JPH11323420A - Pretreating method for molten iron - Google Patents

Pretreating method for molten iron

Info

Publication number
JPH11323420A
JPH11323420A JP13340598A JP13340598A JPH11323420A JP H11323420 A JPH11323420 A JP H11323420A JP 13340598 A JP13340598 A JP 13340598A JP 13340598 A JP13340598 A JP 13340598A JP H11323420 A JPH11323420 A JP H11323420A
Authority
JP
Japan
Prior art keywords
slag
basicity
desiliconization
hot metal
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13340598A
Other languages
Japanese (ja)
Inventor
Shinya Kitamura
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13340598A priority Critical patent/JPH11323420A/en
Publication of JPH11323420A publication Critical patent/JPH11323420A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To enable the reduction of the amt. of steel making slag to be generated and the recycling of decarburized slag and dephosphorized slag by regulating the basicity of slag to a specified range and regulating the total oxygen feeding rate at the time of desiliconizing to a specified range. SOLUTION: In desiliconizing treatment for molten iron, by regulating the basicity of slag to 1.0 to 3.0 and the total oxygen feeding rate to 0.4 to 2.5 Nm<3> /min/ton, high desiliconizing efficiency can be obtd. even in a low [Si] region. The regulation of the basicity can be executed by using decarburized slag and dephosphorized slag. in the case in which molten iron in the following charge is charged without discharging the decarburized slag in the former charge, and desiliconizing treatment is executed, by controlling the basicity of slag and the total oxygen feeding rate to this proper ranges and executing the operation, rephosphorizing is suppressed, desiliconizing treatment to a low Si region is executed, and at the point of time in which [Si] reaches <=0.2%, at least a part of slag is discharged, and successively, dephosphorizing refining and decarburizing refining are continued, by which the amt. of steel making slag to be generated can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は低〔Si〕域まで効
率的な脱珪を行う溶銑予備処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot metal pretreatment method for performing efficient desiliconization down to a low [Si] region.

【0002】[0002]

【従来の技術】近年、地球環境問題から廃棄物規制が強
化される傾向にあり、製鋼スラグ発生量を低減させる必
要性が強まっている。これを実現するためには脱珪処理
を強化して、次工程である脱燐や脱炭に移る時の溶銑
〔Si〕を例えば0.15%以下にまで低下させる必要
がある。さらに、脱燐や脱炭処理で生成される高塩基度
のスラグは、未滓化CaOが多量に存在するため粉化膨
張の問題から再利用し難く、低塩基度スラグに転換して
排出させることが必要となっている。このためには、脱
炭滓や脱燐滓を脱珪処理にリサイクルして低塩基度化す
ることが考えられるが、脱炭滓や脱燐滓に含まれる(P
2 5 )が溶銑に復燐するという問題がある。
2. Description of the Related Art In recent years, waste regulations have tended to be tightened due to global environmental problems, and the need to reduce the amount of steelmaking slag generated has increased. In order to realize this, it is necessary to strengthen the desiliconization treatment and reduce the hot metal [Si] at the time of shifting to the next step of dephosphorization or decarburization to, for example, 0.15% or less. Furthermore, the high basicity slag generated by the dephosphorization or decarburization treatment is difficult to reuse due to the problem of powder expansion due to the large amount of unslagged CaO, and is converted to low basicity slag and discharged. It is necessary. To this end, it is conceivable to recycle the decarburized slag or dephosphorized slag to a desiliconization treatment to reduce the basicity.
There is a problem that 2 O 5 ) returns to hot metal.

【0003】製銑工程および/または製鋼工程の予備処
理での溶銑脱珪技術は広く用いられているが、溶銑〔S
i〕が低下するに従い反応効率が低下することは広く知
られている。(例えば、鉄と鋼、第67年、1981
年、第16巻、P2675〜参照)さらに、低Si域で
の脱珪効率の低下とともに、脱炭反応を引き起こし、激
しいスロッピングが発生する。
[0003] Hot metal desiliconization technology in the pretreatment of the iron making process and / or the steel making process is widely used.
It is widely known that the reaction efficiency decreases as i] decreases. (For example, Iron and Steel, 67th year, 1981
Year, Vol. 16, p. 2675-) In addition, the desiliconization efficiency in the low Si region is reduced, and a decarburization reaction is caused to cause severe slopping.

【0004】例えば、特開昭57−92117号公報に
は、生成スラグの塩基度を0.5〜1.5とする脱珪方
法が開示されている。この公報には塩基度が上がること
でスラグ(T・Fe)が低下するため溶銑〔Mn〕の酸
化ロスが抑制されることが示されている。しかし、処理
後の〔Si〕は0.3%程度と高く、低Si域での挙動
については何ら開示されていない。
[0004] For example, Japanese Patent Application Laid-Open No. 57-92117 discloses a desiliconization method in which the basicity of the produced slag is 0.5 to 1.5. This publication discloses that the slag (T.Fe) decreases as the basicity increases, so that the oxidation loss of hot metal [Mn] is suppressed. However, [Si] after the treatment is as high as about 0.3%, and there is no disclosure of behavior in a low Si region.

【0005】また、特開昭63−241105号公報に
は、溶銑脱燐処理工程で発生する塩基度3以上の高塩基
度スラグを受銑容器に収納してこの容器へ高炉からの溶
銑を受銑するとともに、溶銑の脱珪処理を行う技術が開
示されている。この公報には、脱珪スラグの塩基度が高
くなるとMn分配が低下して溶銑〔Mn〕が増加するこ
とが示されており、実施例としては塩基度が2.8程度
まで示されている。しかし、処理後の〔Si〕に関する
記載は無く、低Si域での挙動については何ら開示され
ていない。
Japanese Patent Application Laid-Open No. Sho 63-241105 discloses that a high basicity slag having a basicity of 3 or more generated in a hot metal dephosphorization step is stored in a hot metal receiving vessel, and hot metal from a blast furnace is received in this vessel. A technique is disclosed for performing pig iron and desiliconizing the molten iron. This publication discloses that when the basicity of the desiliconized slag increases, the Mn distribution decreases and the hot metal [Mn] increases, and as an example, the basicity is shown to about 2.8. . However, there is no description about [Si] after the treatment, and no description is given of the behavior in the low Si region.

【0006】一方、特開平8−92614号公報には、
容器内にて、脱燐・脱硫処理を施した溶銑を払い出した
のち、スラグを残したまま高炉鋳床脱珪処理した溶銑を
受銑する方法が開示されている。しかし、この公報には
記載がないが、本方法ではスラグ塩基度の低下に伴う復
燐は避けられず、次工程の脱燐処理の負荷が増大すると
いう問題を有する。
On the other hand, JP-A-8-92614 discloses that
A method is disclosed in which a hot metal that has been subjected to dephosphorization and desulfurization treatment is discharged in a vessel, and then the hot metal that has been subjected to desiliconization treatment in a blast furnace casting bed while leaving slag is received. However, although not described in this publication, this method has a problem in that rephosphorization accompanying a decrease in slag basicity is unavoidable, and the load of the dephosphorization treatment in the next step increases.

【0007】[0007]

【発明が解決しようとする課題】前記特開昭57−92
117号公報や特開昭63−241105号公報に開示
されている方法では、低Si域での挙動については何ら
記載がなく、低Si域での反応効率を向上させる方法に
ついては全く知られていないという問題がある。また、
特開平8−92614号公報に開示されている方法で
は、塩基度の低下による復燐が避けられないという問題
がある。本発明の目的は、これらの問題点を解決し、か
つ、低Si域までの効率的な脱珪を実現することによっ
て、製鋼スラグ発生量の低減、および脱炭滓や脱燐滓の
リサイクルを可能とする方法を提供することである。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 57-92 is disclosed.
In the methods disclosed in JP-A-117-117 and JP-A-63-241105, there is no description about the behavior in the low Si region, and there is no known method for improving the reaction efficiency in the low Si region. There is no problem. Also,
The method disclosed in Japanese Patent Application Laid-Open No. 8-92614 has a problem that rephosphorization due to a decrease in basicity cannot be avoided. An object of the present invention is to solve these problems and realize efficient desiliconization up to the low Si region, thereby reducing the amount of steelmaking slag generated and recycling decarburized slag and dephosphorized slag. To provide a way to make it possible.

【0008】[0008]

【課題を解決するための手段】上記の問題点を解決する
本発明の要旨は以下の各方法にある。 (1)溶銑の脱珪処理において、スラグ塩基度を1.0
〜3.0とし、かつ脱珪時の全酸素供給速度を0.4〜
2.5Nm3/min/ton とすることを特徴とする溶銑予備処
理方法。
The gist of the present invention for solving the above problems lies in the following methods. (1) In the desiliconization treatment of hot metal, the slag basicity is set to 1.0
To 3.0, and the total oxygen supply rate during desiliconization is 0.4 to
A hot metal pretreatment method characterized by 2.5 Nm 3 / min / ton.

【0009】(2)(1)において、脱炭滓を用いてス
ラグ塩基度を制御することを特徴とする溶銑予備処理方
法。 (3)(1)において、脱燐滓を用いてスラグ塩基度を
制御することを特徴とする溶銑予備処理方法。 (4)(2)において、転炉を用いて脱珪、脱燐、脱炭
処理を実施する場合において、前チャージの脱炭滓を排
滓することなく次チャージの溶銑を装入し脱珪処理を実
施し、溶銑〔Si〕が0.2%以下になった時点で少な
くとも一部のスラグを排出し、引き続き脱燐精錬及び脱
炭精錬を続けることを特徴とする溶銑予備処理方法。
(2) The method for pretreatment of molten iron according to (1), wherein the slag basicity is controlled using decarburized slag. (3) The hot metal pretreatment method according to (1), wherein the slag basicity is controlled using dephosphorized slag. (4) In (2), when performing desiliconization, dephosphorization, and decarburization treatment using a converter, the molten iron of the next charge is charged and desiliconization is performed without discharging the decarburized slag of the previous charge. A hot metal pretreatment method comprising: performing a treatment, discharging at least a portion of the slag when the molten iron [Si] becomes 0.2% or less, and continuing dephosphorization refining and decarburization refining.

【0010】(5)(3)において、転炉を用いて脱
珪、脱燐処理を実施する場合において、前チャージの脱
燐滓を排滓することなく次チャージの溶銑を装入し脱珪
処理を実施し、溶銑〔Si〕が0.2%以下になった時
点で少なくとも一部のスラグを排出し、引き続き脱燐精
錬を続けることを特徴とする溶銑予備処理方法。ここ
で、塩基度はスラグ中の(%CaO)と(%SiO2
の比(%CaO)/(%SiO2 )で定義される。スラ
グの分析を実施しない場合には、脱珪量と生石灰原単位
による物質収支計算で求めることができる。全酸素供給
速度は、酸素ガスや酸化鉄として供給されたすべての酸
素の合計であり、酸化鉄として供給した場合は酸素量を
Nm3 に換算して求める。また供給方法は、上吹き、上方
添加、インジェクション等を問わず、すべての総和であ
る。また、脱炭滓とは、転炉精錬で生成するスラグを意
味し、脱燐滓とは、生石灰系フラックスを用いた溶銑脱
燐処理で生成したスラグを意味する。
(5) In (3), when performing desiliconization and dephosphorization treatment using a converter, the next charge of hot metal is charged and desiliconization is performed without discharging the dephosphorization slag of the previous charge. A hot metal pretreatment method characterized by performing a treatment, discharging at least a part of the slag when the molten iron [Si] becomes 0.2% or less, and continuing the dephosphorization refining. Here, the basicity is defined as (% CaO) and (% SiO 2 ) in the slag.
(% CaO) / (% SiO 2 ). If slag analysis is not performed, it can be obtained by calculating the material balance based on the amount of desiliconization and the specific unit of quicklime. The total oxygen supply rate is the sum of all oxygen supplied as oxygen gas or iron oxide.
Seek in terms of Nm 3. The supply method is the total sum of all of the spraying, regardless of the top blowing, upward addition, injection, and the like. The decarburized slag means slag generated by converter refining, and the dephosphorized slag means slag generated by hot metal dephosphorization using a quicklime-based flux.

【0011】尚、本発明で脱炭滓とはスラグ塩基度(C
aOとSiO2 の重量比)が3.0〜5.0であり、ス
ラグ(T・Fe)が7〜30%、(P2 5 )が6%以
下であることが望ましく、脱燐滓とはスラグ塩基度が
1.0〜5.0、(T・Fe)が1〜15%、(P2
5 )が3〜8%であることが望ましい。
In the present invention, decarburized slag is defined as slag basicity (C
The weight ratio of aO to SiO 2 is 3.0 to 5.0, the slag (T.Fe) is preferably 7 to 30%, the (P 2 O 5 ) is preferably 6% or less. Are slag basicity of 1.0 to 5.0, (T.Fe) of 1 to 15%, (P 2 O
5 ) is preferably 3 to 8%.

【0012】[0012]

【発明の実施の形態】本発明の脱珪反応について説明す
る。本発明者らは、多数の実験結果から、低Si域まで
効率的に脱珪するには、スラグ塩基度を増大させること
と、酸素供給速度を増大させることが重要であることを
見出した。一般に、脱珪反応は下記(1)式で記載さ
れ、その反応速度:Kは(2)式で与えられる。また、
脱珪をするために酸化鉄や酸素ガスを酸素源として溶銑
に供給すると、脱珪と同時に脱炭反応が進行する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The desiliconization reaction of the present invention will be described. The present inventors have found from a large number of experimental results that it is important to increase the slag basicity and increase the oxygen supply rate in order to efficiently desiliconize up to the low Si region. Generally, the desiliconization reaction is described by the following formula (1), and the reaction rate: K is given by the following formula (2). Also,
When iron oxide or oxygen gas is supplied to hot metal as an oxygen source for desiliconization, a decarburization reaction proceeds simultaneously with desiliconization.

【0013】 〔Si〕+2(FeO)=(SiO2 )+2Fe …… (1) K=d〔Si〕/dt=(kA/V)×(〔Si〕−〔Si〕0 ) …… (2) ここで、kは総括物質移動係数、Aは反応界面積、Vは
溶鋼体積であり、〔Si〕0 は溶銑中〔Si〕の平衡値
であるが、脱珪反応の場合はゼロと近似できる。また、
kはメタル側の物質移動係数;km、スラグ側の物質移
動係数;ks、分配比;L(=(Si)0 /〔S
i〕0 )を用いて(3)式で表わされる。ここで、(S
i)0 はスラグ中(Si)の平衡値である。
[Si] +2 (FeO) = (SiO 2 ) + 2Fe (1) K = d [Si] / dt = (kA / V) × ([Si] − [Si] 0 ) (2) Here, k is the overall mass transfer coefficient, A is the reaction interface area, V is the volume of molten steel, and [Si] 0 is the equilibrium value of [Si] in the hot metal. it can. Also,
k is the mass transfer coefficient on the metal side; km, the mass transfer coefficient on the slag side; ks, the distribution ratio; L (= (Si) 0 / [S
i] 0 ) and is expressed by equation (3). Here, (S
i) 0 is the equilibrium value of (Si) in the slag.

【0014】 1/k=1/km+1/(L×ks) …… (3) 脱珪反応の初期の高Si域では、(2)式右辺の〔S
i〕が大きいため反応は進み易く、また、脱炭よりも熱
力学的に優先されるため(FeO)が脱炭により還元さ
れること無く、高く維持できるため、(3)式のLが大
きく、kはメタル側の物質移動係数kmに支配されてい
る。
1 / k = 1 / km + 1 / (L × ks) (3) In the high Si region at the beginning of the desiliconization reaction, [S
i] is large, the reaction is easy to proceed, and (FeO) can be maintained at a high level without being reduced by decarburization because it is thermodynamically prioritized over decarburization. , K are governed by the mass transfer coefficient km on the metal side.

【0015】しかし、低〔Si〕域になると、熱力学的
には脱炭が優先されるため(FeO)が脱炭により還元
され、その結果、(3)式のLが小さくなり、kはスラ
グ側の物質移動に支配されるようになる。スラグ側物質
移動係数ksは、メタル側物質移動係数kmに対して、
粘性や拡散係数の関係から1桁以上小さい。このため、
低Si域で脱珪が停滞する理由は、反応の駆動力が低下
することのみでは無くこのkが小さくなるためである。
However, in the low [Si] region, decarburization is prioritized thermodynamically, so (FeO) is reduced by decarburization. As a result, L in equation (3) becomes small, and k becomes It becomes dominated by mass transfer on the slag side. The slag-side mass transfer coefficient ks is given by:
It is smaller by one digit or more due to viscosity and diffusion coefficient. For this reason,
The reason why the desiliconization stagnates in the low Si region is not only that the driving force of the reaction decreases, but also that k decreases.

【0016】本発明者らは、低〔Si〕域での総括物質
移動係数kを増大せしめる方法として本発明をなし、塩
基度と全酸素供給速度の適正制御によってこれを実現し
た。つまり、塩基度を適正に制御することで融点が低
く、かつ、粘性の低いスラグとし、全酸素供給速度を制
御することで、脱炭反応を適正に進行させ、脱炭時に発
生するCOガスでスラグを攪拌してkを増大させるもの
である。図1、図2に実験結果を示す。これらの図か
ら、塩基度が低すぎる場合には、スラグは低融点であっ
ても粘性が大きいため脱珪効率は高くならない。一方、
塩基度が高すぎる場合には、液相は低粘性ではあるもの
の融点が高いため固相が晶出するため、スラグ全体とし
ては高粘性となり脱珪効率は低下する。さらに、全酸素
供給速度が小さ過ぎる場合には、脱炭反応が進行しない
ためスラグの攪拌が不十分となり脱珪効率が低下し、全
酸素供給速度が大き過ぎる場合には、過剰に脱炭が進行
するため激しいスラグフォーミングを起こし、処理が継
続できなくなる。また、全酸素供給速度が適正であり、
かつ、塩基度が適正の場合には、スラグの(FeO)濃
度が3〜7%程度であり、かつ、活量が大きくなってい
るため反応性が良く、相乗的に脱珪に有利に作用する。
The present inventors have made the present invention as a method for increasing the overall mass transfer coefficient k in the low [Si] region, and have realized this by appropriately controlling the basicity and the total oxygen supply rate. In other words, by appropriately controlling the basicity, the melting point is low, and the viscosity is low.By controlling the total oxygen supply rate, the decarburization reaction can proceed properly, and the CO gas generated during decarburization can be used. The slag is stirred to increase k. 1 and 2 show the experimental results. From these figures, when the basicity is too low, the desiliconization efficiency does not increase because the slag has a high viscosity even if it has a low melting point. on the other hand,
When the basicity is too high, the liquid phase has a low melting point but a high melting point, so that the solid phase is crystallized, so that the slag as a whole becomes highly viscous and the desiliconization efficiency decreases. Furthermore, if the total oxygen supply rate is too low, the decarburization reaction does not proceed, and the slag is not sufficiently stirred, and the desiliconization efficiency decreases.If the total oxygen supply rate is too high, excessive decarburization occurs. As it proceeds, severe slag forming occurs, and processing cannot be continued. Also, the total oxygen supply rate is appropriate,
In addition, when the basicity is appropriate, the (FeO) concentration of the slag is about 3 to 7%, and the activity is large, so that the slag has good reactivity and synergistically favors desiliconization. I do.

【0017】尚、図1、図2における脱珪効率は下記
(4)式で示される脱珪酸素効率であり、この場合、処
理前〔Si〕は0.35〜0.45%、処理後〔Si〕
は0.07〜0.14%の処理としたものである。 脱珪効率=(処理前〔%Si〕−処理後〔%Si〕) ×11.42×100/酸素原単位(kg/t) …… (4) また、脱珪スラグの塩基度を上げる手段としては、生石
灰を添加する方法が一般的ではあるが、コストが高いた
め、転炉での脱炭スラグ、溶銑脱燐での脱燐スラグを用
いることがコスト的には有利となる。しかし、これらの
スラグには(P 2 5 )が含まれるため脱珪時に溶銑に
復燐した場合には、脱珪は効率的に進むものの、結果と
して溶銑脱燐や転炉脱炭での脱燐幅が増加し、トータル
としてコストアップとなることになる。
The desiliconization efficiencies in FIGS. 1 and 2 are as follows.
The desiliconization oxygen efficiency represented by equation (4) is obtained.
0.35 to 0.45% before treatment [Si], after treatment [Si]
Is a treatment of 0.07 to 0.14%. Desiliconization efficiency = (Before treatment [% Si]-After treatment [% Si]) x 11.42 x 100 / oxygen basic unit (kg / t) ... (4) Means for increasing the basicity of the desiliconized slag As a raw stone
Although the method of adding ash is common, it is expensive.
Use decarburized slag in converter and dephosphorized slag in hot metal dephosphorization
Is advantageous in terms of cost. But these
(P TwoOFive) Is included in hot metal during desiliconization
When phosphorus is restored, desiliconization proceeds efficiently, but results and
The dephosphorization width in hot metal dephosphorization and converter decarburization has increased,
As a result, the cost will increase.

【0018】しかし、本発明者が規定する、適正なる塩
基度と適正なる全酸素供給速度で処理すれば、復燐を抑
制して効率的脱珪が可能となる。復燐反応の反応速度;
Kpも、反応速度的には前記(2)、(3)式と同様に、
下記(5)、(6)式で表わされる。 Kp=−d〔P〕/dt=(kp・A/V)×(〔P〕−〔P〕0 ) …… (5) 1/kp=1/kmp+1/(Lp×ksp) …… (6) ここで、kpは総括物質移動係数、Aは反応界面積、V
は溶鋼体積、〔P〕0は平衡値である。また、kmpは
メタル側の物質移動係数、kspはスラグ側の物質移動
係数、Lpは分配比である。溶銑脱珪時の復燐反応の場
合には、〔P〕 0 は〔P〕よりも高くなり反応がマイナ
ス方向に進むのが特徴であり、〔P〕と〔P〕0 の差が
小さく、Lpも大きいため、スラグ側よりもメタル側の
物質移動速度が大きな影響をもつことになる。したがっ
て、本発明に示したような脱珪のためにスラグ側物質移
動を促進させる操作は、復燐を促進する作用は持たず、
逆に、スラグ(FeO)を高めるため溶銑〔P〕0 を低
下させ、逆に脱燐させることさえ可能となる。
However, the proper salt defined by the present inventors
Treatment at a basic and appropriate total oxygen supply rate will reduce phosphorus reversion
And efficient desiliconization becomes possible. Reaction rate of phosphorus reversion reaction;
Kp also has a reaction rate similar to the above formulas (2) and (3).
It is expressed by the following equations (5) and (6). Kp = −d [P] / dt = (kp · A / V) × ([P] − [P]0) (5) 1 / kp = 1 / kmp + 1 / (Lp × ksp) (6) where kp is the overall mass transfer coefficient, A is the reaction area, and V
Is the volume of molten steel, [P]0Is the equilibrium value. Also, kmp is
Mass transfer coefficient on metal side, ksp is mass transfer on slag side
The coefficient, Lp, is the distribution ratio. Field of rephosphorization reaction during hot metal desiliconization
In the case, [P] 0Is higher than [P] and the reaction is minor.
The feature is that it moves in the direction of0Is the difference
Small and Lp large, so the metal side
Mass transfer rate will have a significant effect. Accordingly
Therefore, the mass transfer on the slag side for desiliconization as shown in the present invention
The operation that promotes movement does not have the effect of promoting phosphorus reversion,
Conversely, hot metal [P] to increase slag (FeO)0The low
And even dephosphorization is possible.

【0019】以下で本発明の数値限定理由を示す。請求
項1において、スラグ塩基度を1.0〜3.0、全酸素
供給速度を0.4〜2.5Nm3/min/ton とした理由は、
図1、図2に示したように、この2つの条件が両立して
始めて低〔Si〕域でも高い脱珪効率が得られるためで
ある。請求項2,3は塩基度調整を脱炭滓、脱燐滓を用
いておこなう場合であるが、図3に示すように、請求項
1に示したように、全酸素供給速度を0.4Nm3/min/to
n 以上とすることで復燐を抑制できる。しかし、2.5
Nm3/min/ton よりも大きくするとスロッピングするため
処理が困難となる。
The reasons for limiting the numerical values of the present invention will be described below. In claim 1, the reason for setting the slag basicity to 1.0 to 3.0 and the total oxygen supply rate to 0.4 to 2.5 Nm 3 / min / ton is as follows.
This is because, as shown in FIGS. 1 and 2, a high desiliconization efficiency can be obtained even in a low [Si] region only when these two conditions are compatible. Claims 2 and 3 are cases where the basicity is adjusted using decarburized slag and dephosphorized slag. As shown in FIG. 3, as shown in claim 1, the total oxygen supply rate is set to 0.4 Nm. 3 / min / to
By making n or more, phosphorus reversion can be suppressed. However, 2.5
If it is larger than Nm 3 / min / ton, processing becomes difficult due to slopping.

【0020】ここで、脱炭滓、脱燐滓の添加量は処理前
溶銑〔Si〕濃度と脱炭滓、脱燐滓の塩基度により、脱
珪後のスラグ塩基度が請求項1に記載の範囲になるよう
に物質収支計算で決めることになる。請求項4は、転炉
を用いて脱珪、脱燐、脱炭処理を実施する場合における
工程条件を規定したものである。つまり、前チャージの
脱炭滓を排滓することなく次チャージの溶銑を装入し脱
珪処理を実施する場合、請求項1に示した条件で操業す
ることで復燐を抑制し低Si域までの脱珪処理を実施
し、〔Si〕が0.2%以下になった時点で少なくとも
一部のスラグを排出し、引き続き脱燐精錬及び脱炭精錬
を続けることで、製鋼スラグ発生量を抑制することがで
きる。
The amount of decarburized slag and dephosphorized slag added is determined by the slag basicity after desiliconization according to the hot metal [Si] concentration before treatment and the basicity of the decarburized slag and dephosphorized slag. Is determined by the material balance calculation so as to fall within the range. Claim 4 defines the process conditions when performing desiliconization, dephosphorization, and decarburization using a converter. In other words, in the case where the decharging treatment is carried out by charging the hot metal of the next charge without discharging the decarburized slag of the previous charge, the dephosphorization is suppressed by operating under the conditions described in claim 1 and the low Si region By performing the desiliconization treatment up to [Si] is reduced to 0.2% or less, at least a part of the slag is discharged, and the dephosphorization refining and the decarburization refining are continued. Can be suppressed.

【0021】〔Si〕が0.2%よりも高い状態でスラ
グを排滓すると脱燐精錬や脱炭精錬でのスラグ量が多く
なるという問題が生じる。下限は特に規定しないが、
〔Si〕が0.03%より低くなると脱珪効率が低下し
始めるため0.03%以上であることが望ましい。〔S
i〕が0.2%以下になった時点で排滓するスラグは全
量であっても構わない。
If slag is discharged while [Si] is higher than 0.2%, there is a problem that the amount of slag in dephosphorization refining or decarburization refining increases. The lower limit is not specified, but
If the content of [Si] is less than 0.03%, the desiliconization efficiency starts to decrease, so it is preferable that the content is 0.03% or more. [S
When i] becomes 0.2% or less, the entire amount of slag discharged may be sufficient.

【0022】次チャージの溶銑装入時に炉内に残留させ
る脱炭滓量は処理前溶銑〔Si〕濃度と脱炭滓の塩基度
により、脱珪後のスラグ塩基度が請求項1に記載の範囲
になるように物質収支計算で決めることが望ましいが、
溶銑〔Si〕が0.3〜0.9%で、脱炭滓量が15〜
40kg/tであれば、全量残留させても問題は無い。請
求項5は、転炉を用いて脱珪、脱燐処理を実施する場合
における工程条件を規定したものである。つまり、前チ
ャージの脱燐滓を排滓することなく次チャージの溶銑を
装入し脱珪処理を実施する場合、請求項1に示した条件
で操業することで復燐を抑制し低Si域までの脱珪処理
を実施し、〔Si〕が0.2%以下になった時点で少な
くとも一部のスラグを排出し、引き続き脱燐精錬を続け
ることで、製鋼スラグ発生量を抑制することができる。
The amount of decarburized slag remaining in the furnace at the time of charging the hot metal of the next charge is determined by the slag basicity after desiliconization according to the hot metal [Si] concentration before treatment and the basicity of the decarburized slag. It is desirable to determine by material balance calculation so that it is within the range,
Hot metal [Si] is 0.3-0.9% and the amount of decarburized slag is 15-
If it is 40 kg / t, there is no problem even if the whole amount is left. Claim 5 defines the process conditions when performing the desiliconization and dephosphorization using a converter. In other words, when the decharging treatment is carried out by charging the hot metal of the next charge without discharging the dephosphorization slag of the previous charge, the dephosphorization is suppressed by operating under the conditions shown in claim 1 to reduce the low Si region. When the [Si] becomes 0.2% or less, at least a part of the slag is discharged, and the dephosphorization refining is continued to suppress the amount of steelmaking slag generated. it can.

【0023】〔Si〕が0.2%よりも高い状態でスラ
グを排滓すると脱燐精錬や脱炭精錬でのスラグ量が多く
なるという問題が生じる。下限は特に規定しないが、
〔Si〕が0.03%より低くなると脱珪効率が低下し
始めるため0.03%以上であることが望ましい。〔S
i〕が0.2%以下になった時点で排滓するスラグは全
量であっても構わない。
If slag is discharged while [Si] is higher than 0.2%, there is a problem that the amount of slag in dephosphorization refining or decarburization refining increases. The lower limit is not specified, but
If the content of [Si] is less than 0.03%, the desiliconization efficiency starts to decrease, so it is preferable that the content is 0.03% or more. [S
When i] becomes 0.2% or less, the entire amount of slag discharged may be sufficient.

【0024】次チャージの溶銑装入時に炉内に残留させ
る脱燐滓量は処理前溶銑〔Si〕濃度と脱燐滓の塩基度
により、脱珪後のスラグ塩基度が請求項1に記載の範囲
になるように物質収支計算で決めることが望ましいが、
溶銑〔Si〕が0.3〜0.9%で、脱燐滓量が25〜
50kg/tであれば、全量残留させても問題は無い。以
下に、本発明について、実施例に基づいてさらに詳述す
る。
The amount of dephosphorized slag remaining in the furnace at the time of charging the hot metal of the next charge is determined by the slag basicity after desiliconization according to the hot metal [Si] concentration before treatment and the basicity of the dephosphorized slag. It is desirable to determine by material balance calculation so that it is within the range,
Hot metal [Si] is 0.3-0.9% and the amount of dephosphorization slag is 25-
If it is 50 kg / t, there is no problem even if the whole amount is left. Hereinafter, the present invention will be described in more detail based on examples.

【0025】[0025]

【実施例】実施例−1 本実施例−1は試験転炉で実施した。上吹きランスは8
mmφ単孔の水冷ラバールノズルとし150Nm3/Hr吹き付
け、底吹きは単管羽口より窒素ガスを10Nm3/Hr吹き込
み攪拌した。C:4.3%,Si:0.35%,Mn:
0.31%,P:0.105%,S:0.032%で温
度が1450℃の溶銑約6tを転炉に装入し、上吹き酸
素ガスを2Nm3/t供給しつつ、炉上バンカーより鉄鉱石
を12.2kg/t(酸素換算で2Nm3/t)、生石灰を1
1kg/t添加した。処理時間は5分とし、全酸素供給速
度は0.8Nm3/min/ton であった。処理後スラグの塩基
度は1.7で、処理後〔Si〕は0.07%で、脱珪効
率は56%と高く、スラグフォーミングもない安定処理
ができた。
EXAMPLES Example 1 Example 1 was carried out in a test converter. Top blowing lance is 8
A water-cooled Laval nozzle with a single hole of mmφ was used, and 150 Nm 3 / Hr was sprayed. Nitrogen gas was blown at 10 Nm 3 / Hr from the tuyere of the single tube and stirred for bottom blowing. C: 4.3%, Si: 0.35%, Mn:
About 6 tons of hot metal having a temperature of 1450 ° C. and 0.31%, P: 0.105%, and S: 0.032% were charged into the converter, and 2 Nm 3 / t of top-blown oxygen gas was supplied to the converter. 12.2 kg / t of iron ore (2 Nm 3 / t in terms of oxygen) and 1 lime from the bunker
1 kg / t was added. The treatment time was 5 minutes, and the total oxygen supply rate was 0.8 Nm 3 / min / ton. The basicity of the slag after the treatment was 1.7, the [Si] after the treatment was 0.07%, the desiliconization efficiency was as high as 56%, and a stable treatment without slag forming was performed.

【0026】実施例−2 本実施例−2は前記実施例−1と同一条件の試験転炉で
実施した。前チャージで生成した約25kg/tの脱炭滓
を残留させたまま、C:4.2%,Si:0.36%,
Mn:0.30%,P:0.101%,S:0.035
%で温度が1440℃の溶銑約6tを転炉に装入し、上
吹き酸素ガスを2Nm3/t供給しつつ、炉上バンカーより
鉄鉱石を12.2kg/t(酸素換算で2Nm3/t)添加し
た。処理時間は5分とし、全酸素供給速度は0.8Nm3/
min/ton であった。処理後スラグの塩基度は2.1で、
処理後〔Si〕は0.06%で、処理後〔P〕は0.1
05%で、脱珪効率は60%と高く、復燐も少なく、ス
ラグフォーミングもない安定処理ができた。また、生成
スラグには未滓化石灰が無く、粉化膨張も少ない性質で
あった。
Example 2 This Example 2 was carried out in a test converter under the same conditions as in Example 1 described above. While leaving about 25 kg / t of decarburized slag generated by the pre-charge, C: 4.2%, Si: 0.36%,
Mn: 0.30%, P: 0.101%, S: 0.035
% Hot metal about 6t in temperature 1440 ° C. was charged to the converter at while supplying top-blown oxygen gas 2 Nm 3 / t, 2 Nm iron ore from the furnace on the bunker at 12.2 kg / t (oxygen converted 3 / t) Added. The treatment time is 5 minutes, and the total oxygen supply rate is 0.8 Nm 3 /
min / ton. The basicity of the slag after treatment is 2.1,
After treatment [Si] is 0.06%, and after treatment [P] is 0.16%.
At a rate of 05%, the desiliconization efficiency was as high as 60%, there was little phosphorus reversion, and a stable treatment without slag forming could be performed. Further, the produced slag had no unslagged lime and had a property of little powder expansion.

【0027】実施例−3 本実施例−3は前記実施例−1と同一条件の試験転炉で
実施した。前チャージで生成した約35kg/tの脱燐滓
を残留させたまま、C:4.5%,Si:0.36%,
Mn:0.29%,P:0.106%,S:0.030
%で温度が1465℃の溶銑約6tを転炉に装入し、上
吹き酸素ガスを2.2Nm3/t供給しつつ、炉上バンカー
より鉄鉱石を12.2kg/t(酸素換算で2Nm3/t)添
加した。処理時間は5分とし、全酸素供給速度は0.8
4Nm3/min/ton であった。処理後スラグの塩基度は2.
65で、処理後〔Si〕は0.07%で、処理後〔P〕
は0.106%で、脱珪効率は59%と高く、復燐もな
く、スラグフォーミングもない安定処理ができた。ま
た、生成スラグには未滓化石灰が無く、粉化膨張も少な
い性質であった。
Example 3 Example 3 was carried out in a test converter under the same conditions as in Example 1 described above. C: 4.5%, Si: 0.36%, with about 35 kg / t of dephosphorized slag generated by the pre-charge remaining.
Mn: 0.29%, P: 0.106%, S: 0.030
% Of hot metal at a temperature of 1465 ° C. was charged into the converter, and 2.2 Nm 3 / t of top-blown oxygen gas was supplied, while iron ore was 12.2 kg / t (2 Nm in terms of oxygen) from the furnace bunker. 3 / t) was added. The treatment time is 5 minutes and the total oxygen supply rate is 0.8
It was 4 Nm 3 / min / ton. The basicity of the slag after the treatment is 2.
65, after treatment [Si] is 0.07%, after treatment [P]
Was 0.106%, the desiliconization efficiency was as high as 59%, and stable treatment without phosphorus reversion and without slag forming could be performed. Further, the produced slag had no unslagged lime and had a property of little powder expansion.

【0028】比較例−1 本比較例−1も前記実施例−1と同一条件の試験転炉で
実施した。C:4.3%,Si:0.34%,Mn:
0.32%,P:0.105%,S:0.030%で温
度が1450℃の溶銑約6tを転炉に装入し、上吹き酸
素ガスを3Nm3/t供給しつつ、炉上バンカーより鉄鉱石
を18.3kg/t(酸素換算で3Nm3/t)、生石灰を3
kg/t添加した。処理時間は7.5分とし、全酸素供給
速度は0.8Nm3/min/ton であった。処理後スラグの塩
基度は0.6で、処理後〔Si〕は0.15%で、脱珪
効率は25%と低く、さらに処理を継続して低Si域ま
で脱珪しようとしてもスラグフォーミングが激しく操業
困難であった。
Comparative Example 1 This Comparative Example 1 was also performed in a test converter under the same conditions as in Example 1 described above. C: 4.3%, Si: 0.34%, Mn:
About 6 tons of hot metal of 0.32%, P: 0.105%, S: 0.030% and a temperature of 1450 ° C. are charged into the converter, and 3 Nm 3 / t of top-blown oxygen gas is supplied to the converter. 18.3 kg / t of iron ore ( 3 Nm 3 / t in terms of oxygen) and 3 of quicklime from a bunker
kg / t was added. The treatment time was 7.5 minutes, and the total oxygen supply rate was 0.8 Nm 3 / min / ton. The basicity of the slag after the treatment is 0.6, the [Si] after the treatment is 0.15%, and the desiliconization efficiency is low at 25%. Was intensely difficult to operate.

【0029】比較例−2 本比較例−2も前記実施例−1と同一条件の試験転炉で
実施した。前チャージで生成した約35kg/tの脱燐滓
を残留させたまま、C:4.7%,Si:0.37%,
Mn:0.24%,P:0.100%,S:0.025
%で温度が1445℃の溶銑約6tを転炉に装入し、上
吹き酸素ガスを3.0Nm3/t供給しつつ、炉上バンカー
より鉄鉱石を18.3kg/t(酸素換算で3Nm3/t)添
加した。処理時間は20分とし、全酸素供給速度は0.
3Nm3/min/ton であった。処理後スラグの塩基度は2.
61で、処理後〔Si〕は0.15%で、脱珪効率は2
9%と低く、処理後〔P〕は0.184%にまで復燐し
た。
Comparative Example 2 This Comparative Example 2 was also performed in a test converter under the same conditions as in Example 1 described above. C: 4.7%, Si: 0.37%, C: 4.7%
Mn: 0.24%, P: 0.100%, S: 0.025
% Of hot metal at a temperature of 1445 ° C. is charged into a converter, and while supplying top-blown oxygen gas at 3.0 Nm 3 / t, 18.3 kg / t of iron ore (3 Nm in terms of oxygen) is supplied from an on-furnace bunker. 3 / t) was added. The treatment time was 20 minutes, and the total oxygen supply rate was 0.1 minute.
It was 3 Nm 3 / min / ton. The basicity of the slag after the treatment is 2.
61, the treated [Si] was 0.15%, and the desiliconization efficiency was 2%.
It was as low as 9%, and after the treatment, [P] was restored to 0.184%.

【0030】[0030]

【発明の効果】本発明の溶銑予備処理方法により、低S
i域までの効率的な脱珪を実現することで、製鋼スラグ
発生量の低減、脱炭滓や脱燐滓のリサイクルを可能とし
た。
According to the hot metal pretreatment method of the present invention, low S
By realizing efficient desiliconization up to the i-th region, it was possible to reduce the amount of steelmaking slag generated and to recycle decarburized slag and dephosphorized slag.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る全酸素供給速度0.8〜1.2Nm
3/min/ton の場合の脱珪効率とスラグ塩基度の関係を示
す図である。
FIG. 1 shows a total oxygen supply rate of 0.8 to 1.2 Nm according to the present invention.
It is a figure which shows the relationship between the desiliconization efficiency and slag basicity in the case of 3 / min / ton.

【図2】本発明に係る塩基度1.5〜1.8の場合の脱
珪効率と全酸素供給速度の関係を示す図である。
FIG. 2 is a graph showing the relationship between the desiliconization efficiency and the total oxygen supply rate when the basicity is 1.5 to 1.8 according to the present invention.

【図3】本発明に係る塩基度1.5〜1.8の場合の復
燐量と全酸素供給速度の関係を示す図である。
FIG. 3 is a graph showing the relationship between the amount of reconstituted phosphorus and the total oxygen supply rate when the basicity is 1.5 to 1.8 according to the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶銑の脱珪処理において、スラグ塩基度
を1.0〜3.0とし、かつ脱珪時の全酸素供給速度を
0.4〜2.5Nm3/min/ton とすることを特徴とする溶
銑予備処理方法。
1. In the desiliconization treatment of hot metal, the slag basicity is set to 1.0 to 3.0, and the total oxygen supply rate at the time of desiliconization is set to 0.4 to 2.5 Nm 3 / min / ton. A hot metal pretreatment method characterized by the following.
【請求項2】 請求項1において、脱炭滓を用いてスラ
グ塩基度を制御することを特徴とする溶銑予備処理方
法。
2. The hot metal pretreatment method according to claim 1, wherein the slag basicity is controlled using decarburized slag.
【請求項3】 請求項1において、脱燐滓を用いてスラ
グ塩基度を制御することを特徴とする溶銑予備処理方
法。
3. The hot metal pretreatment method according to claim 1, wherein the slag basicity is controlled using dephosphorized slag.
【請求項4】 請求項2において、転炉を用いて脱珪、
脱燐、脱炭処理を実施する場合において、前チャージの
脱炭滓を排滓することなく次チャージの溶銑を装入し脱
珪処理を実施し、溶銑〔Si〕が0.2%以下になった
時点で少なくとも一部のスラグを排出し、引き続き脱燐
精錬及び脱炭精錬を続けることを特徴とする溶銑予備処
理方法。
4. The method according to claim 2, wherein the silicon is desiliconized using a converter.
In the case of performing dephosphorization and decarburization, hot metal of the next charge is charged and desiliconization is performed without discharging the decarburized slag of the previous charge, and the hot metal [Si] is reduced to 0.2% or less. A hot metal pretreatment method, comprising discharging at least a part of the slag at the time when the slag becomes dephosphorized and continuing dephosphorization refining and decarburization refining.
【請求項5】 請求項3において、転炉を用いて脱珪、
脱燐処理を実施する場合において、前チャージの脱燐滓
を排滓することなく次チャージの溶銑を装入し脱珪処理
を実施し、溶銑〔Si〕が0.2%以下になった時点で
少なくとも一部のスラグを排出し、引き続き脱燐精錬を
続けることを特徴とする溶銑予備処理方法。
5. The method according to claim 3, wherein the desiliconization is performed using a converter.
When performing the dephosphorization treatment, the hot metal of the next charge is charged without removing the dephosphorization slag of the previous charge and desiliconization treatment is performed, and when the molten iron [Si] becomes 0.2% or less. A method for pretreating molten iron, comprising discharging at least a part of the slag and continuing dephosphorization refining.
JP13340598A 1998-05-15 1998-05-15 Pretreating method for molten iron Withdrawn JPH11323420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13340598A JPH11323420A (en) 1998-05-15 1998-05-15 Pretreating method for molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13340598A JPH11323420A (en) 1998-05-15 1998-05-15 Pretreating method for molten iron

Publications (1)

Publication Number Publication Date
JPH11323420A true JPH11323420A (en) 1999-11-26

Family

ID=15103995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13340598A Withdrawn JPH11323420A (en) 1998-05-15 1998-05-15 Pretreating method for molten iron

Country Status (1)

Country Link
JP (1) JPH11323420A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137196A (en) * 2009-12-28 2011-07-14 Nippon Steel Corp Desiliconizing and dephosphorizing method for molten iron
JP2013167017A (en) * 2012-01-19 2013-08-29 Jfe Steel Corp Method for refining molten iron
JP2015017323A (en) * 2013-06-14 2015-01-29 Jfeスチール株式会社 Preliminary treatment method for molten iron
KR20150092298A (en) 2013-01-18 2015-08-12 제이에프이 스틸 가부시키가이샤 Molten iron pre-treatment method
KR20170078818A (en) 2014-12-16 2017-07-07 제이에프이 스틸 가부시키가이샤 Molten iron pre-treatment method
CN114606360A (en) * 2022-02-20 2022-06-10 山西太钢不锈钢股份有限公司 Production process of high-silicon molten iron low lime in CONARC electric furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137196A (en) * 2009-12-28 2011-07-14 Nippon Steel Corp Desiliconizing and dephosphorizing method for molten iron
JP2013167017A (en) * 2012-01-19 2013-08-29 Jfe Steel Corp Method for refining molten iron
KR20150092298A (en) 2013-01-18 2015-08-12 제이에프이 스틸 가부시키가이샤 Molten iron pre-treatment method
JP2015017323A (en) * 2013-06-14 2015-01-29 Jfeスチール株式会社 Preliminary treatment method for molten iron
KR20170078818A (en) 2014-12-16 2017-07-07 제이에프이 스틸 가부시키가이샤 Molten iron pre-treatment method
CN114606360A (en) * 2022-02-20 2022-06-10 山西太钢不锈钢股份有限公司 Production process of high-silicon molten iron low lime in CONARC electric furnace

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
JPH0437132B2 (en)
JP2000073111A (en) Manufacture of low-phosphorus molten iron
JPH11323420A (en) Pretreating method for molten iron
JP3709069B2 (en) Hot metal pretreatment method
JP3458890B2 (en) Hot metal refining method
US4525209A (en) Process for producing low P chromium-containing steel
JP4461495B2 (en) Dephosphorization method of hot metal
JP2000109924A (en) Method for melting extra-low sulfur steel
JPH08311519A (en) Steelmaking method using converter
JPH0734113A (en) Converter refining method
JP3505791B2 (en) Dephosphorization and desulfurization of hot metal
JP2958842B2 (en) Converter refining method
JPH0437135B2 (en)
JP2002309310A (en) Method for producing low-phosphorous molten iron
JPH0557327B2 (en)
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JP3823623B2 (en) Hot metal refining method
JP4356275B2 (en) Hot metal refining method
JP2001234223A (en) Method for refining converter type molten pig iron dephosphorization furnace
JP2755027B2 (en) Steelmaking method
JPH01147012A (en) Steelmaking method
JPH03122210A (en) Two step counterflow refined steelmaking method using duplex converters
JP2000290716A (en) Method for refining molten iron
JPH02182820A (en) Refining method for increasing mn-content in molten steel in converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802