JP2607329B2 - Hot metal dephosphorization method - Google Patents

Hot metal dephosphorization method

Info

Publication number
JP2607329B2
JP2607329B2 JP4728492A JP4728492A JP2607329B2 JP 2607329 B2 JP2607329 B2 JP 2607329B2 JP 4728492 A JP4728492 A JP 4728492A JP 4728492 A JP4728492 A JP 4728492A JP 2607329 B2 JP2607329 B2 JP 2607329B2
Authority
JP
Japan
Prior art keywords
hot metal
converter
slag
dephosphorization
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4728492A
Other languages
Japanese (ja)
Other versions
JPH05247512A (en
Inventor
雄司 小川
正孝 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4728492A priority Critical patent/JP2607329B2/en
Publication of JPH05247512A publication Critical patent/JPH05247512A/en
Application granted granted Critical
Publication of JP2607329B2 publication Critical patent/JP2607329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は転炉内での溶銑の脱りん
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dephosphorizing hot metal in a converter.

【0002】[0002]

【従来の技術】製鋼トータルコストのミニマム化や低り
ん鋼の安定溶銑に関して、従来溶銑の脱りん法として
(1)トーピードカー内の溶銑に脱りん用フラックスを
インジェクションして予備脱りんを行う方法、(2)取
鍋内の溶銑に脱りん用フラックスをインジェクションも
しくは吹き付けを行い、予備脱りんを行う方法、あるい
は(3)2基の転炉を用いて、一方で脱りんを行い、他
方で脱炭を行う方法(例えば、特開昭63−19521
0号公報)が用いられている。
2. Description of the Related Art Regarding minimization of total steelmaking cost and stable hot metal of low phosphorus steel, as a conventional hot metal dephosphorization method, (1) a method of performing preliminary phosphorus removal by injecting a dephosphorizing flux into hot metal in a torpedo car; (2) Preliminary dephosphorization by injecting or spraying a flux for dephosphorization into the hot metal in the ladle, or (3) Dephosphorization using one of two converters and dephosphorization on the other. A method of performing charcoal (for example, see JP-A-63-19521)
No. 0) is used.

【0003】ところで脱りん反応は低温であるほど、ま
たスラグの塩基性成分が多いほど有利に進む。しかしな
がら、(1),(2),(3)のいずれの方法も脱りん
工程から脱炭工程へ移る際、溶銑の移し替えを必要と
し、温度低下を余儀なくされるため、脱りん終点温度が
いずれも1300℃以上であり、その代わりにCaO/
SiO2 が1.5以上の塩基性スラグを使用している。
したがって、塩基度確保のため投入CaO原単位をある
値以下に下げることができない。
[0003] By the way, the dephosphorization reaction proceeds more advantageously as the temperature is lower and the slag contains more basic components. However, in any of the methods (1), (2) and (3), when the dephosphorization step is shifted to the decarburization step, the hot metal needs to be transferred, and the temperature must be lowered. In each case, the temperature was 1300 ° C. or higher, and instead, CaO /
A basic slag having SiO 2 of 1.5 or more is used.
Therefore, the input CaO basic unit cannot be reduced below a certain value in order to secure basicity.

【0004】本出願人は特願平2−181989号明細
(特開平4−72007号公報)において、従来多工
程にわたる精錬機能を転炉に集約し、溶銑のもつエネル
ギーロスを大幅に低減すると共に、転炉前後工程の固定
費(設備費、労務費)の大幅な軽減を可能とする方法を
提案した。
In the specification of Japanese Patent Application No. 2-181989 (Japanese Patent Application Laid-Open No. 4-72007) , the present applicant concentrated the refining function of the conventional multi-step process in a converter to greatly reduce the energy loss of hot metal. At the same time, we proposed a method that can significantly reduce fixed costs (equipment costs and labor costs) in the process before and after the converter.

【0005】図2はこのフローを示しているが、第一工
程として、溶銑を転炉に装入し、第二工程として、フラ
ックス添加と、酸素上吹きとを行って脱りん・脱けい精
錬を施し、第三工程として、前記転炉を傾動して、第二
工程で生成したスラグを排滓し、第四工程として、フラ
ックス添加とO2 吹錬により所定のC含有量まで脱炭
し、第五工程として、第四工程で生成したスラグを該転
炉内に残したまま出鋼して再び第一工程へ戻り、前記第
五工程までを繰り返し実施する。
FIG. 2 shows this flow. As a first step, hot metal is charged into a converter, and as a second step, dephosphorization and desilicon refining is performed by adding a flux and blowing over oxygen. As a third step, the converter is tilted to discharge the slag generated in the second step, and as a fourth step, decarburization is performed to a predetermined C content by flux addition and O 2 blowing. As a fifth step, the slag generated in the fourth step is left in the converter, and the steel is returned to the first step, and the steps up to the fifth step are repeatedly performed.

【0006】[0006]

【発明が解決しようとする課題】同一転炉を用いて脱り
ん、脱炭工程を続けて行うプロセスにおいては、脱りん
終点温度を低くすることができるため、脱りん工程を短
時間で行うことができる。また、脱炭後のスラグを脱り
ん工程に再利用するため、CaO原単位も下げることが
できる。本発明はこれらの有用性を更に検討して、低塩
基性スラグを用いた溶銑の脱りん方法を提供するもので
ある。
In a process in which dephosphorization and decarburization steps are continuously performed using the same converter, the dephosphorization step can be performed in a short time because the dephosphorization end point temperature can be lowered. Can be. Further, since the decarburized slag is reused in the dephosphorization step, the CaO unit consumption can be reduced. The present invention further examines these usefulnesses and provides a method for dephosphorizing hot metal using low-basic slag.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は溶銑を精
錬して溶鋼を製造する際に、第一工程として溶銑を転炉
に装入し、第二工程としてフラックス添加と酸素上吹き
とを行って脱りん精錬を施し所定のりん含有量まで低減
させ、第三工程として前記転炉を傾動して第二工程で生
成したスラグを排出し、その後同一転炉により脱炭工程
を行い、スラグを転炉に残したまま出鋼し、該スラグを
第一工程にリサイクルする溶鋼製造法の第二工程におい
て、スラグCaO/SiO2 =1を狙い送酸し、脱P
処理終点温度1300℃以下に制御することを特徴と
する溶銑の脱りん方法であり、上吹き送酸速度を2.5
Nm3 /min /t以上とすることができる。
SUMMARY OF THE INVENTION The gist of the present invention is that when hot metal is refined to produce molten steel, hot metal is charged into a converter as a first step, and flux addition and oxygen blowing are performed as a second step. Performing dephosphorization and refining to reduce the phosphorus content to a predetermined level, tilting the converter as a third step and discharging the slag generated in the second step, and then performing a decarburization step with the same converter, In the second step of the molten steel manufacturing method in which the slag is left in the converter and the slag is recycled to the first step, acid is sent to aim at CaO / SiO 2 = 1 of the slag , and P is removed.
A hot metal dephosphorization method characterized by controlling the treatment end point temperature to 1300 ° C. or lower, wherein the top blowing acid transfer rate is 2.5
It can be Nm 3 / min / t or more.

【0008】以下本発明を詳述する。本発明は溶銑予備
処理と脱炭とを集約して同一転炉によって操業される。
即ち図2に示すように炉底に脱りん、脱炭用フラックス
を吹込むための1個ないし複数個の底吹き羽口と、出鋼
孔の対面炉腹にスラグフォーミング用ガス吹込みのため
の複数個の羽口を備えた上底吹き転炉に溶銑を装入し、
前述の底吹き羽口より生石灰粉をベースとしたフラック
スをN2 等の不活性ガスを搬送ガスとして吹込む。
Hereinafter, the present invention will be described in detail. In the present invention, hot metal pretreatment and decarburization are integrated and operated by the same converter.
That is, as shown in FIG. 2, one or a plurality of bottom-blowing tuyeres for blowing a flux for dephosphorization and decarburization into a furnace bottom, and a plurality of bottom-blowing tuyeres for blowing a slag forming gas into a belly facing a tapping hole. Hot metal is charged into a top and bottom blown converter with tuyeres,
A flux based on quicklime powder is blown from the above-mentioned bottom blowing tuyere using an inert gas such as N 2 as a carrier gas.

【0009】この時、酸化鉄粉を生石灰粉に混合する
か、あるいは羽口を3重管構造とし、O2 ガスを同一羽
口を通して吹込むことにより、脱りん反応速度を高める
ことができる。もしくは、上吹きランスからO2 ガスを
吹付け、上方よりフラックスを投入、吹込み、吹付け等
の方法で添加して、生成スラグの〔Fe0%〕をコント
ロールすることによっても、脱りんを促進することがで
きる。
At this time, the dephosphorization reaction rate can be increased by mixing iron oxide powder with quick lime powder or by making the tuyere a triple tube structure and blowing O 2 gas through the same tuyere. Alternatively, dephosphorization is promoted by blowing O 2 gas from the upper blowing lance and adding flux by adding, blowing, spraying or the like from above to control [Fe 0%] of the generated slag. can do.

【0010】所定のP,C含有量まで低下した時点で炉
を反出鋼側(排滓側)に傾動しスラグのみ排滓させる。
At the time when the content of P and C is reduced to a predetermined value, the furnace is tilted toward the counter-ejecting side (the waste side) to discharge only the slag.

【0011】排滓終了と共に直ちに炉を正立させ、若干
量の副原料(耐火物保護、復P防止用の生石灰、ドロマ
イト、鉄鉱石など)を投入して通常の上底吹き脱炭精錬
を行う。吹止後、溶鋼は出鋼するが、スラグはそのまま
炉内に残し、次のチャージの溶銑予備処理滓として活用
する。
Immediately after the waste is finished, the furnace is erected immediately, and a small amount of auxiliary materials (quicklime, dolomite, iron ore, etc. for refractory protection and recovery P prevention) are charged, and normal top-bottom blowing decarburization refining is performed. Do. After blow-off, the molten steel is tapped, but the slag is left in the furnace as it is to be used as a pretreatment slag for the next charge.

【0012】本発明では、同一転炉を用いて脱りん、脱
炭工程を続けて行うので、脱りん終点温度を1300℃
以下にすることができるため、CaO/SiO2 が1付
近の低塩基性スラグを用いても、従来と同等の脱りん能
力を得られる。また、低塩基性スラグにすることによる
脱りん速度の低下の問題は、上吹き送酸速度を従来より
も高く例えば2.5Nm3 /min /tとすることで解決で
きる。
In the present invention, since the dephosphorization and decarburization steps are continuously performed using the same converter, the dephosphorization end point temperature is 1300 ° C.
Therefore, even if a low-basic slag having CaO / SiO 2 of about 1 is used, a dephosphorization ability equivalent to the conventional one can be obtained. In addition, the problem of a decrease in the dephosphorization rate due to the use of a low-basic slag can be solved by setting the top-blowing acid transfer rate higher than before, for example, 2.5 Nm 3 / min / t.

【0013】[0013]

【実施例】8t試験転炉を用いて、脱りん実験を実施し
た。4.5%のC、0.1%のP、0.3%のSiを含
む初期温度1300℃の溶銑をリサイクルした脱炭スラ
グを用いて10分間精錬した。実験後のスラグ塩基度、
溶銑温度、投入CaO原単位、送酸速度を表1に示す。
EXAMPLE A dephosphorization experiment was conducted using an 8t test converter. The hot metal containing 4.5% C, 0.1% P, and 0.3% Si was refined for 10 minutes using decarburized slag obtained by recycling hot metal at an initial temperature of 1300 ° C. Slag basicity after the experiment,
Table 1 shows the hot metal temperature, the basic unit of CaO input, and the acid feed rate.

【0014】[0014]

【表1】 [Table 1]

【0015】実験No.1〜3はスラグのCaO/SiO
2 =1付近を狙い低送酸速度の場合、実験No.4はCa
O/SiO2 =1狙いで高送酸速度の場合である。比較
のため、CaO/SiO2 =1.5狙いで低送酸速度の
場合の実験(No.5)も行った。
Experiment No. 1-3 are slag CaO / SiO
In the case of low acid feed rate aiming at around 2 = 1, experiment No. 4 is Ca
This is the case of a high acid feed rate with the aim of O / SiO 2 = 1. For comparison, an experiment (No. 5) in the case of a low acid feed rate was also performed aiming at CaO / SiO 2 = 1.5.

【0016】図1に溶銑中〔P〕濃度の経時変化を示
す。No.5と比較して、No.1〜4の場合は投入CaO
原単位が約2〜5kg/t低減できていることがわかる。
No.1〜3の低送酸速度の場合はNo.5の場合よりも若
干脱りん速度が低下するものの、所定時間以内に目標
〔P〕レベルに十分到達できることがわかった。また、
No.4のように送酸速度を上げることにより、脱りん速
度もNo.5以上にすることが可能であることもわかっ
た。
FIG. 1 shows the change over time of the [P] concentration in the hot metal. No. In comparison with No. 5, In case of 1-4, input CaO
It can be seen that the basic unit can be reduced by about 2 to 5 kg / t.
No. No. 1 to 3 for low acid feed rates It was found that although the dephosphorization rate was slightly lower than in the case of No. 5, the target [P] level could be sufficiently reached within a predetermined time. Also,
No. By increasing the acid feed rate as shown in FIG. It was also found that it is possible to increase the number to 5 or more.

【0017】表2に、従来の(1),(2),(3)の
プロセスの平均CaO原単位を示す。これらのプロセス
と比較しても、本発明では、大幅にCaO原単位が低減
できることがわかる。
Table 2 shows the average unit of CaO in the conventional processes (1), (2) and (3). It can be seen that even in comparison with these processes, the present invention can greatly reduce the CaO unit consumption.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明は同一転炉を用いて脱りん、脱炭
工程を続けて行うので脱りん終点温度を低くでき、かつ
スラグ中のCaO/SiO2 =1狙いとして、CaO原
単位を低減できる。
According to the present invention, the dephosphorization and decarburization steps are carried out continuously by using the same converter, so that the dephosphorization end point temperature can be lowered, and the CaO / SiO 2 = 1 in the slag is aimed at to reduce the CaO basic unit. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶銑中〔P〕濃度の経時変化を示す図表であ
る。
FIG. 1 is a table showing the change over time of the [P] concentration in hot metal.

【図2】同一転炉による精錬プロセスの模式的説明図で
ある。
FIG. 2 is a schematic explanatory view of a refining process using the same converter.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶銑を精錬して溶鋼を製造する際に、第
一工程として溶銑を転炉に装入し、第二工程としてフラ
ックス添加と酸素上吹きとを行って脱りん精錬を施し所
定のりん含有量まで低減させ、第三工程として前記転炉
を傾動して第二工程で生成したスラグを排出し、その後
同一転炉により脱炭工程を行い、スラグを転炉に残した
まま出鋼し、該スラグを第一工程にリサイクルする溶鋼
製造法の第二工程において、スラグCaO/SiO2
=1を狙い送酸し、脱P処理終点温度1300℃以下
に制御することを特徴とする溶銑の脱りん方法。
1. When refining molten iron to produce molten steel, the molten iron is charged into a converter as a first step, and a dephosphorization refining is performed by adding a flux and blowing over oxygen as a second step. As a third step, the converter is tilted to discharge the slag generated in the second step, and then a decarburization step is performed by the same converter, and the slag is discharged while remaining in the converter. In the second step of the molten steel manufacturing method in which the slag is steelified and recycled in the first step, CaO / SiO 2
= 1 and acid sending, de-P treatment end point temperature is 1300 ℃ or less
A method for dephosphorizing hot metal, characterized in that:
【請求項2】 上吹き送酸速度が2.5Nm3 /min /t
以上であることを特徴とする請求項1記載の溶銑の脱り
ん方法。
2. The top blowing acid transfer rate is 2.5 Nm 3 / min / t.
2. The method for dephosphorizing hot metal according to claim 1, wherein:
JP4728492A 1992-03-04 1992-03-04 Hot metal dephosphorization method Expired - Lifetime JP2607329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4728492A JP2607329B2 (en) 1992-03-04 1992-03-04 Hot metal dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4728492A JP2607329B2 (en) 1992-03-04 1992-03-04 Hot metal dephosphorization method

Publications (2)

Publication Number Publication Date
JPH05247512A JPH05247512A (en) 1993-09-24
JP2607329B2 true JP2607329B2 (en) 1997-05-07

Family

ID=12770996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4728492A Expired - Lifetime JP2607329B2 (en) 1992-03-04 1992-03-04 Hot metal dephosphorization method

Country Status (1)

Country Link
JP (1) JP2607329B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607328B2 (en) * 1992-03-04 1997-05-07 新日本製鐵株式会社 Hot metal dephosphorization method
CN1041843C (en) * 1993-06-30 1999-01-27 新日本制铁株式会社 Steel manufacturing method using converter
JP7151494B2 (en) * 2018-04-27 2022-10-12 日本製鉄株式会社 Method for recycling converter slag

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607328B2 (en) * 1992-03-04 1997-05-07 新日本製鐵株式会社 Hot metal dephosphorization method

Also Published As

Publication number Publication date
JPH05247512A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
JP2004190101A (en) Method for pre-treating molten iron
CN108842027B (en) Gasification dephosphorization method and smelting method for final slag of dephosphorization converter
JP2607329B2 (en) Hot metal dephosphorization method
JP2958848B2 (en) Hot metal dephosphorization method
JP2896839B2 (en) Molten steel manufacturing method
JP2607328B2 (en) Hot metal dephosphorization method
JP3458890B2 (en) Hot metal refining method
JPH08311519A (en) Steelmaking method using converter
JP4461495B2 (en) Dephosphorization method of hot metal
JP3194212B2 (en) Converter steelmaking method
JPH11323420A (en) Pretreating method for molten iron
JPH0734113A (en) Converter refining method
JP2003105419A (en) Method for pretreating molten iron
JPH05156338A (en) Method for reusing low phosphorus converter slag
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
WO2022154024A1 (en) Converter refining method
JPH0718318A (en) Converter refining method
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPS6247417A (en) Melt refining method for scrap
JPH11193414A (en) Steel manufacturing method using a plurality of converters
JP3924058B2 (en) Converter steelmaking method using dephosphorized hot metal
JP2004156146A (en) Method for refining molten iron
JP3486890B2 (en) Converter steelmaking method using dephosphorized hot metal
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961203