JP2003239009A - Dephosphorization refining method of hot metal - Google Patents

Dephosphorization refining method of hot metal

Info

Publication number
JP2003239009A
JP2003239009A JP2002037158A JP2002037158A JP2003239009A JP 2003239009 A JP2003239009 A JP 2003239009A JP 2002037158 A JP2002037158 A JP 2002037158A JP 2002037158 A JP2002037158 A JP 2002037158A JP 2003239009 A JP2003239009 A JP 2003239009A
Authority
JP
Japan
Prior art keywords
dephosphorization
hot metal
refining
powder
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002037158A
Other languages
Japanese (ja)
Inventor
Yuji Ogawa
雄司 小川
Manabu Yoshimi
学 吉見
Kosuke Kume
康介 久米
Kimitoshi Yonezawa
公敏 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002037158A priority Critical patent/JP2003239009A/en
Publication of JP2003239009A publication Critical patent/JP2003239009A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dephosphorization refining method of hot metal in which the dephosphorization efficiency is enhanced to the upper limit while promoting slag formation of CaO by using a less costly dephosphorization refining agent. <P>SOLUTION: When performing dephosphorization refining of the hot metal through flux addition and oxygen top-blow by using a converter, a part of or the whole of the dephosphorization flux containing CaO is made into powder which is sprayed over the surface of the hot metal on the oxygen flow from a top-blow lance, and ≥10 mass % of the powder is the limestone powder containing calcium carbonate. The hot metal is charged in the converter, dephosphorization refining is performed through flux addition and oxygen top- blow, the phosphor content is reduced to a predetermined level, and the converter is tilted to discharge the generated slag. Thereafter, when a decarbonizing step is performed by the same converter, a part of or the whole of the flux for dephosphorization containing CaO is made into powder which is sprayed on the surface of the hot metal on the oxygen flow from the top-blow lance, and ≥10 mass % of the powder is the limestone powder containing calcium carbonate. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、転炉内での溶銑の
脱りん精錬方法に関するもので、特に、脱りん効率を最
大限まで高めた脱りん精錬方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dephosphorizing and refining hot metal in a converter, and more particularly to a method for dephosphorizing and refining in which the dephosphorization efficiency is maximized.

【0002】[0002]

【従来の技術】製鋼トータルコストのミニマム化や低り
ん鋼の安定溶銑に関して、従来溶銑の脱りん法として、
(1)トーピードカー内の溶銑に脱りん用フラックスを
インジェクションして予備脱りんを行う方法、(2)取
鍋内の溶銑に脱りん用フラックスをインジェクションす
るかもしくは吹付けて、予備脱りんを行う方法、あるい
は(3)2基の転炉を用いて、一方で脱りんを行い、他
方で脱炭を行う方法(例えば、特開昭63−19521
0号公報)が用いられている。
2. Description of the Related Art Regarding the minimization of the total cost of steelmaking and the stable hot metal of low phosphorus steel, the conventional hot metal dephosphorization method is as follows.
(1) Method of pre-dephosphorization by injecting flux for dephosphorization into hot metal in torpedo car, (2) Pre-dephosphorization by injecting or spraying flux for dephosphorization on hot metal in ladle Or (3) using two converters, dephosphorization is carried out on the one hand and decarburization is carried out on the other hand (for example, JP-A-63-19521).
No. 0) is used.

【0003】しかしながら、トーピードカーや溶銑鍋等
の溶銑搬送容器を用いた場合、容器容量が小さく強攪拌
精錬を行うことが困難で、特に脱りん反応は平衡から遠
く、目標の脱りん量を達成するためには必要以上のフラ
ックスを使用しなければならず、かつ精錬に長時間を要
すという欠点がある。脱りん精錬時間は、プロセス
(1)で約20分、プロセス(2)で約11分が最短で
あった。また、大量の酸素を高速で吹き込むと発生CO
ガスの増大によりスラグが過剰に泡立ち、精錬容器から
スラグや地金が逸出するスロッピングと呼ばれる現象が
発生するため、生産障害や鉄歩留り低下を招き、それを
避けるために酸素源として鉄鉱石やスケール等の酸化鉄
を利用せざるを得ず、酸化鉄の還元に溶銑顕熱を奪われ
るためスクラップの溶解量が制限される。容器容量の大
きい転炉を使用すれば、強撹拌で溶鉄中の物質移動が高
い条件下で高速での大量酸素供給が可能となるため、短
時間での脱りん処理ができるとともに、スクラップ消費
量も拡大する。その理由から、最近はプロセス(3)の
ような転炉型の脱りん処理プロセスへ移行する製鉄所が
多い。
However, when a hot metal carrier such as a torpedo car or a hot metal ladle is used, the capacity of the container is small and it is difficult to perform strong stirring refining. Especially, the dephosphorization reaction is far from equilibrium and the target dephosphorization amount is achieved. In order to do so, it is necessary to use more flux than necessary, and refining takes a long time. The dephosphorization refining time was about 20 minutes for the process (1) and about 11 minutes for the process (2). Also, when a large amount of oxygen is blown at high speed, CO is generated.
As the amount of gas increases, the slag foams excessively, causing a phenomenon called sloping, in which slag and metal ingots escape from the smelting container, which causes production obstacles and decreased iron yield.To avoid this, iron ore is used as an oxygen source. Since iron oxide such as iron and scale must be used, and the sensible heat of the hot metal is taken away by the reduction of iron oxide, the amount of scrap dissolved is limited. If a converter with a large vessel capacity is used, a large amount of oxygen can be supplied at high speed under conditions where mass transfer in molten iron is high with strong stirring, so dephosphorization can be performed in a short time and scrap consumption can be reduced. Also expand. For that reason, recently, many steel mills shift to a converter type dephosphorization process such as the process (3).

【0004】但し、プロセス(3)においても、溶銑か
ら溶鋼を製造するには脱炭を含めて2基の転炉を必要と
するため、設備費が高く、溶銑の移し替え操作による放
散熱ロスが増して、スクラップの溶解能力が低下する。
この問題を解決するために、本発明者らは先に特開平7
−70626号公報のように、転炉で溶銑脱りん精錬を
行った後、炉を傾動して生成スラグを排出し、その後同
一転炉により脱炭工程を行う製鋼プロセスを提案してい
る。
However, also in the process (3), since two converters including decarburization are required to produce molten steel from hot metal, the equipment cost is high, and the heat dissipation loss due to hot metal transfer operation is high. And the melting capacity of scrap decreases.
In order to solve this problem, the present inventors have previously disclosed Japanese Patent Laid-Open No.
As disclosed in JP-A-70626, a steelmaking process is proposed in which, after performing hot metal dephosphorization refining in a converter, the furnace is tilted to discharge the generated slag, and then a decarburization process is performed in the same converter.

【0005】転炉を用いた脱りん精錬においては、脱り
ん用フラックスとしてCaOを主成分とする塊状の生石
灰を使用する場合が多いが、滓化と呼ぶ溶解スラグ化す
る速度が遅く、本来スラグの持つ脱りん能を十分享受す
る前に脱りん精錬が終了している。CaF2を主成分と
する蛍石等の媒溶剤を用いて生石灰の滓化を促進するこ
とも可能であるが、F溶出等の環境規制から蛍石の使用
も不可能となりつつある。また、CAMP−ISIJ、
vol.4(1991)、p.1153に開示されてい
るような、粉状の生石灰や炭酸カルシウム(CaC
3)を主成分とする石灰石を底吹き羽口より溶鉄中に
吹き込んで滓化を促進するプロセスもあるが、フラック
スの粒径が小さい効果だけであり、融点が約2570℃
と高いCaOの滓化促進効果には限界がある。
In dephosphorization refining using a converter, lumped quick lime containing CaO as a main component is often used as a flux for dephosphorization, but the rate of molten slag called slag formation is slow, and the original slag is used. The dephosphorization refining is completed before fully enjoying the dephosphorization ability of. Although it is possible to promote the slag formation of quicklime by using a solvent medium such as fluorspar containing CaF 2 as a main component, it is becoming impossible to use fluorspar due to environmental regulations such as F elution. In addition, CAMP-ISIJ,
vol. 4 (1991), p. 1153, powdered quicklime and calcium carbonate (CaC
There is also a process in which limestone containing O 3 ) as the main component is blown into molten iron from the bottom tuyere to promote slag formation, but the effect is only the small particle size of the flux, and the melting point is about 2570 ° C.
There is a limit to the effect of promoting the slag formation of CaO.

【0006】CaOの滓化を促進する手段として、LD
−AC法が開発されており、転炉型脱りん処理にも適用
されている。これは、生石灰粉を吹錬用の酸素に混入さ
せて、酸素ジェットとともに鋼浴面に吹き付ける方法で
ある。この方法では、鋼浴面に吹き付けられた酸素が鉄
を酸化してできる酸化鉄とCaOが低融点のカルシウム
フェライトを生成するため、CaOの滓化が速やかに進
行するとともに脱りん効率が向上すると言われている。
また、脱りんと脱炭を同時に転炉で吹錬する場合である
が、ランス内部から酸素気流中に粉体を混入した場合の
酸素ジェットの速度低下を防止する方法として、種々の
造滓剤である粉体を酸素と別経路で噴出させ、ランス外
で酸素気流中に随伴させる特開昭56−9311号公報
のような技術も開示させている。
LD is used as a means for promoting the slag formation of CaO.
-The AC method has been developed and applied to converter-type dephosphorization treatment. This is a method in which quicklime powder is mixed with oxygen for blowing and is sprayed on a steel bath surface together with an oxygen jet. In this method, oxygen blown to the surface of the steel bath oxidizes iron to form iron oxide and CaO that form low-melting-point calcium ferrite, so that the slag formation of CaO proceeds rapidly and the dephosphorization efficiency improves. It is said.
Also, although dephosphorization and decarburization are simultaneously blown in a converter, various slag-making agents are used as a method for preventing the speed reduction of the oxygen jet when powder is mixed into the oxygen stream from the inside of the lance. Japanese Patent Laid-Open No. 56-9311 discloses a technique in which a powder is ejected from a path different from that of oxygen and is accompanied by an oxygen stream outside the lance.

【0007】しかしながら、上吹きランスから粉体フラ
ックスを酸素気流中に載せて鋼浴表面に吹き付けるこれ
らの方法においては、カルシウムフェライトが生成する
のが高温の火点部であり、直ちには脱りん反応に寄与し
ない。カルシウムフェライトが生成することにより滓化
したCaOがスラグ中に移行し、スラグ全体の塩基度が
高くなることで、比較的温度の低いスラグ/メタル界面
で進行する脱りん反応の効率が向上すると考えられてい
る。そのため、本来カルシウムフェライトが有している
高い脱りん能を十分に享受していないという問題があっ
た。また、これらの技術において、主たる脱りん剤とし
て使用される生石灰は、CaCO3を主成分とする石灰
石を石灰炉で焼成して製造する故、その設備及び焼成用
燃料、人件費を必要とし高価なものになるという問題も
あった。
However, in these methods in which the powder flux is placed in the oxygen stream from the top-blown lance and sprayed onto the surface of the steel bath, calcium ferrite is produced at the high-temperature hot spot, and immediately the dephosphorization reaction occurs. Does not contribute to. It is thought that the efficiency of the dephosphorization reaction that proceeds at the slag / metal interface, which has a relatively low temperature, improves as the CaO slagging due to the formation of calcium ferrite migrates into the slag and the basicity of the entire slag increases. Has been. Therefore, there is a problem that the high dephosphorization ability originally possessed by calcium ferrite is not fully enjoyed. Further, in these technologies, quick lime used as a main dephosphorizing agent is produced by calcining limestone containing CaCO 3 as a main component in a lime furnace, and therefore requires equipment and calcining fuel, labor costs, and is expensive. There was also a problem that it would be something like.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上述の問題
点を解決するものであり、コストの安い脱りん精錬剤を
用いて、かつCaOの滓化を促進しつつ脱りん効率を極
限まで高める溶銑の脱りん精錬方法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems and uses a dephosphorization refining agent that is low in cost, and promotes the slag formation of CaO, while maximizing the dephosphorization efficiency. A method for dephosphorizing and refining hot metal is provided.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1)転炉を用いて、フラックス添加と酸素上吹きによ
り溶銑を脱りんする精錬方法において、石灰分を含む脱
りん用フラックスの一部または全量を上吹きランスから
酸素気流中にのせて溶銑表面に吹き付ける粉体とし、該
粉体の10質量%以上を炭酸カルシウムを含有する石灰
石粉とすることを特徴とする溶銑の脱りん精錬方法。 (2)溶銑を精錬して溶鋼を製造するに際し、溶銑を転
炉に装入し、フラックス添加と酸素上吹きとを行って脱
りん精錬を施し所定のりん含有量まで低減させ、前記転
炉を傾動して生成したスラグを排出し、その後同一転炉
により脱炭工程を行う際に、石灰分を含む脱りん用フラ
ックスの一部または全量を上吹きランスから酸素気流中
にのせて溶銑表面に吹き付ける粉体とし、該粉体の10
質量%以上を炭酸カルシウムを含有する石灰石粉とする
ことを特徴とする溶銑の脱りん精錬方法。
The subject matter of the present invention is as follows. (1) In a refining method in which hot metal is dephosphorized by adding flux and blowing oxygen in a converter, a part or all of the flux for dephosphorization containing lime is placed in the oxygen stream from the top blowing lance. A method for dephosphorizing and refining hot metal, characterized in that the powder is sprayed onto the surface, and 10% by mass or more of the powder is limestone powder containing calcium carbonate. (2) When refining the hot metal to produce molten steel, the hot metal is charged into a converter, and flux addition and oxygen top blowing are performed to perform dephosphorization refining to reduce the phosphorus content to a predetermined value, and the converter is used. When the decarburization process is performed in the same converter after discharging the slag generated by tilting the steel, part or all of the dephosphorization flux containing lime is placed in the oxygen stream from the top blowing lance and the surface of the hot metal is removed. 10 of the powder
A method for dephosphorizing and refining hot metal, which comprises using limestone powder containing calcium carbonate in an amount of at least mass%.

【0010】[0010]

【発明の実施の形態】以下本発明を詳細に説明する。ま
ず、高炉から出銑された溶銑を、そのまま、もしくは必
要であれば事前脱硫や脱珪を施した後、転炉に装入す
る。その後、上吹きランスから酸素を吹き付けつつ、溶
銑中のPやSiを酸化精錬する。この際、高速脱りん精
錬を行うためには、底吹き羽口等より撹拌用のガスを吹
き込みつつ、溶銑内部やスラグ内部の物質移動を高める
のが望ましい。処理中には、酸化補助原料としての鉄鉱
石やスケール等の酸化鉄源と、生石灰やドロマイト、石
灰石、脱炭滓等のCaOを含む脱りん用フラックスを添
加するが、一般的に使用する塊状の生石灰だけでは滓化
が進行しないため、脱りん用フラックスの一部または全
量を粉体とし、該粉体を窒素ガス等をキャリアガスとし
て精錬用の酸素ガス配管中に送り込み、酸素気流中にの
せて上吹きランスを通して溶銑表面に吹き付けることで
CaOの滓化を促進する。この際、上吹きランスから溶
銑に吹き付ける脱りん用フラックスの粉体の10質量%
以上を炭酸カルシウム(CaCO3)を含有する石灰石
粉とする。その理由は以下の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. First, the hot metal tapped from the blast furnace is charged into the converter as it is, or after being subjected to prior desulfurization or desiliconization if necessary. After that, while blowing oxygen from the upper blowing lance, P and Si in the hot metal are oxidatively refined. At this time, in order to perform high-speed dephosphorization refining, it is desirable to enhance the mass transfer inside the hot metal and the slag while blowing a stirring gas from the bottom blowing tuyere. During the treatment, an iron oxide source such as iron ore and scale as an auxiliary material for oxidation and a flux for dephosphorization containing CaO such as quick lime, dolomite, limestone and decarburizing slag are added. Since the slag formation does not proceed only with the quick lime of the above, a part or the whole amount of the flux for dephosphorization is made into powder, and the powder is fed into the oxygen gas pipe for refining with nitrogen gas as a carrier gas, and is fed into the oxygen stream. Then, it is sprayed on the surface of the hot metal through a top-blown lance to promote CaO slag formation. At this time, 10% by mass of the powder of the flux for dephosphorization which is sprayed onto the hot metal from the upper spray lance
The above is limestone powder containing calcium carbonate (CaCO 3 ). The reason is as follows.

【0011】本発明者らは、種々の脱りん精錬操業を行
い、溶銑1t当たりに対する脱りん精錬用フラックス中
のCaO量がほぼ同じとなる場合の、脱りん効率に対す
る上吹きランスから供給されるフラックスの配合比率の
影響を調査した。図1は、上吹きランスから溶銑に吹き
付けられる脱りん精錬用フラックス中の石灰石粉の割合
と処理後の[P]レベルの関係を示す。石灰石粉が10
質量%未満の配合比率までは、処理後の[P]レベルに
影響は認められないが、石灰石粉の配合比率が10質量
%以上となると[P]レベルの低減効果が認められた。
粉体吹き付け部の局部的な溶銑やスラグのサンプリング
による成分分析や鉱物相解析、および温度測定から、こ
れは、石灰石の主成分であるCaCO3が酸素が吹き付
けられて形成される火点部で熱分解を起こし、生成され
るカルシウムフェライト近傍の温度が低下して、火点近
傍で既に脱りん反応に大きく寄与しているためであるこ
とが明らかとなった。
The present inventors have carried out various dephosphorization refining operations, and when the CaO amount in the dephosphorization refining flux per 1 ton of hot metal is almost the same, the dephosphorization efficiency is supplied from the upper blowing lance. The influence of the blending ratio of flux was investigated. FIG. 1 shows the relationship between the ratio of limestone powder in the flux for dephosphorization and refining sprayed on the hot metal from the top-blown lance and the [P] level after the treatment. 10 limestone powder
Up to a blending ratio of less than mass%, no influence was observed on the [P] level after the treatment, but when the blending ratio of limestone powder was 10 mass% or more, the effect of reducing the [P] level was recognized.
From the component analysis by local sampling of hot metal and slag, the mineral phase analysis, and the temperature measurement of the powder spraying part, it was found that this is the hot spot where CaCO 3 which is the main component of limestone is sprayed with oxygen. It was clarified that this is because the temperature near the calcium ferrite that was generated due to thermal decomposition decreased, and it already contributed greatly to the dephosphorization reaction near the fire point.

【0012】なお、石灰石粉の混合比率の上限値は脱り
ん反応効率の面からは規定されず、むしろ全量石灰石粉
である方が脱りん効率向上には有利であり、精錬剤のコ
ストとしても低減される。但し、脱りん後の脱炭工程で
の熱量が不足する場合には、分解吸熱反応を伴う石灰石
の使用総量は規制される。
The upper limit of the mixing ratio of limestone powder is not specified in terms of dephosphorization reaction efficiency. Rather, the total amount of limestone powder is advantageous for improving the dephosphorization efficiency, and also as the cost of the refining agent. Will be reduced. However, when the amount of heat in the decarburization process after dephosphorization is insufficient, the total amount of limestone used with decomposition endothermic reaction is regulated.

【0013】また、本発明は、溶銑を精錬して溶鋼を製
造する際に、第一工程として溶銑を転炉に装入し、第二
工程としてフラックス添加と酸素上吹きとを行って脱り
ん精錬を施し所定のりん含有量まで低減させ、第三工程
として前記転炉を傾動して第二工程で生成したスラグを
排出し、その後同一転炉により脱炭工程を行う溶鋼製造
法において適用する場合に、より大きな効果を発揮す
る。
According to the present invention, when refining the hot metal to produce molten steel, the hot metal is charged into a converter as the first step, and the flux addition and oxygen top blowing are performed as the second step to dephosphorize the hot metal. It is applied in a molten steel manufacturing method where refining is performed to reduce the phosphorus content to a predetermined level, the converter is tilted as a third step to discharge the slag generated in the second step, and then a decarburization step is performed in the same converter. In that case, it exerts a greater effect.

【0014】この溶鋼製造法においては、第二工程で生
成した脱りんスラグを転炉を傾動することにより排出す
るが、スラグの排出率が低下すると、その後の脱炭工程
への持ち込みP量が増加するため、脱炭吹き止め時に所
定の[P]レベルに到達しない「P外れ」が生じる。ス
ラグの排出率向上のためには、第二工程でスラグをある
程度泡立たせておくことが重要となる。しかしながら、
脱りん精錬中に過度にスラグが泡立つと、スロッピング
という地金を含むスラグが炉外に溢れ出る現象が生じ、
操業障害を招くとともに鉄歩留りが低下する。CaOの
滓化が遅れて精錬中のスラグの塩基度が低くなると、ス
ラグの粘性の増加や表面張力の低下によりスラグが過度
に泡立つことが知られているが、CaOを含む粉体を上
吹きランスから酸素気流中にのせて溶銑に吹き付けるこ
とでCaOの滓化が促進して、スラグ泡立ちが抑制され
る。
In this molten steel manufacturing method, the dephosphorized slag produced in the second step is discharged by tilting the converter. However, when the slag discharge rate decreases, the amount of P introduced into the subsequent decarburization step is reduced. Because of the increase, "P disengagement" that does not reach a predetermined [P] level occurs when decarburization is stopped. In order to improve the discharge rate of slag, it is important to foam the slag to some extent in the second step. However,
If the slag foams excessively during dephosphorization and refining, a phenomenon called sloping that overflows the slag containing metal, occurs,
This will cause operational problems and reduce the iron yield. It is known that when the basicity of slag during refining becomes low due to the delay of CaO slag formation, the slag foams excessively due to an increase in the viscosity of the slag and a decrease in the surface tension. When the lance is placed in an oxygen stream and sprayed onto the hot metal, the slag foaming is suppressed by promoting the slag formation of CaO.

【0015】更に、本発明者らは、石灰石粉を上吹きラ
ンスを通して溶銑に吹き付けることで、火点部が冷却さ
れ、供給された酸素がより多くPの酸化に使用されると
ともに火点部で生成したFeOの還元速度も温度低下に
より抑制され、その結果脱炭速度が低下するために泡立
ちの主因であるCOガス発生量が低減してスラグ泡立ち
が抑制されることを見出した。脱りん精錬終了後に、石
灰石粉の吹き付けを停止すると、スラグが適度に泡立
ち、第三工程でのスラグの排出率も高位に維持できるこ
とが明らかになった。
Further, the inventors of the present invention sprayed limestone powder onto the hot metal through the top blowing lance to cool the hot spot so that more oxygen supplied was used for the oxidation of P and at the hot spot. It was also found that the reduction rate of the generated FeO is also suppressed by the temperature decrease, and as a result, the decarburization rate is decreased, so that the CO gas generation amount, which is the main cause of foaming, is reduced and the slag foaming is suppressed. After the dephosphorization and refining was completed, it was revealed that when the spraying of limestone powder was stopped, the slag foamed appropriately and the discharge rate of slag in the third step could be maintained at a high level.

【0016】[0016]

【実施例】(実施例1)350t転炉を用いて、50チ
ャージの溶銑の脱りん精錬を実施した。4.3〜4.6
質量%のC、0.09〜0.10質量%のP、0.4〜
0.6質量%のSiを含む初期温度1300〜1430
℃の320〜350tの溶銑と30〜60tの屑鉄を転
炉に装入し、4〜5分間精錬した。温度調整用の鉄鉱石
1〜6tの他に、脱りん用フラックスとして塊状の生石
灰と生ドロマイトおよび石灰石の粉体を使用した。脱り
ん用フラックス中のCaOの総質量は溶銑中Siが酸化
して生成するSiO2質量の2倍とし、石灰石粉の使用
量は1.5t〜3tとした。本実施例での脱りん用フラ
ックス粉体中の石灰石粉の比率は12%〜40%の範囲
であった。塊状生石灰と生ドロマイトは精錬開始直後に
投入シュートより一括で添加した。また、石灰石粉はブ
ロータンクより窒素ガスをキャリアガスとして、酸素ガ
スの配管中に導入し、酸素気流中にのせて上吹きランス
を通して約1000kg/分の速度で溶銑に吹き付けた。
上吹き送酸速度は58000Nm3/時とし、底吹きは二
重管羽口から酸素ガスを冷却用の二酸化炭素、プロパン
ガスとともに全部で2000Nm3/時の流量で吹き込ん
だ。処理後の溶銑温度は1350〜1400℃の範囲と
なるように調整した。
EXAMPLES Example 1 Using a 350 ton converter, dephosphorization refining of 50-charge hot metal was carried out. 4.3-4.6
Mass% C, 0.09-0.10 mass% P, 0.4-
Initial temperature 1300 to 1430 containing 0.6% by mass of Si
320 to 350 t of hot metal and 30 to 60 t of scrap iron at a temperature of 0 ° C were charged into a converter and refined for 4 to 5 minutes. In addition to the iron ore 1 to 6 tons for temperature adjustment, lumped quick lime, quick dolomite and limestone powder were used as flux for dephosphorization. The total mass of CaO in the dephosphorization flux was twice the mass of SiO 2 produced by the oxidation of Si in the hot metal, and the amount of limestone powder used was 1.5t to 3t. The ratio of limestone powder in the flux powder for dephosphorization in this example was in the range of 12% to 40%. Bulk quick lime and quick dolomite were added all at once from the charging chute immediately after the start of refining. The limestone powder was introduced into the oxygen gas pipe from a blow tank using nitrogen gas as a carrier gas, placed in an oxygen gas stream, and sprayed onto the hot metal at a rate of about 1000 kg / min through an upper blowing lance.
The top blowing acid rate was 58,000 Nm 3 / hour, and the bottom blowing was a double tube tuyere in which oxygen gas was blown together with carbon dioxide for cooling and propane gas at a total flow rate of 2000 Nm 3 / hour. The hot metal temperature after the treatment was adjusted to be in the range of 1350 to 1400 ° C.

【0017】(比較例1)実施例1と同一の転炉および
上吹きランスを用いて、50チャージの脱りん精錬を実
施した。比較例1においては、脱りん用フラックス中の
CaOの総質量は、実施例1と同じく溶銑中Siが酸化
して生成するSiO2質量の2倍としたが、上吹きラン
スから吹き付ける粉体には石灰石粉は使用せず、全て生
石灰粉を使用した。それ以外の溶銑条件や精錬条件は全
て実施例1と同じ範囲内とした。
(Comparative Example 1) Using the same converter and upper blowing lance as in Example 1, dephosphorization refining with 50 charges was carried out. In Comparative Example 1, the total mass of CaO in the flux for dephosphorization was set to be twice the mass of SiO 2 generated by the oxidation of Si in the hot metal as in Example 1, but the mass sprayed from the upper spray lance was used. Did not use limestone powder, but used all quicklime powder. All other hot metal conditions and refining conditions were within the same ranges as in Example 1.

【0018】実施例1の50チャージと比較例1の50
チャージの溶銑脱りん精錬における精錬後の溶銑中P濃
度の平均値および精錬中のスロッピングの発生回数を表
1に示す。精錬後の平均P濃度は、実施例1が比較例1
よりも約0.006%低減されていることがわかる。ま
た、スロッピングも比較例1では6回発生したのに対
し、実施例1では一度も発生しなかった。
50 charges of Example 1 and 50 of Comparative Example 1
Table 1 shows the average value of the P concentration in the hot metal after refining and the number of occurrences of sloping during refining in the hot metal dephosphorization refining of charge. Regarding the average P concentration after refining, Example 1 is Comparative Example 1
It can be seen that it is reduced by about 0.006%. In addition, sloping occurred 6 times in Comparative Example 1, but never occurred in Example 1.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例2)実施例1と同一の転炉および
上吹きランスを用いて、同様の脱りん精錬を行った後、
転炉を傾動して脱りんスラグを排出し、その後脱炭工程
を行う精錬を50チャージ実施した。脱りん精錬工程で
の溶銑や精錬条件は実施例1と同一範囲内とした。排出
したスラグの質量は秤量器により測定し、マスバランス
から計算した生成スラグ量を元にスラグの排出率を算出
した。脱りんスラグの排出後、直ちに転炉を直立し、塊
状生石灰を所定量添加して、上吹き送酸速度72000
Nm3/hで約13分間の脱炭精錬を実施した。底吹きガス
流量は脱りん精錬時と同じとした。脱炭精錬後の溶鋼温
度は1630〜1660℃、[C]は0.04〜0.0
6質量%、[P]は0.014〜0.018質量%の範
囲となるように、冷却用鉄鉱石の添加量や脱りん用塊状
生石灰の添加量を調整した。
(Embodiment 2) After the same dephosphorization refining was carried out by using the same converter and upper blowing lance as in Embodiment 1,
The converter was tilted to discharge the dephosphorized slag, and then a decarburizing step was performed for 50 charges of refining. The hot metal and refining conditions in the dephosphorization refining process were within the same ranges as in Example 1. The mass of the discharged slag was measured by a weighing machine, and the discharge rate of the slag was calculated based on the generated slag amount calculated from the mass balance. Immediately after the dephosphorization slag was discharged, the converter was erected upright and a certain amount of lump quick lime was added, and the top blowing acid rate was 72000.
Decarburization refining was carried out at Nm 3 / h for about 13 minutes. The bottom gas flow rate was the same as during dephosphorization refining. The molten steel temperature after decarburization refining is 1630 to 1660 ° C, and [C] is 0.04 to 0.0
The amount of iron ore for cooling and the amount of massive quicklime for dephosphorization were adjusted so that 6% by mass and [P] were in the range of 0.014 to 0.018% by mass.

【0021】(比較例2)実施例2と同様の脱りん精錬
工程、脱りんスラグ排出工程、脱炭工程を伴う精錬を5
0チャージ実施した。脱りん精錬工程で、上吹きランス
から吹き付ける粉体を全量生石灰粉とした以外は全て実
施例2と同じ溶銑条件、精錬条件とした。
(Comparative Example 2) The same dephosphorization refining step, dephosphorization slag discharge step, and decarburization step refining steps as in Example 2 were carried out.
We carried out 0 charge. In the dephosphorization refining process, all the hot metal conditions and refining conditions were the same as in Example 2 except that the total amount of powder sprayed from the top blowing lance was quicklime powder.

【0022】実施例2の50チャージと比較例2の50
チャージの精錬における、脱りん精錬後および脱炭精錬
後のメタル中P濃度の平均値および脱りんスラグの排出
率の平均値、脱炭精錬で使用した塊状生石灰の平均原単
位を表2に示す。まず、脱りん精錬後の平均P濃度は、
やはり実施例2が比較例2よりも約0.006%低減さ
れていることがわかる。また、脱りんスラグの排出率も
比較例2に比べて実施例2では大きく向上しており、そ
の結果、脱炭精錬後の[P]レベルが同等となるように
制御した脱炭精錬時での生石灰の原単位が、実施例2で
は比較例2に比べて約5kg/t削減できていることがわか
る。
50 charge of Example 2 and 50 charge of Comparative Example 2
Table 2 shows the average P concentration in the metal after dephosphorization refining and decarburization refining, the average emission rate of dephosphorization slag, and the average basic unit of massive quicklime used in decarburization refining during charge refining. . First, the average P concentration after dephosphorization and refining is
It can be seen that Example 2 is reduced by about 0.006% as compared with Comparative Example 2. Also, the discharge rate of dephosphorized slag was significantly improved in Example 2 as compared with Comparative Example 2, and as a result, during decarburization refining in which the [P] level after decarburization refining was controlled to be equivalent. It can be seen that the basic unit of quicklime in Example 2 can be reduced by about 5 kg / t in Example 2 as compared with Comparative Example 2.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明により、より製造コストの安いフ
ラックスを用いて、大幅に脱りん効率を向上するととも
に、スロッピングの無い安定した低P鋼の製造が可能と
なった。
According to the present invention, it is possible to greatly improve the dephosphorization efficiency by using a flux which is cheaper in manufacturing cost and to manufacture stable low P steel without sloping.

【図面の簡単な説明】[Brief description of drawings]

【図1】上吹きランスから吹き付ける脱りん用フラック
スの粉体の総量に対する石灰石粉の混合比率と脱りん精
錬後の[P]濃度との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a mixing ratio of limestone powder to a total amount of dephosphorization flux powder sprayed from an upper spray lance and a [P] concentration after dephosphorization refining.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久米 康介 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 米澤 公敏 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 Fターム(参考) 4K014 AA03 AB03 AB12 AC12 AC17 AE01 4K070 AB06 AC02 AC14 AC20 BA05 BA12 BB02 BC00 BC11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kosuke Kume             No. 1 Nishinosu, Oita City, Oita Prefecture Made in New Japan             Oita Steel Works, Ltd. (72) Inventor, Kimitoshi Yonezawa             No. 1 Nishinosu, Oita City, Oita Prefecture Made in New Japan             Oita Steel Works, Ltd. F-term (reference) 4K014 AA03 AB03 AB12 AC12 AC17                       AE01                 4K070 AB06 AC02 AC14 AC20 BA05                       BA12 BB02 BC00 BC11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 転炉を用いて、フラックス添加と酸素上
吹きにより溶銑を脱りんする精錬方法において、石灰分
を含む脱りん用フラックスの一部または全量を上吹きラ
ンスから酸素気流中にのせて溶銑表面に吹き付ける粉体
とし、該粉体の10質量%以上を炭酸カルシウムを含有
する石灰石粉とすることを特徴とする溶銑の脱りん精錬
方法。
1. A refining method in which hot metal is dephosphorized by adding flux and overblowing oxygen using a converter, and part or all of the dephosphorization flux containing lime is placed in an oxygen stream from an overblowing lance. The method for dephosphorizing and refining hot metal is characterized in that 10 mass% or more of the powder is limestone powder containing calcium carbonate, and the powder is sprayed onto the surface of the hot metal.
【請求項2】 溶銑を精錬して溶鋼を製造するに際し、
溶銑を転炉に装入し、フラックス添加と酸素上吹きとを
行って脱りん精錬を施し所定のりん含有量まで低減さ
せ、前記転炉を傾動して生成したスラグを排出し、その
後同一転炉により脱炭工程を行う際に、石灰分を含む脱
りん用フラックスの一部または全量を上吹きランスから
酸素気流中にのせて溶銑表面に吹き付ける粉体とし、該
粉体の10質量%以上を炭酸カルシウムを含有する石灰
石粉とすることを特徴とする溶銑の脱りん精錬方法。
2. When refining the hot metal to produce molten steel,
The molten pig iron is charged into a converter, and flux addition and oxygen top blowing are performed to perform dephosphorization refining to reduce the phosphorus content to a predetermined level, and the slag produced by tilting the converter is discharged, and then the same rotation is performed. When performing a decarburization step with a furnace, a part or all of the dephosphorization flux containing lime is placed in an oxygen stream from a top blowing lance and sprayed onto the surface of the hot metal, and the powder is 10 mass% or more. A method for dephosphorizing and refining hot metal, characterized in that limestone powder containing calcium carbonate is used.
JP2002037158A 2002-02-14 2002-02-14 Dephosphorization refining method of hot metal Pending JP2003239009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037158A JP2003239009A (en) 2002-02-14 2002-02-14 Dephosphorization refining method of hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037158A JP2003239009A (en) 2002-02-14 2002-02-14 Dephosphorization refining method of hot metal

Publications (1)

Publication Number Publication Date
JP2003239009A true JP2003239009A (en) 2003-08-27

Family

ID=27778849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037158A Pending JP2003239009A (en) 2002-02-14 2002-02-14 Dephosphorization refining method of hot metal

Country Status (1)

Country Link
JP (1) JP2003239009A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266666A (en) * 2007-04-16 2008-11-06 Jfe Steel Kk Method for dephosphorizing molten pig iron
CN102212643A (en) * 2011-06-03 2011-10-12 首钢总公司 Converter less-slag smelting process
CN102212640A (en) * 2011-06-01 2011-10-12 首钢总公司 Convertor steelmaking method capable of reducing slag quantity
JP2013057131A (en) * 2012-11-22 2013-03-28 Jfe Steel Corp Method for dephosphorizing molten pig iron
CN103266195A (en) * 2013-05-15 2013-08-28 武汉钢铁(集团)公司 Method for improving smelting dephosphorization of converter
JP2013253290A (en) * 2012-06-07 2013-12-19 Nisshin Steel Co Ltd Operation method of converter
CN108396103A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of method that steel spraying powder is skimmed instead of molten steel
JP7451341B2 (en) 2020-07-31 2024-03-18 株式会社神戸製鋼所 Converter blowing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770626A (en) * 1993-07-05 1995-03-14 Nippon Steel Corp Converter steel making method
JP2001064713A (en) * 1999-08-26 2001-03-13 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770626A (en) * 1993-07-05 1995-03-14 Nippon Steel Corp Converter steel making method
JP2001064713A (en) * 1999-08-26 2001-03-13 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266666A (en) * 2007-04-16 2008-11-06 Jfe Steel Kk Method for dephosphorizing molten pig iron
CN102212640A (en) * 2011-06-01 2011-10-12 首钢总公司 Convertor steelmaking method capable of reducing slag quantity
CN102212640B (en) * 2011-06-01 2013-11-27 首钢总公司 Convertor steelmaking method capable of reducing slag quantity
CN102212643A (en) * 2011-06-03 2011-10-12 首钢总公司 Converter less-slag smelting process
CN102212643B (en) * 2011-06-03 2014-04-30 首钢总公司 Converter less-slag smelting process
JP2013253290A (en) * 2012-06-07 2013-12-19 Nisshin Steel Co Ltd Operation method of converter
JP2013057131A (en) * 2012-11-22 2013-03-28 Jfe Steel Corp Method for dephosphorizing molten pig iron
CN103266195A (en) * 2013-05-15 2013-08-28 武汉钢铁(集团)公司 Method for improving smelting dephosphorization of converter
CN108396103A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of method that steel spraying powder is skimmed instead of molten steel
CN108396103B (en) * 2017-02-05 2020-01-07 鞍钢股份有限公司 Method for removing slag by using ladle powder injection instead of molten steel
JP7451341B2 (en) 2020-07-31 2024-03-18 株式会社神戸製鋼所 Converter blowing method

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
WO1995001458A1 (en) Steel manufacturing method using converter
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JP6693536B2 (en) Converter steelmaking method
JP5343506B2 (en) Hot phosphorus dephosphorization method
JP2003239009A (en) Dephosphorization refining method of hot metal
JPH0437132B2 (en)
JP6665884B2 (en) Converter steelmaking method
JP2005015889A (en) Method for preventing effluence of slag in converter
JP3711835B2 (en) Sintering agent for hot metal dephosphorization and hot metal dephosphorization method
JP2002220615A (en) Converter steelmaking method
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JPH08311519A (en) Steelmaking method using converter
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JPH07179920A (en) Production of molten steel
EP1533388A1 (en) Method of manufacturing low phosphorous hot metal
JP2000345226A (en) Method for dephosphorizing molten iron
JP2607329B2 (en) Hot metal dephosphorization method
JPH01147011A (en) Steelmaking method
JP3339982B2 (en) Converter steelmaking method
JPH0557327B2 (en)
JPH0860221A (en) Converter steelmaking method
WO2020110392A1 (en) Steel production method and method for reducing slag basicity
JPS6342686B2 (en)
JP2004107735A (en) Method for efficiently dephosphorizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060301