3.5 or less. Control.

脱燐処理で使用するCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが挙げられる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、脱燐処理時のCaO系媒溶剤として使用することができる。このCaO系媒溶剤の添加方法としては、粒状及び塊状のものは炉上のホッパーから、粉状のものは上吹きランス2を介するなどして投入することができる。   Examples of the CaO-based solvent used in the dephosphorization treatment include quicklime, dolomite, and calcium carbonate. However, not limited to these, those containing 50% by mass or more of CaO and optionally containing other components such as fluorine and alumina can also be used as a CaO-based solvent in the dephosphorization treatment. . As a method of adding the CaO-based solvent, the granular and bulky materials can be introduced from a hopper on a furnace, and the powdery one can be introduced through an upper blowing lance 2 or the like.

この脱燐処理工程において使用する酸素源は、脱珪処理と同様に、上吹きランス2からの酸素ガス8を主体とするが、一部酸化鉄を使用しても構わない。   The oxygen source used in this dephosphorization treatment step is mainly oxygen gas 8 from the upper blowing lance 2 as in the desiliconization treatment, but iron oxide may be partially used.

脱珪溶銑14に含有される燐は供給される酸素源中の酸素に酸化されて燐酸化物(P)となり、この燐酸化物が、CaO系媒溶剤の滓化によって形成され、脱燐精錬剤として機能する脱燐スラグ12に3CaO・Pなる安定形態の化合物として取り込まれ、脱珪溶銑14の脱燐反応が進行する。脱燐反応が進行して脱珪溶銑14の燐濃度が所定の値に低下したなら、脱燐処理を終了する。 Phosphorus contained in the desiliconized hot metal 14 is oxidized to oxygen in the supplied oxygen source to form phosphor oxide (P 2 O 5 ), and this phosphor oxide is formed by slagging of a CaO-based solvent, and the dephosphorization slag 12 which functions as a refining agent incorporated as a compound of 3CaO · P 2 O 5 becomes stable form, dephosphorization reaction of de珪溶pig iron 14 progresses. When the dephosphorization reaction has progressed and the phosphorus concentration of the desiliconized hot metal 14 has decreased to a predetermined value, the dephosphorization treatment is terminated.

後工程の脱炭精錬によって溶製される溶鋼の燐濃度を安定して低下するためには、脱燐処理後の溶銑15(以下、「脱燐溶銑15」と記す)の燐濃度が0.040質量%以下になるまで、脱燐処理を行うことが好ましい。   In order to stably reduce the phosphorus concentration of the molten steel produced by the decarburization refining in the subsequent step, the phosphorus concentration of the hot metal 15 after the dephosphorization treatment (hereinafter, referred to as “dephosphorized hot metal 15”) is set to 0.1. It is preferable to perform the dephosphorization treatment until the amount becomes 040% by mass or less.

この脱燐処理のあとに、図2−(F)に示すように、転炉1を再度傾動させて、排滓工程を設け、脱燐処理で発生した、3CaO・Pを含有する脱燐スラグ12の少なくとも一部を転炉1の炉口からスラグ保持容器(図示せず)に排出する(第5工程)。 After this dephosphorization, as shown in FIG. 2-(F), and the converter 1 is again tilted, provided Haikasu process occurred in dephosphorization, containing 3CaO · P 2 O 5 At least a part of the dephosphorized slag 12 is discharged from the furnace port of the converter 1 to a slag holding vessel (not shown) (fifth step).

その際に、第3工程で脱珪スラグ6が排出され、脱珪スラグ6を収納したスラグ保持容器に、脱燐スラグ12を排出することが好ましい。脱珪スラグ6と脱燐スラグ12とを同じスラグ保持容器で回収することで、転炉工場内の物流が簡素化され、効率的な操業を行うことが可能となる。   At this time, it is preferable that the desiliconized slag 6 is discharged in the third step, and the dephosphorized slag 12 is discharged to a slag holding container containing the desiliconized slag 6. By recovering the desiliconized slag 6 and the dephosphorized slag 12 in the same slag holding container, the physical distribution in the converter plant is simplified, and efficient operation can be performed.

脱燐処理で発生した3CaO・Pを極力炉外に排出するために、排滓率(排滓率(質量%)=(排出スラグ質量)×100/(脱燐処理終了時の炉内スラグ質量))を50質量%以上とすることが好ましい。 In order to discharge 3CaO.P 2 O 5 generated in the dephosphorization treatment as much as possible outside the furnace, a waste rate (a waste rate (mass%) = (mass of discharged slag) × 100 / (furnace at the end of the dephosphorization treatment) (Internal slag mass) is preferably 50% by mass or more.

脱燐スラグ12の排滓後、転炉1を、炉口を上方に向けた直立位置に戻し、転炉内に残留させた脱燐処理後の脱燐溶銑15にCaO系媒溶剤及び酸素源を供給して、図2−(G)に示すように、脱燐溶銑15に対して脱炭精錬を実施する(第6工程)。   After the dephosphorization slag 12 has been discharged, the converter 1 is returned to the upright position with the furnace port facing upward, and a CaO-based solvent and an oxygen source are added to the dephosphorized hot metal 15 remaining in the converter after the dephosphorization treatment. To perform decarburization refining on the dephosphorized hot metal 15 as shown in FIG. 2- (G) (sixth step).

脱炭精錬においては、炉内のスラグ13の塩基度は2.5〜5.0に調整する。これは、脱炭精錬では、脱燐処理で得られた脱燐溶銑15を脱燐処理よりも更に低い濃度まで脱燐する必要があり、そのためには、塩基度の下限値を脱燐処理よりも高める必要があるからである。一方、脱炭精錬は、脱燐処理に比較して上吹き酸素ガス流量が多く、溶湯の攪拌が強いので、塩基度が5.0以下であれば炉内のスラグ13は十分に滓化する。脱炭精錬において生成するスラグは「脱炭スラグ」とも呼ばれるので、以下、脱炭精錬で生成するスラグ13を「脱炭スラグ13」と記す。   In the decarburization refining, the basicity of the slag 13 in the furnace is adjusted to 2.5 to 5.0. This is because in the decarburization refining, it is necessary to dephosphorize the dephosphorized hot metal 15 obtained by the dephosphorization treatment to a concentration lower than that of the dephosphorization treatment. It is necessary to increase the On the other hand, in the decarburization refining, the flow rate of the top-blown oxygen gas is larger than in the dephosphorization treatment, and the stirring of the molten metal is strong. Therefore, if the basicity is 5.0 or less, the slag 13 in the furnace is sufficiently slagged. . The slag generated in the decarburization refining is also referred to as “decarburized slag”. Hereinafter, the slag 13 generated in the decarburization refining will be referred to as “decarburized slag 13”.

脱炭精錬で使用するCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、脱炭精錬時のCaO系媒溶剤として使用することができる。このCaO系媒溶剤の添加方法としては、粒状及び塊状のものは炉上のホッパーから、粉状のものは上吹きランス2を介するなどして投入することができる。また、脱炭精錬において使用する酸素源は、上吹きランス2からの酸素ガス8を主体とする。   As the CaO-based solvent used in the decarburization refining, quicklime, dolomite, calcium carbonate and the like can be used. However, not limited to these, those containing 50% by mass or more of CaO and optionally containing other components such as fluorine and alumina can also be used as a CaO-based solvent in decarburization refining. . As a method of adding the CaO-based solvent, the granular and bulky materials can be introduced from a hopper on a furnace, and the powdery one can be introduced through an upper blowing lance 2 or the like. The oxygen source used in the decarburization refining is mainly oxygen gas 8 from the upper blowing lance 2.

脱炭精錬後、図2−(H)に示すように、転炉1を出湯口4が設置された側に傾動させて、溶製された転炉内の溶鋼16を出湯口4を介して取鍋などの溶鋼保持容器(図示せず)に出鋼する。   After the decarburization refining, as shown in FIG. 2H, the converter 1 is tilted to the side where the tap hole 4 is installed, and the molten steel 16 in the smelted converter is passed through the tap port 4. Tapping into a molten steel holding container (not shown) such as a ladle.

溶鋼16の出鋼後、炉内の脱炭スラグ13を排出せずに残留させ、図2−(A)に示すように冷鉄源7を転炉1に装入し、更に、図2−(B)に示すように高炉溶銑5を転炉1に装入し、次のチャージの脱珪処理を開始する。炉内に残留させた脱炭スラグ13は次のチャージの脱珪処理においてCaO源として有効活用される。脱炭スラグ13の一部を排滓処理すると、その排滓時間の分だけ、処理時間が長くなり、転炉1の生産性が低下するので、これを避けるために、脱炭スラグ13の排滓処理は行わないことが好ましい。つまり、炉内の脱炭スラグ13の全量を残留させることが好ましい。   After tapping the molten steel 16, the decarburized slag 13 in the furnace is left without being discharged, and the cold iron source 7 is charged into the converter 1 as shown in FIG. As shown in (B), the blast furnace molten iron 5 is charged into the converter 1, and the desiliconization treatment of the next charge is started. The decarburized slag 13 remaining in the furnace is effectively used as a CaO source in the desiliconization treatment of the next charge. When a part of the decarburized slag 13 is subjected to the waste treatment, the treatment time is lengthened by the waste time, and the productivity of the converter 1 is reduced. Preferably, no slag treatment is performed. That is, it is preferable to leave the entire amount of the decarburized slag 13 in the furnace.

本発明に係る転炉製鋼方法において、生産性の向上及び炭酸ガスの排出量削減のために、冷鉄源7を可能な限り多く装入することが好ましい。この観点から、第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の期間のうちの少なくとも1つの期間で、転炉内へ冷鉄源を装入することが好ましい。特に、前述したように、第1工程での、高炉溶銑5を転炉1に装入する前に転炉1に冷鉄源7を装入し、更に、脱珪処理(第2工程)で生成した脱珪スラグ6を排滓する第3工程の後、及び/または、脱燐処理(第4工程)で生成した脱燐スラグ12を排滓する第5工程の後に、転炉内に冷鉄源7を装入することがより好ましい。転炉内への冷鉄源の装入量は、冷鉄源の未溶解を抑制する観点から、いずれの期間も、転炉に装入する総鉄源の10質量%以下とすることが好ましい。冷鉄源7の総装入量が同じ場合も、冷鉄源7を分散して装入することで、冷鉄源7の溶解が促進される。ここで、総鉄源とは、当該チャージにおいて転炉内へ装入される溶銑の質量及び冷鉄源の質量の和である。   In the converter steelmaking method according to the present invention, it is preferable to insert as many cold iron sources 7 as possible in order to improve productivity and reduce carbon dioxide gas emissions. From this viewpoint, before charging the hot metal into the converter in the first step, after the third step, in at least one of the periods after the fifth step, the cold iron source is introduced into the converter. It is preferred to charge. In particular, as described above, before the molten iron 5 in the blast furnace is charged into the converter 1 in the first step, the cold iron source 7 is charged into the converter 1 and further, by the desiliconization treatment (second step). After the third step of discharging the generated desiliconized slag 6 and / or after the fifth step of discharging the dephosphorized slag 12 generated in the dephosphorization treatment (fourth step), the cooling furnace is cooled in the converter. More preferably, the iron source 7 is charged. The charging amount of the cold iron source into the converter is preferably 10% by mass or less of the total iron source charged into the converter in any period from the viewpoint of suppressing unmelting of the cold iron source. . Even when the total charge amount of the cold iron source 7 is the same, the dissolution of the cold iron source 7 is promoted by dispersing and charging the cold iron source 7. Here, the total iron source is the sum of the mass of the hot metal charged into the converter in the charge and the mass of the cold iron source.

また、冷鉄源7の装入量を多くする場合には、冷鉄源7の溶解に高炉溶銑5が含有する珪素の燃焼熱を利用することが好ましい。したがって、その場合には、高炉鋳床での脱珪処理は行わないことが望ましい。   When increasing the amount of the cold iron source 7 to be charged, it is preferable to use the combustion heat of silicon contained in the blast furnace hot metal 5 for melting the cold iron source 7. Therefore, in that case, it is desirable not to perform the desiliconization treatment in the blast furnace cast floor.

以上説明したように、本発明によれば、1基の転炉1で高炉溶銑5から溶鋼16を溶製する転炉製鋼方法において、脱珪処理、脱燐処理及び脱炭精錬を別々に実施し、且つ、脱珪処理及び脱燐処理の後にはそれぞれ排滓を行い、炉内にスラグを3回形成(トリプルスラグ法)させるので、高炉溶銑5に含有されていた燐の炉外への排出が促進され、転炉製鋼方法にダブルスラグ法を適用した場合に問題であった、脱炭精錬後の溶鋼16の低燐化を安定して実現することが可能となる。また、脱炭精錬で生成する脱炭スラグ13を炉内に残留させて、次のチャージの脱珪処理にCaO源として再利用するので、系外に排出されるスラグは脱珪スラグ6及び脱燐スラグ12だけとなり、スラグの排出量が軽減されるのみならず、前のチャージの脱炭スラグ13の有する熱量及び鉄分を次のチャージの脱珪処理において回収することができ、回収した熱量によって冷鉄源7の溶解が促進され、また、回収した鉄分によって鉄歩留まりが向上する。更に、本発明では、1基の転炉1を用いて炉内の溶湯を炉外に排出することなく精錬するので、転炉1の生産性の低下が抑制される。   As described above, according to the present invention, in a converter steelmaking method for producing molten steel 16 from blast furnace molten iron 5 in one converter 1, desiliconization, dephosphorization, and decarburization refining are separately performed. After the desiliconization treatment and the dephosphorization treatment, the slag is formed in the furnace three times (triple slag method) after the desiliconization treatment and the dephosphorization treatment, so that the phosphorus contained in the blast furnace hot metal 5 is discharged outside the furnace. The discharge is promoted, and it becomes possible to stably realize the low phosphorus reduction of the molten steel 16 after the decarburization refining, which is a problem when the double slag method is applied to the converter steelmaking method. In addition, the decarburized slag 13 generated by the decarburization refining is left in the furnace and reused as a CaO source for the desiliconization of the next charge. Only the phosphorus slag 12 is provided, and not only the amount of slag discharged is reduced, but also the calorific value and iron content of the decarburized slag 13 of the previous charge can be recovered in the desiliconization process of the next charge. The melting of the cold iron source 7 is promoted, and the recovered iron content improves the iron yield. Furthermore, in the present invention, since the molten metal in the furnace is refined without discharging the molten metal from the furnace using one converter 1, a decrease in the productivity of the converter 1 is suppressed.

図1に示すような容量300トンの転炉を用いて本発明に係る転炉製鋼方法を実施した(本発明例1)。また、比較のために、排滓を脱燐処理後の1回のみとする、脱燐処理後に脱燐溶銑を出湯し、別の転炉に装入して脱炭精錬を行う、または、脱炭スラグを再利用しない試験操業(比較例1〜3)も実施した。   The converter steelmaking method according to the present invention was carried out using a converter having a capacity of 300 tons as shown in FIG. 1 (Example 1 of the present invention). For comparison, the waste is treated only once after the dephosphorization treatment. After the dephosphorization treatment, the dephosphorized hot metal is discharged and charged into another converter for decarburization refining, or A test operation without recycling coal slag (Comparative Examples 1 to 3) was also performed.

表1に、本発明例1及び比較例1〜3における、転炉を用いた脱珪処理、脱燐処理、脱炭精錬での上吹き酸素ガス及び攪拌用の底吹き窒素ガスの供給条件、吹錬時間、精錬する溶銑の質量を示す。   Table 1 shows the supply conditions of top-blown oxygen gas and bottom-blown nitrogen gas for stirring in desiliconization treatment, dephosphorization treatment, and decarburization refining using a converter in Example 1 of the present invention and Comparative Examples 1 to 3, Shows blowing time and mass of hot metal to be refined.

Figure 0006665884
Figure 0006665884

また、表2に本発明例1及び比較例1〜3の試験条件を示す。表2に示すように、本発明例1及び比較例1〜3では冷鉄源を装入しないで試験した。   Table 2 shows the test conditions of Inventive Example 1 and Comparative Examples 1 to 3. As shown in Table 2, in Inventive Example 1 and Comparative Examples 1 to 3, the test was performed without charging a cold iron source.

Figure 0006665884
Figure 0006665884

比較例1は、脱珪・脱燐処理→排滓→脱炭精錬のダブルスラグ法、比較例2は、脱珪処理→排滓→脱燐処理→出湯→別の転炉に再装入→脱炭精錬のダブルスラグ法、比較例3は、脱珪処理→排滓→脱燐処理→排滓→脱炭精錬のトリプルスラグ法であるが、脱炭スラグの再利用を行わない条件である。本発明例1は、脱珪処理→排滓→脱燐処理→排滓→脱炭精錬のトリプルスラグ法であり、且つ、脱炭スラグを排滓することなく転炉内に残留させて次のチャージの溶銑を装入し、残留させた脱炭スラグを次のチャージの脱珪処理で再利用した。また、本発明例1では、脱珪スラグと脱燐スラグとを同一のスラグ保持容器に排滓した。   Comparative Example 1 is a double slag method of desiliconization and dephosphorization → waste and decarburization refining, and Comparative Example 2 is desiliconization → waste → dephosphorization → hot water → recharge to another converter → The double slag method of decarburization refining, Comparative Example 3 is a triple slag method of desiliconization treatment → wastewater → dephosphorization treatment → wastewater → decarburization refining, but is a condition in which decarburization slag is not reused. . The present invention example 1 is a triple slag method of desiliconization treatment → wastewater → dephosphorization treatment → wastewater → decarburization refining, and the decarburized slag is left in the converter without being discharged, and The charged hot metal was charged, and the remaining decarburized slag was reused in the desiliconization treatment of the next charge. In Example 1 of the present invention, desiliconized slag and dephosphorized slag were discharged into the same slag holding container.

本発明例1及び比較例1〜3における冶金特性、生産性、CaO系媒溶剤原単位を表3に示す。表3は、各試験とも20チャージの平均値であり、表3の総処理時間は、精錬開始の溶銑装入から最終の脱炭精錬終了、出鋼、排滓までの時間である。   Table 3 shows metallurgical properties, productivity, and CaO-based solvent basic units in Example 1 of the present invention and Comparative Examples 1 to 3. Table 3 shows the average value of 20 charges in each test, and the total treatment time in Table 3 is the time from charging of hot metal at the start of refining to the end of the final decarburization refining, tapping, and waste.

Figure 0006665884
Figure 0006665884

比較例1は、脱珪・脱燐処理後の排滓のみであり、したがって、総処理時間が短い。しかしながら、脱珪・脱燐処理後の排滓時点の溶銑中燐濃度が高く(0.055質量%)、また、排滓率が60質量%であったため、脱炭精錬中に炉内に残留する燐量が多く、脱炭精錬後の溶鋼の燐濃度が高かった(0.012質量%)。   In Comparative Example 1, only the waste after the desiliconization and dephosphorization treatment was performed, and therefore, the total treatment time was short. However, since the phosphorus concentration in the hot metal at the time of the waste after the desiliconization and dephosphorization treatment was high (0.055% by mass), and the waste ratio was 60% by mass, it remained in the furnace during the decarburization refining. The phosphorus content of the molten steel after the decarburization refining was high (0.012% by mass).

比較例2は、脱珪処理後の排滓に加え、脱燐処理後に出湯して排滓し、脱燐溶銑を別の転炉に再度装入するので、総処理時間が長いという問題があった。しかし、脱燐処理によって脱燐溶銑は低燐化されており、且つ、脱燐スラグがほぼ完全に炉外に除去されるため、脱炭精錬後の溶鋼の燐濃度は低かった。   In Comparative Example 2, in addition to the waste after the desiliconization treatment, the molten metal is discharged and discharged after the dephosphorization treatment, and the dephosphorized hot metal is charged again into another converter, so that the total treatment time is long. Was. However, the dephosphorized hot metal was reduced in phosphorus by the dephosphorization treatment, and the dephosphorized slag was almost completely removed from the furnace, so that the phosphorus concentration of the molten steel after the decarburization refining was low.

比較例3は、トリプルスラグ法であり、比較例1に比べて総処理時間は長いが、出湯・再装入を行う比較例2に対しては総処理時間が短い。また、脱燐溶銑は低燐化されており、脱燐スラグがほぼ完全に炉外に除去される比較例2と比べると脱燐スラグの除去率は低いものの、脱炭精錬後の溶鋼の低濃化が実現されていた。但し、スラグを再利用していないので、生石灰原単位は28kg/溶鋼−tと高位であった。   Comparative Example 3 is a triple slag method, and has a longer total processing time than Comparative Example 1, but has a shorter total processing time than Comparative Example 2 in which tapping and recharging are performed. Further, the dephosphorized hot metal is reduced in phosphorous, and although the removal rate of dephosphorized slag is lower than that of Comparative Example 2 in which dephosphorized slag is almost completely removed outside the furnace, the molten steel after decarburization refining has a lower removal rate. Thickening had been realized. However, since slag was not reused, the quicklime basic unit was as high as 28 kg / molten steel-t.

比較例1〜3に対して、本発明例1では、比較例3と同等の冶金特性であり、脱炭スラグを脱珪処理へ再利用しているので、生石灰原単位は25kg/溶鋼−tと低位であった。また、脱炭スラグを排滓しないので、その分、比較例3よりも総処理時間が短縮した。   In contrast to Comparative Examples 1 to 3, in Inventive Example 1, the metallurgical properties are the same as in Comparative Example 3, and the decarburized slag is reused for the desiliconization treatment, so the quicklime basic unit is 25 kg / molten steel-t. And was low. Further, since the decarburized slag was not discharged, the total processing time was shorter than that in Comparative Example 3.

次に、冷鉄源の転炉への装入時期及び装入量を変化させて冷鉄源の溶解状況を比較する試験を行った(本発明例2〜8)。   Next, tests were performed to compare the melting state of the cold iron source by changing the charging time and the charging amount of the cold iron source into the converter (Examples 2 to 8 of the present invention).

精錬方法は、本発明例1と同一であり、脱珪処理→排滓→脱燐処理→排滓→脱炭精錬のトリプルスラグ法で、且つ、脱炭スラグを脱珪処理へ再利用した。本発明例2〜8で、冷鉄源の装入量は、転炉に装入する総鉄源の25質量%の一定とした。つまり、総鉄源を300トンとし、1チャージあたり225トンの高炉溶銑に対して、1チャージあたり75トンの冷鉄源を装入した。75トンの冷鉄源のうちで、60質量%分の45トンの冷鉄源は、厚さ10mm以上の重量屑を切断したものを使用し、残りの40質量%分の30トンは、厚さ10mm未満の軽量屑を使用した。本発明例2〜8における冷鉄源の装入条件を表4に示す。   The refining method was the same as that of Example 1 of the present invention, and was a triple slag method of desiliconization → waste → dephosphorization → waste → decarburization refining, and the decarburized slag was reused for desiliconization. In Examples 2 to 8, the amount of the cold iron source charged was constant at 25% by mass of the total iron source charged into the converter. That is, the total iron source was set to 300 tons, and the cold iron source of 75 tons per charge was charged into the blast furnace hot metal of 225 tons per charge. Of the 75 tons of cold iron source, the 45 tons of 60 mass% of the cold iron source used was obtained by cutting heavy waste having a thickness of 10 mm or more. Lightweight debris less than 10 mm was used. Table 4 shows the charging conditions of the cold iron source in Examples 2 to 8 of the present invention.

Figure 0006665884
Figure 0006665884

表4に示すように、総鉄源の合計25質量%分の冷鉄源を溶解するにあたり、本発明例2では、高炉溶銑の装入前に5質量%(軽量屑=15トン)、脱珪スラグの排滓後に10質量%(軽量屑=15トン、重量屑=15トン)、脱燐スラグの排滓後に10質量%(重量屑=30トン)の冷鉄源を転炉内に装入した。   As shown in Table 4, in melting the cold iron source corresponding to a total of 25% by mass of the total iron source, in Example 2 of the present invention, 5% by mass (light waste = 15 tons) and 15% by mass were removed before charging the blast furnace hot metal. A 10% by mass (weight waste = 15 tons) cold iron source after the silicon slag was discharged and a 10% by weight (weight waste = 30 tons) cold iron source after the dephosphorization slag were disposed in the converter. Entered.

本発明例3では、高炉溶銑の装入前に、75トンの全ての冷鉄源を転炉内に装入し、本発明例4では、高炉溶銑の装入前に15質量%(軽量屑=30トン、重量屑=15トン)、脱珪スラグの排滓後に10質量%(重量屑=30トン)の冷鉄源を転炉内に装入した。   In Example 3 of the present invention, 75 tons of all cold iron sources were charged into the converter before charging the blast furnace hot metal. In Example 4 of the present invention, 15% by mass (light weight = 30 tons, heavy waste = 15 tons), and a 10% by mass (weight waste = 30 tons) cold iron source was charged into the converter after the desiliconization slag was discharged.

本発明例5では、高炉溶銑の装入前に10質量%(軽量屑=15トン、重量屑=15トン)、脱珪スラグの排滓後に15質量%(軽量屑=15トン、重量屑=30トン)の冷鉄源を転炉内に装入し、本発明例6では、高炉溶銑の装入前に5質量%(重量屑=15トン)、脱珪スラグの排滓後に15質量%(軽量屑=15トン、重量屑=30トン)、脱燐スラグの排滓後に5質量%(軽量屑=15トン)の冷鉄源を転炉内に装入した。   In Inventive Example 5, 10% by mass (light waste = 15 tons, heavy waste = 15 tons) before charging the blast furnace molten iron, and 15% by mass (light waste = 15 tons, heavy waste = 30 tons) of cold iron source was charged into the converter, and in Example 6 of the present invention, 5% by mass (weight waste = 15 tons) before charging the molten iron in the blast furnace, and 15% by mass after discharging the desiliconized slag. (Lightweight debris = 15 tons, heavy debris = 30 tons), and a 5 mass% (lightweight debris = 15 tons) cold iron source was charged into the converter after the dephosphorization slag was discharged.

本発明例7では、高炉溶銑の装入前に5質量%(重量屑=15トン)、脱珪スラグの排滓後に5質量%(軽量屑=15トン)、脱燐スラグの排滓後に15質量%(軽量屑=15トン、重量屑=30トン)の冷鉄源を転炉内に装入し、本発明例8では、高炉溶銑の装入前に15質量%(軽量屑=15トン、重量屑=30トン)、脱珪スラグの排滓後に5質量%(軽量屑=15トン)、脱燐スラグの排滓後に5質量%(重量屑=15トン)の冷鉄源を転炉内に装入した。   In Example 7 of the present invention, 5% by mass (weight debris = 15 tons) before charging the blast furnace molten iron, 5% by mass (light weight debris = 15 tons) after the desiliconized slag was discharged, and 15% by weight after the dephosphorized slag was discharged. A cold iron source of mass% (light waste = 15 tons, heavy waste = 30 tons) was charged into the converter, and in Example 8 of the present invention, 15% by mass (light waste = 15 tons) before charging of blast furnace hot metal. , Heavy waste = 30 tons), 5 mass% (light waste = 15 tons) after desiliconization slag discharge, and 5 mass% (weight waste = 15 tons) cold iron source after dephosphorization slag discharge. Was charged inside.

本発明例3では、脱珪処理後の排滓時、及び、脱燐処理後の排滓時に転炉を傾動させた際に、炉底に未溶解の冷鉄源が確認された。また、脱炭精錬後の出鋼後に、炉内に残留させた脱炭スラグに混じって未溶解の冷鉄源が確認された。   In Example 3 of the present invention, when the converter was tilted at the time of the waste after the desiliconization treatment and at the time of the waste after the dephosphorization treatment, an undissolved cold iron source was confirmed at the furnace bottom. After tapping after decarburization refining, undissolved cold iron sources were found in the decarburized slag remaining in the furnace.

本発明例4及び本発明例5では、本発明例3と同様に、脱珪処理後の排滓時、及び、脱燐処理後の排滓時に未溶解の冷鉄源が一部炉底に観察された。また、脱炭精錬後の出鋼後に、炉内に残留させたスラグに混じって少量の未溶解の冷鉄源が観察された。   In Inventive Examples 4 and 5, similarly to Inventive Example 3, at the time of the waste after the desiliconization treatment and at the time of the waste after the dephosphorization treatment, a part of the undissolved cold iron source was placed at the bottom of the furnace. Was observed. After tapping after decarburization refining, a small amount of unmelted cold iron source was observed in the slag remaining in the furnace.

本発明例6〜本発明例8では、本発明例4及び本発明例5に比較して、冷鉄源の残留量は少ないものの、炉底や脱炭精錬後の出鋼後に炉内に残留させたスラグに混じって未溶解の冷鉄源が僅かに確認された。   In Examples 6 to 8 of the present invention, although the amount of the cold iron source remaining was smaller than that of Examples 4 and 5 of the present invention, the amount of residual iron remained in the furnace at the bottom of the furnace or after tapping after decarburization refining. A slight undissolved source of cold iron was found in the slag.

これに対して、本発明例2においては、脱珪処理の排滓時、脱燐処理後の排滓時、及び、脱炭精錬後の出鋼後に炉内に残留させた脱炭スラグに未溶解の冷鉄源は確認されなかった。   On the other hand, in Example 2 of the present invention, the decarburized slag remaining in the furnace after the desiliconization treatment, at the waste after the dephosphorization treatment, and after tapping after the decarburization refining was not added. No source of cold iron for dissolution was identified.

このように、同一量の冷鉄源を装入する場合でも、冷鉄源の装入時期を分散させることで、炉底への未溶解冷鉄源の付着や、スラグとの混合による冷鉄源の未溶解が軽減されることがわかった。また、冷鉄源を分散させる場合でも、各工程、即ち、溶銑装入前、脱珪処理後の排滓後、脱燐処理後の排滓後において、総鉄源の10質量%を超える量の冷鉄源を装入すると、炉底への未溶解冷鉄源の付着や、スラグとの混合による冷鉄源の未溶解が発生する。したがって、溶銑装入前、脱珪処理後の排滓後、脱燐処理後の排滓後に転炉内に装入する冷鉄源の量は、いずれの期間も、総鉄源の10質量%以下に制御することが好ましいことが確認できた。尚、冷鉄源の溶解挙動の比較を行った本発明例2〜本発明例8における脱珪反応、脱燐反応及び脱炭反応の冶金特性は本発明例1と同様であった。   In this way, even when the same amount of cold iron source is charged, by dispersing the charging time of the cold iron source, the unmelted cold iron source adheres to the furnace bottom, and the cold iron source is mixed with slag. It has been found that undissolution of the source is reduced. In addition, even when the cold iron source is dispersed, in each step, that is, before the hot metal charging, after the waste after the desiliconization treatment, and after the waste after the dephosphorization treatment, the amount exceeding 10% by mass of the total iron source. When the cold iron source is charged, the undissolved cold iron source adheres to the furnace bottom and the cold iron source is not melted due to mixing with the slag. Therefore, the amount of the cold iron source charged into the converter before charging the hot metal, after the waste after the desiliconization treatment, and after the waste after the dephosphorization treatment is 10% by mass of the total iron source in any period. It was confirmed that the following control is preferable. The metallurgical properties of the desiliconization reaction, dephosphorization reaction and decarburization reaction in Inventive Examples 2 to 8 in which the dissolution behaviors of the cold iron source were compared were the same as in Inventive Example 1.

1 転炉
2 上吹きランス
3 底吹き羽口
4 出湯口
5 高炉溶銑
6 脱珪スラグ
7 冷鉄源
8 酸素ガス
9 底吹きガス
10 スクラップシュート
11 装入鍋
12 脱燐スラグ
13 脱炭スラグ
14 脱珪溶銑
15 脱燐溶銑
16 溶鋼
Reference Signs List 1 converter 2 top blowing lance 3 bottom blowing tuyere 4 tap hole 5 blast furnace hot metal 6 desiliconized slag 7 cold iron source 8 oxygen gas 9 bottom blowing gas 10 scrap chute 11 charging pan 12 dephosphorized slag 13 decarburized slag 14 desorption Hot metal 15 Dephosphorized hot metal 16 Molten steel

Claims (4)

1基の転炉で溶銑を精錬して溶銑から溶鋼を溶製する転炉製鋼方法であって、
転炉内に溶銑を装入する第1工程と、
転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内の溶銑を脱珪処理する第2工程と、
転炉を傾動させて第2工程で生成したスラグの少なくとも一部を転炉から排滓する第3工程と、
転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱燐処理する第4工程と、
転炉を再度傾動させて第4工程で生成したスラグの少なくとも一部を転炉から排滓する第5工程と、
転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱炭精錬する第6工程と、
からなり、
第3工程で排滓するスラグと第5工程で排滓するスラグとを、同一のスラグ保持容器に排滓し、
第6工程で発生したスラグを転炉内に残留させた状態で次のチャージの第1工程を行って、第6工程で発生したスラグを次のチャージの脱珪処理でCaO系媒溶剤として再利用する転炉製鋼方法。
A converter steelmaking method for refining hot metal in one converter and producing molten steel from the hot metal,
A first step of charging hot metal into the converter;
A CaO-based solvent is supplied into the converter, and while the hot metal in the converter is stirred by the bottom blown gas, oxygen gas is supplied to the hot metal from the upper blow lance to desiliconize the hot metal in the converter. Two steps,
A third step of inclining the converter and discharging at least a part of the slag generated in the second step from the converter;
Return the converter to the upright position, supply the CaO-based solvent into the converter, and supply oxygen gas to the hot metal from the top blowing lance while stirring the hot metal in the converter with the bottom blown gas. A fourth step of dephosphorizing the hot metal remaining in the
A fifth step of tilting the converter again and discharging at least a part of the slag generated in the fourth step from the converter;
Return the converter to the upright position, supply the CaO-based solvent into the converter, and supply oxygen gas to the hot metal from the top blowing lance while stirring the hot metal in the converter with the bottom blown gas. A sixth step of decarburizing and refining the hot metal remaining in the
Consisting of
The slag discharged in the third step and the slag discharged in the fifth step are discharged into the same slag holding container,
The first step of the next charge is performed with the slag generated in the sixth step remaining in the converter, and the slag generated in the sixth step is reused as a CaO-based solvent in the desiliconization treatment of the next charge. The converter steelmaking method to be used.
第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の期間のうちの少なくとも1つの期間で、冷鉄源を転炉内へ装入する、請求項1に記載の転炉製鋼方法。 Loading the cold iron source into the converter before charging the hot metal into the converter in the first step, after the third step, and in at least one of the periods after the fifth step; The converter steelmaking method according to claim 1 . 第1工程での転炉内に溶銑を装入する前に冷鉄源を転炉内に装入し、更に、第3工程の後及び/または第5工程の後に、転炉内に冷鉄源を装入する、請求項1に記載の転炉製鋼方法。 Before the hot metal is charged into the converter in the first step, the cold iron source is charged into the converter, and further, after the third step and / or after the fifth step, the cold iron source is charged into the converter. The converter steelmaking method according to claim 1, wherein a source is charged. 第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の各期間における冷鉄源の装入量は、いずれの期間も、転炉に装入する総鉄源の10質量%以下とする、請求項または請求項に記載の転炉製鋼方法。 Before the hot metal is charged into the converter in the first step, after the third step, and after the fifth step, the charging amount of the cold iron source in each period is charged into the converter in any period. The converter steelmaking method according to claim 2 or 3 , wherein the total iron source is set to 10% by mass or less.
JP2018078913A 2017-04-27 2018-04-17 Converter steelmaking method Active JP6665884B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088047 2017-04-27
JP2017088047 2017-04-27

Publications (2)

Publication Number Publication Date
JP2018188730A JP2018188730A (en) 2018-11-29
JP6665884B2 true JP6665884B2 (en) 2020-03-13

Family

ID=64479527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078913A Active JP6665884B2 (en) 2017-04-27 2018-04-17 Converter steelmaking method

Country Status (1)

Country Link
JP (1) JP6665884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703219B (en) 2018-04-24 2020-09-01 日商日本製鐵股份有限公司 Dephosphorization method of hot metal
KR20230133976A (en) * 2021-01-26 2023-09-19 제이에프이 스틸 가부시키가이샤 Converter steelmaking method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734113A (en) * 1993-07-20 1995-02-03 Nippon Steel Corp Converter refining method
JP3735211B2 (en) * 1999-05-12 2006-01-18 新日本製鐵株式会社 Converter refining method for adjusting the silicon content
JP5230062B2 (en) * 2005-08-04 2013-07-10 株式会社神戸製鋼所 Operation method of converter facilities
JP6164151B2 (en) * 2014-05-14 2017-07-19 Jfeスチール株式会社 Method for refining molten iron using a converter-type refining furnace
JP6172194B2 (en) * 2014-07-23 2017-08-02 Jfeスチール株式会社 Hot metal pretreatment method
JP6269974B2 (en) * 2015-03-25 2018-01-31 Jfeスチール株式会社 Steel melting method

Also Published As

Publication number Publication date
JP2018188730A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP5408369B2 (en) Hot metal pretreatment method
JP5954551B2 (en) Converter steelmaking
JP5440733B2 (en) Hot metal refining method
EP0714989B1 (en) Steel manufacturing method using converter dephosphorisation
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP6693536B2 (en) Converter steelmaking method
JP6665884B2 (en) Converter steelmaking method
JP2004190101A (en) Method for pre-treating molten iron
US5868817A (en) Process for producing steel by converter
JP5408379B2 (en) Hot metal pretreatment method
JP5233378B2 (en) Hot phosphorus dephosphorization method
JP2013227664A (en) Molten iron preliminary treatment method
JP3790414B2 (en) Hot metal refining method
JP2003239009A (en) Dephosphorization refining method of hot metal
JP2002220615A (en) Converter steelmaking method
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JPH08311519A (en) Steelmaking method using converter
JP4957018B2 (en) Method for refining molten steel
JP6361885B2 (en) Hot metal refining method
JP7211557B2 (en) Molten iron smelting method
WO2022163202A1 (en) Converter steel making method
JP2001131625A (en) Dephosphorizing method of molten iron using converter
WO2022163219A1 (en) Method for refining molten iron
JP2023049462A (en) Dephosphorization of hot metal
JPH11181513A (en) Method for melting iron-containing cold material

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250