JPH0437135B2 - - Google Patents
Info
- Publication number
- JPH0437135B2 JPH0437135B2 JP30444687A JP30444687A JPH0437135B2 JP H0437135 B2 JPH0437135 B2 JP H0437135B2 JP 30444687 A JP30444687 A JP 30444687A JP 30444687 A JP30444687 A JP 30444687A JP H0437135 B2 JPH0437135 B2 JP H0437135B2
- Authority
- JP
- Japan
- Prior art keywords
- dephosphorization
- blowing
- hot metal
- furnace
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007664 blowing Methods 0.000 claims description 62
- 229910052751 metal Inorganic materials 0.000 claims description 61
- 239000002184 metal Substances 0.000 claims description 61
- 239000003795 chemical substances by application Substances 0.000 claims description 44
- 239000002893 slag Substances 0.000 claims description 41
- 238000007670 refining Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 22
- 229910052760 oxygen Inorganic materials 0.000 claims description 22
- 239000001301 oxygen Substances 0.000 claims description 22
- 238000005261 decarburization Methods 0.000 claims description 20
- 239000007787 solid Substances 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 16
- 238000009628 steelmaking Methods 0.000 claims description 12
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 7
- 229910001882 dioxygen Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 30
- 229910000831 Steel Inorganic materials 0.000 description 24
- 239000010959 steel Substances 0.000 description 24
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 16
- 229910052742 iron Inorganic materials 0.000 description 15
- 238000002844 melting Methods 0.000 description 14
- 230000008018 melting Effects 0.000 description 14
- 238000003756 stirring Methods 0.000 description 12
- 229910052698 phosphorus Inorganic materials 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 235000012255 calcium oxide Nutrition 0.000 description 8
- 239000000292 calcium oxide Substances 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000004907 flux Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000013019 agitation Methods 0.000 description 4
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010436 fluorite Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910000805 Pig iron Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910000616 Ferromanganese Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
〈産業上の利用分野〉
この発明は、2基の上下両吹き複合吹錬炉を用
い、スクラツプ使用の自由度高く、かつ少ない造
滓剤使用量下にて、品質の良好な鋼をコスト安く
高能率溶製する方法に関するものである。
〈背景技術〉
近年、低燐鋼をより一層低いコストで安定溶製
する手段の開発を目指して様々な研究がなされる
ようになつたが、このような状況の中で、製鋼ト
ータルコストのミニマム化や低燐鋼の安定溶製に
関し次のような溶銑の予備脱燐法、即ち、
(a) トーピード内の溶銑に生石灰系のフラツクス
又はソーダ灰をインジエクシヨンすることで予
備脱燐を行う方法、
(b) 取鍋内の溶銑に生石灰系のフラツクスをイン
ジエクシヨンしたりブラステイング(吹き付
け)することで予備脱燐を行う方法、
(c) 高炉鋳床樋中の溶銑に生石灰系のフラツクス
をブラステイングして予備脱燐を行う方法、
が提案され、一部実用化もなされるようになつ
た。
しかし、前記(a)及び(b)の方法では脱燐を“脱燐
剤の浮上過程で進行する反応(トランジトリー・
リアクター・リアクシヨン)”に頼るため脱燐フ
ラツクスの利用効率が必ずしも良くなく、また処
理時間が長くかかる分だけ処理時の抜熱が大きく
なつて溶銑温度が低下すると言う問題があり、一
方、前記(c)の方法では脱燐処理が高炉から出銑さ
れた直後の溶銑に施されることから脱燐処理温度
が約1400℃と高く、従つて到達P含有量が十分に
満足できるレベルになり難いとの指摘がなされて
いた。
その上、溶銑脱燐フラツクスとして生石灰等を
用いる場合には、その後の転炉吹錬で使用される
生石灰等の量をも合わせて考えると、前記何れの
方法も、“予備脱燐工程を省いて転炉のみでの脱
燐を行う方法”に比べて必要造滓剤量(生石灰等
の量)の低減効果はそれほど顕著であるとは言え
なかつた。
そこで、上記状況を踏まえた本出願人は、先
に、第7図で略示されるような「上下両吹き機能
を有した2基の転炉形式の炉を使用するととも
に、そのうちの一方を脱燐炉1、他方を脱炭炉2
とし、前記脱燐炉1内へ注入した溶銑3に前記脱
炭炉2で発生した転炉滓4を主成分とする精錬剤
の添加を行い、撹拌ガス吹き込みノズル5による
底吹きガス撹拌を実施しつつランス6より酸素ガ
スを上吹きして脱燐炉1の溶銑3の温度を1400℃
以下に保ちながら溶銑脱燐を行つた後、得られた
脱燐溶銑を脱炭炉2にて脱炭並びに仕上脱燐する
ことにより、極めて少ない量の造滓剤でもつて通
常燐レベルの鋼或いは低燐鋼を作業性良く低コス
トで製造し得るようにした製鋼方法」を特願昭61
−132517号として提案した。
なお、本出願人が先に提案したところの上記発
明は、「全製鋼工程を通じての造滓剤の必要量は
スラグとメタルとを向流的に接触させる“スラグ
−メタル向流精錬”によるときが最も少なくて良
いが、実際上は該向流精錬の完全な実現は殆ど不
可能であり、現状において最も労少なく造滓剤の
使用量を抑え得る可能性を秘めた製鋼手段として
挙げ得るものは、脱燐工程を2段階に分割し、そ
の下工程で発生するスラグを上工程の脱燐剤とし
て使用する方法以外に見当たらない」との発明者
の認識の下に、作業安定性、脱燐効率或いは設備
コスト等の面での不利が予想された該“転炉滓再
利用による製鋼法”に関し、その問題点解消を目
指した研究での次の知見事項(A)〜(F)、即ち、
(A) 溶銑の脱燐処理においては脱燐効率からみて
処理温度を出来るだけ低くする方が良いが、該
温度が余りに低くなり過ぎると次工程での不都
合を引き起こす上、処理後スラグへの粒鉄ロス
が多くなると言う問題が生じるので、該温度は
1300〜1350℃程度が最も良好である。しかし、
実際作業では脱燐剤の添加そのものが処理温度
を低下する大きな要因となるので多少低目の上
記温度を保持するのは極めて困難であるが、脱
燐処理時に少量の酸素ガスを吹き込むことによ
つて前記処理温度が安定かつ容易に維持され
る、
(B) フラツクスの脱燐能を十分に発揮せしめて脱
燐能率を上げるには、上述のような処理温度の
調整もさることながら、脱燐平衡状態を達成す
るための十分な撹拌を欠くことができないが、
高温の溶銑を高能率脱燐するに十分満足できる
効率の良い撹拌を短時間に実現するためには、
処理容器底部から吹き込まれるガスによるガス
撹拌が最も好ましい、
(C) 加えて、効率の良い脱燐処理を行うためには
処理容器にスラグフオーミングのための十分な
フリーボード(湯面から容器上端までの距離)
が必要である、
(D) スラグによる処理容器耐火物の溶損を軽減し
て脱燐作業能率を上げるためには、塩基性ライ
ニングの使用が好ましい、
(E) 2段階脱燐工程を含む製鋼法において脱燐作
業能率を上げるためには処理容器からの排滓能
率を無視することができす、排滓が容易な処理
容器の使用を欠かせない、
(F) 高品質鋼を作業性良く量産するためには十分
な排ガス処理設備(集塵機)が必要である、
(G) これらの条件を考慮すると、溶銑脱燐処理容
器としては転炉形式の炉、それも炉底から撹拌
ガスを導入できる上下両吹き機能を有した複合
吹錬転炉が理想的であり、これを使用して前述
した“2段階脱燐工程を含む製鋼法”を実施す
ると、全製鋼工程を通じての造滓剤の使用量が
極く少なくても十分に効率の良い脱燐がなさ
れ、高品質鋼を作業能率良く量産できる、
を基に完成されたものである。
そして、この本出願人が先に提案した方法は、
使用造滓剤量を極力抑えた低コスト操業でもつて
低燐鋼を安定して製造することができ、高品質鋼
を安価に提供する上で極めて有利な製鋼方法であ
つた。
一方、最近の鋼需要の安定化傾向から製鋼原料
としてのスクラツプが大量に出回るようになり、
価格的にも極めて有利になつてきたことから、製
鋼原料に占めるスクタツプの割合を増して製鋼コ
ストの低減を図ろうとの試みも目立つている。
このようなことから、本発明者等は、上述した
2基の転炉を使用する“先の提案の方法”を実施
するに際して、脱燐炉に投入する製鋼原料の一部
にスクラツプを使用し、これによつて製鋼コスト
を更に低減することを検討した。
ところが、先に提案した上記方法では、溶銑脱
燐吹錬時の脱燐不良を回避する狙いの下に固体酸
素精錬剤たる鉄鉱石を十分に配合していることも
あり、熱バランスからみてスクラツプを装入する
余裕がないとの結論を出さざるを得なかつた。
即ち、上下両吹き複合転炉精錬において原料の
一部としてスクラツプを使用する場合には、スク
ラツプの溶解が終了するまでは底吹きガス流れが
拘束されるので溶銑の撹拌が不十分となつて脱燐
不良が起きる。従つて、通常は吹錬を一旦中止し
て転炉を傾動させ、これによつてスクラツプ溶解
の促進を図ることが行われていたが、操業上のロ
スが大きくて好ましい手段とは言えなかつた。
その上、先に提案した方法では脱燐率確保のた
めに溶銑温度が低目(1400℃以下)に抑えられて
おり、スクラツプの溶解条件としては一段と不満
足なものであつた。
〈問題点を解決するための手段〉
本発明者等は、上下両吹き機能を有した2基の
転炉形式の炉のうちの一方を脱燐炉、他方を脱炭
炉として溶銑の精錬を行うと言う“先に提案され
た製鋼方法”の利点を生かしつつ、しかも上述し
た問題点を解消し、高いスクラツプ使用率でもつ
て良好な作業性の下に高品質鋼を安定溶製すべく
研究を続けたところ、
「脱燐炉で溶解するスクラツプの幅と厚みを特
定値以下に規制すると共に、十分な底吹きガス撹
拌を行い、しかも鉄鉱石やスケール等の固体酸素
精錬剤の一部の投入時期を吹錬の末期として脱燐
炉精錬を実施すると、溶銑温度が比較的低温であ
つても、転炉の傾動を必要とすることなく炭素拡
散によるスクラツプの溶解が速やかに完了し、高
脱燐率下で所望の低燐銑が得られる」
との新たな知見が得られたのである。
この発明は、上記知見に基づいてなされたもの
であり、
「第1図に示される如く、上下両吹き機能を有
した2基の転炉形式の炉のうちの一方を脱燐炉
1、他方を脱炭炉2として溶銑の精錬を行う製鋼
方法において、溶銑を前記脱燐炉1内に注入した
後、これに前記脱炭炉2で発生した転炉滓4を主
成分とする精錬剤と幅が30mm以下で厚さが15mm以
下のスクラツプとを添加し、撹拌ガス吹込みノズ
ル5から流量:0.07Nm3/min・t以上でガスを
吹き込んで底吹きガス撹拌を行いつつ、ランス6
より酸素ガスを上吹きして溶銑温度を1400℃以下
に保ちながら吹錬を行い、この吹錬の末期に固体
酸素精錬剤を添加する溶銑脱燐工程と、得られた
脱燐溶銑を脱炭炉2にて精錬する工程とを含ませ
ることにより、高い割合でスクラツプを使用し、
かつ造滓剤の消費量少なく、品質の優れた鋼を安
いコストで製造し得るようにした点」
に特徴を有するものである。
ここで、脱燐炉での溶銑処理温度を1400℃以下
に調整する理由は、溶銑温度がこれより高くなる
と脱炭ばかりが進行してスラグ中のT.Fe量が低
くなり、脱燐率が悪化するからである。しかし、
「余りに低温になるとスラグへの粒鉄ロスが増加
する」との事実を考慮することも必要なので、上
記温度は1250〜1400℃程度に調整するのが好まし
い。なお、このような処理温度の維持は上吹きラ
ンスからの酸素ガス吹き込みや、これと炉底羽口
からの酸素ガス吹き込みの併用によつて行われ
る。つまり、上記脱燐炉での酸素ガス吹き込み
は、脱燐処理温度を保証するために実施されると
言つても過言ではない。従つて、ここでの上吹き
酸素ランスは通常の転炉ランスでも良いが、脱燐
用に新作した小流量ランスであつても良い。そし
て、吹込み酸素ガス量は処理前の溶銑温度や珪素
含有量、転炉滓の温度、脱燐炉の温もり具合、目
的とする処理溶銑温度等よつて決定されるが、概
ね2.0Nm3/min・t以下で良く、通常は0.5〜
1.0Nm3/min・tで十分である。
そして、投入するスクラツプの幅と厚みを前記
の如くに数値限定したのは、本発明におけるスク
ラツプの溶解は“溶銑からスクラツプ中への炭素
拡散による融点低下”によつて行われるため、ス
クラツプの幅が30mmを越えたり、厚みが15mmを越
えるようなものでは底吹きガス撹拌を高めたとし
ても、転炉の傾動なくして所定吹錬時間内でのス
クラツプ溶解が完了しないためである。
更に、この際の底吹きガス流量を0.07Nm3/
min・t以上と定めたのは、その値が0.07Nm3/
min・tを下回ると溶銑の撹拌が不十分となり、
転炉の傾動なしにはスクラツプの完全溶解がなさ
れないことが懸念される上、脱燐のために添加さ
れる固体酸素精錬剤と溶銑との接触頻度低下から
脱燐不良が生じるからである。
第2図は、底吹きガス流量と脱燐率との関係
を、“スクラツプ溶解を行つた場合”と“スクラ
ツプ溶解を行わなかつた場合”とを対比して示し
たグラフであるが、この第2図からも、スクラツ
プ溶解を実施する場合には底吹きガス流量を
0.07Nm3/min・t以上とするのが好ましいこと
が分かる。なお、固体酸素精錬剤(鉄鉱石等)の
添加量が少なくても底吹きガス流量を0.07Nm3/
min・t以上とすることによつて所望の脱燐率が
維持されるのは、撹拌力強化によつて精錬剤と溶
銑との十分な接触が図れるからである。
炉底から吹き込む撹拌ガスとしてはAr,CO2,
CO,N2,O2、空気等の何れであつても良い。
また、ここで言う「固体酸素精錬剤」とは鉄鉱
石やスケール等の酸化鉄を含む精錬剤(脱燐剤)
を指す。そして、追加の固体酸素精錬剤の添加時
期を「脱燐吹錬の末期」と定めたのは、通常の如
く脱燐吹錬の中期に固体酸素精錬剤を投入した場
合には、スクラツプ溶解の影響で脱燐効果が十分
に発揮されない恐れがあるためである。これに対
して吹錬末期に添加すると、“上置スラグ温度の
低下”や“吹錬末期のスラグ中酸素ポテンシヤル
の上昇”等の効果によりP分配を好ましい状態に
維持することができるので十分な脱燐が完了す
る。なお、「脱燐吹錬の末期」とは「脱燐吹錬終
了の3分前から終了後(リンシング時)1分の
間」を言い、この時期での固体酸素精錬剤の投入
は数回に分けた分投添加によるのが良い。
第3図は、脱燐炉精錬における固体酸素精錬剤
(鉄鉱石)の投入時期と脱燐率の関係を示したグ
ラフであるが、この第3図からも前記投入時期を
吹錬末期とすることによつて溶銑の脱燐率が顕著
に向上することが分かる。
そして、第4図は固体酸素精錬剤(鉄鉱石)の
投入量に応じた脱燐率の変化傾向を示したグラフ
であるが、このグラフも固体酸素精錬剤(鉄鉱
石)投入により脱燐率が向上することを明示して
いる。
ところで、前記「上下両吹き機能を有した転炉
形式の炉」としては現在使われている「上下吹き
複合吹錬転炉」が最も好ましいが、特に脱燐炉に
ついては、精錬条件が脱炭炉よりもマイルドであ
るため炉自体を更に小さくしても良いので、脱燐
専用に新設してもコスト的にそれほどの影響はな
い。
脱燐炉での精錬剤は脱炭炉で発生した転炉滓を
主成分とするものであるが、この転炉滓以外に前
述した酸化鉄(固体酸素精錬剤)が基本の副成分
として使用され、また蛍石の配合も好ましい。そ
して、例えば、
転炉滓:40〜80重量%、
酸化鉄:20〜60重量%、
蛍石:0〜20重量%
の如き配合組成としたものが推奨される。勿論こ
れに限定されるわけではないが、転炉滓を滓化し
て低融点の脱燐スラグとしたり、脱燐が進行し易
いようにスラグの酸化力を高めるためには酸化鉄
(固体酸素精錬剤)の併用は極めて重要である。
もつとも、本発明においては、前述したように
固体酸素試練剤(鉄鉱石やスケール等の酸化鉄含
有量精錬剤)の一部は脱燐吹錬の末期に投入す
る。
なお、脱燐炉での精錬剤としては、前記したも
のの他、付加的に生石灰、ドロマイト或いは石灰
石を配合しても良いし、溶銑[Mn]向上のため
にマンガン鉱石や鉄マンガン鉱石を配合しても良
い。
媒溶剤は蛍石が一般的であるが、Na2O,
SiO2,CaCl2,Na2CO3等をそれぞれ単独に用い
ても良いし、これと蛍石とを併用しても良い。
脱燐炉で使用される精錬剤の量は溶製する鋼の
[P]レベルにより決定されるが、通常は30〜60
Kg/t程度で良い。
ところで、脱燐炉で使用される精錬剤の主成分
たる転炉滓としては、脱炭炉で発生した溶融状態
のものが熱経済的にも脱燐フラツクスの滓化性の
面からも好ましいが(このように溶融状態のもの
を用いる場合には耐火物を内張りした鍋を介して
脱燐炉に注滓される)、取り扱いの容易さ等を考
慮して脱炭炉で得られたものを一旦冷却凝固さ
せ、これを粒状又は塊状に破砕してから用いても
良い。ただ、この場合、脱燐炉での滓化性向上の
ために粒径は小さい程良好であるが、転炉滓は本
来滓化性に富んでいることもあつて粒径が100mm
を下回る程度でも格別な不都合を来たすことがな
いし、これより大きくても使用可能である。
使用される転炉滓は、タイミングとしては前回
チヤージのものが良いが、それ以前に脱炭炉から
出したものや、他の向上の脱炭炉で発生したもの
でも良いことは言うまでもない。
以上のような条件で脱燐処理を行うと、通常、
20分以内で“溶銑との比率で5.0%程度までのス
クラツプの溶解”と“所望の脱燐或いは脱燐と脱
硫”を完了することができる。
脱炭炉での吹錬は、基本的には通常の“炉外で
脱燐・脱硫された溶銑”を吹錬する場合と同じで
あり、このとき、終点での溶鋼のMn含有量向上
を目的として生石灰やドロマイトを中心とする造
滓剤の他にマンガン鉱石や鉄マンガン鉱石を添加
することもできる。
ところで、第5図は、次に示すところの本発明
に従つた好ましい製鋼工程例を図式化したもので
ある。
第1工程:高炉出銑後の溶銑(脱硫溶銑又は未
脱硫溶銑の何れであつても良い)を脱燐炉へ
注銑する。
第2工程:脱燐剤として用いる転炉滓を装入す
ると共に、スクラツプを投入する。
第3工程:溶銑[Si]量と転炉滓量とを考慮
し、所定塩基度となるように媒溶剤を投入し
て吹錬を行う。
第4工程:脱燐悪化防止の目的で、吹錬の末期
(リンシング時を含む)に鉄鉱石を分投して
温度調整を行う。
第5工程:脱燐炉から出湯した脱燐銑を脱炭炉
に注銑し、精錬を行う。
〈作用〉
上述のように、本発明は、上下両吹き機能を有
した2基の転炉形式の炉のうちの一方を脱燐炉、
他方を脱炭炉として造滓剤の消費量少なく溶銑の
精錬を行う際に、複合吹錬炉の強撹拌を利用し、
脱燐炉精錬において脱燐率に悪影響を及ぼすこと
なくスクラツプ原料の使用を可能としたものであ
る。
つまり、先にも触れたが、本発明における低温
でのスクラツプの溶解機構は第6図で説明され
る。即ち、溶銑中にスクラツプが投入されると、
第5図で示すように、溶銑中[C]の拡散により
スクラツプ(スチール)の溶銑との界面部におけ
る炭素濃度が上昇し、該部分の液相線温度が周囲
の溶銑温度にまで下がつた時点で溶解が起こる。
そして、この現象が進行して低温でのスクラツプ
溶解が完了する。実験によると、複合吹錬炉では
上記スクラツプ溶解の速度は0.75mm/min程度で
あり、寸法が幅:30mm以内で厚み:15mm以内のス
クラツプであれば脱燐吹錬時間内で完全に溶解す
ることが確認されている。
ただ、脱燐炉内にスクラツプを投入して溶解す
る場合には、溶銑温度の低下防止の観点から脱燐
剤(精錬剤)として投入する鉄鉱石(固体酸素)
量を減少せざるを得ず、脱燐率の低下が懸念され
たが、底吹きガス流量を十分(0.07Nm3/min・
t以上)にとつて溶銑を強撹拌することでスラグ
−メタル間の接触頻度を強化すればそれほどの脱
燐率の低下は起こらず、その上、この脱燐率確保
策に加えて吹錬末期に鉄鉱石(固体酸素)の分投
を行うと、上置スラグの温度が下がり、かつスラ
グ中の酸素ポテンシヤルが上昇することから脱燐
率が更に向上し、そのため、脱燐率を悪化させる
ことなく溶銑にスクラツプを溶解させることが可
能となつたのである。
続いて、この発明を実施例により比較例と対比
しながら更に具体的に説明する。
〈実施例〉
まず、第1表に示した範囲の成分組成を有する
高炉溶銑を“脱燐炉として使用する250トン上下
両吹き複合吹錬転炉”に注銑すると共に、3例を
除いては第2表に示される寸法のスクラツプを投
入し、第3表に示す条件で脱燐吹錬を行つた。
この吹錬結果を第3表に併せて示す。
第3表に示された脱燐炉での吹錬結果からも明
らかなように、本発明で規定する条件通りの吹錬
を行つたものではスクラツプの溶け残りを生じな
かつたことは勿論、脱燐不良も生じ無かつたのに
対して、スクラツプの寸法が大きかつたり、底吹
きガス流量の少なかつた“比較例”では、スクラ
ツプの溶け残りや脱燐不良を生じることが分か
る。
そして、本発明で規定する通りに脱燐炉での精
錬が終了した前記溶銑を“脱炭炉として使用する
250トン上下両吹き複合吹錬転炉”に注銑し脱炭
吹錬を行つたところ、十分に満足できる低燐鋼
<Industrial Application Field> This invention uses two upper and lower double blowing composite blowing furnaces to produce high-quality steel at a low cost with high flexibility in the use of scrap and the use of a small amount of slag-forming agent. This invention relates to a method for high-efficiency melting. <Background technology> In recent years, various researches have been conducted with the aim of developing means to stably melt low-phosphorus steel at even lower costs. The following methods of preliminary dephosphorization of hot metal are used for the stable melting of low phosphorus steels: (b) Preliminary dephosphorization by injecting or blasting quicklime-based flux onto hot metal in a ladle; (c) Blasting quicklime-based flux onto hot metal in a blast furnace cast bed trough. A method of performing preliminary dephosphorization using phosphorescence has been proposed, and some of it has been put into practical use. However, in methods (a) and (b) above, dephosphorization is a “transitary reaction” that progresses during the floating process of the dephosphorizing agent.
Because the dephosphorization flux is not always efficiently used because it relies on the ``reactor reaction'', there is also the problem that the longer the treatment time, the more heat is removed during the treatment, which lowers the hot metal temperature. In method c), the dephosphorization treatment is performed on hot metal immediately after being tapped from the blast furnace, so the dephosphorization treatment temperature is as high as approximately 1400℃, and therefore it is difficult to reach a sufficiently satisfactory level of P content. Furthermore, when using quicklime etc. as flux for hot metal dephosphorization, considering the amount of quicklime etc. used in the subsequent converter blowing, both of the above methods Compared to the "method of omitting the preliminary dephosphorization step and performing dephosphorization only in a converter," the effect of reducing the amount of required slag forming agent (amount of quicklime, etc.) could not be said to be that remarkable. In view of the above situation, the applicant first decided to use two converter-type furnaces with both upper and lower blowing functions as schematically shown in FIG. 1. The other side is a decarburization furnace 2
Then, a refining agent mainly composed of converter slag 4 generated in the decarburization furnace 2 is added to the hot metal 3 injected into the dephosphorization furnace 1, and bottom-blown gas is stirred by the stirring gas injection nozzle 5. At the same time, oxygen gas is blown upward from lance 6 to raise the temperature of hot metal 3 in dephosphorization furnace 1 to 1400℃.
After dephosphorizing the hot metal while maintaining the following conditions, the obtained dephosphorized hot metal is decarburized and final dephosphorized in the decarburization furnace 2 to produce steel with a normal phosphorus level or A patent application was filed in 1983 for a steel manufacturing method that enables low-phosphorus steel to be produced with good workability and at low cost.
- Proposed as No. 132517. The above invention previously proposed by the present applicant states that ``the required amount of slag forming agent throughout the entire steelmaking process is determined by ``slag-metal countercurrent refining'' in which slag and metal are brought into contact with each other in a countercurrent manner. However, in practice, it is almost impossible to fully realize countercurrent refining, and it can be cited as the steelmaking method that is currently the least labor intensive and has the potential to reduce the amount of slag-forming agent used. The inventor realized that there is no other way than to divide the dephosphorization process into two stages and use the slag generated in the lower process as a dephosphorizing agent in the upper process. Regarding the "steel manufacturing method by reusing converter slag," which was expected to have disadvantages in terms of phosphorus efficiency or equipment cost, the following findings (A) to (F) were made in research aimed at resolving the problems. That is, (A) In the dephosphorization treatment of hot metal, it is better to keep the treatment temperature as low as possible from the viewpoint of dephosphorization efficiency, but if the temperature becomes too low, it will not only cause problems in the next process, but also cause problems in the slag after treatment. The problem arises that the loss of granular iron increases, so the temperature is
A temperature of about 1300 to 1350°C is best. but,
In actual work, the addition of the dephosphorizing agent itself is a major factor in lowering the processing temperature, so it is extremely difficult to maintain the above-mentioned somewhat low temperature. (B) In order to fully utilize the dephosphorizing ability of the flux and increase the dephosphorization efficiency, it is necessary to adjust the treatment temperature as described above. Adequate agitation to achieve equilibrium is essential, but
In order to achieve sufficient and efficient stirring in a short time for highly efficient dephosphorization of high-temperature hot metal,
Gas agitation using gas injected from the bottom of the processing vessel is most preferable. distance)
(D) In order to reduce erosion of the processing vessel refractories caused by slag and increase dephosphorization work efficiency, it is preferable to use a basic lining. (E) Steel manufacturing including a two-step dephosphorization process In order to increase the efficiency of dephosphorization in the method, the efficiency of removing slag from the processing container can be ignored, and it is essential to use a processing container that allows easy removal of slag. Sufficient exhaust gas treatment equipment (dust collector) is required for mass production. (G) Taking these conditions into consideration, a converter-type furnace is recommended as the hot metal dephosphorization treatment vessel, and stirring gas is introduced from the bottom of the furnace. A composite blowing converter with both upper and lower blowing functions is ideal, and if this is used to carry out the above-mentioned "steel manufacturing method including a two-stage dephosphorization process," the slag-forming agent will be removed throughout the entire steel manufacturing process. It was completed based on the following principles: Even if the amount used is extremely small, sufficient dephosphorization can be performed and high-quality steel can be mass-produced with high efficiency. The method previously proposed by the applicant is
It was possible to stably produce low-phosphorus steel at a low cost by minimizing the amount of slag-forming agent used, and it was an extremely advantageous steel-making method for providing high-quality steel at a low cost. On the other hand, due to the recent stabilization of steel demand, large quantities of scrap as a raw material for steelmaking have become available.
As it has become extremely advantageous in terms of price, there are also prominent attempts to reduce steelmaking costs by increasing the proportion of steelmaking raw materials that are made up of steelmaking raw materials. For this reason, the present inventors decided to use scrap as part of the steelmaking raw material fed into the dephosphorization furnace when implementing the "previously proposed method" using the two converters mentioned above. We considered further reducing steel manufacturing costs by this method. However, in the method proposed earlier, a sufficient amount of iron ore, which is a solid oxygen refining agent, is mixed with the aim of avoiding dephosphorization failure during hot metal dephosphorization blowing, and from the viewpoint of heat balance, it is difficult to scrap. I had no choice but to conclude that there was no room for charging. That is, when scrap is used as part of the raw material in double-blown double converter refining, the flow of bottom-blown gas is restricted until the scrap is completely melted, resulting in insufficient stirring of the hot metal and desorption. Phosphorus deficiency occurs. Therefore, the usual practice was to temporarily stop blowing and tilt the converter in order to promote scrap melting, but this was not a desirable method due to large operational losses. . Furthermore, in the previously proposed method, the hot metal temperature was kept low (below 1400°C) in order to ensure the dephosphorization rate, which was even more unsatisfactory as a melting condition for scrap. <Means for Solving the Problems> The present inventors have developed a method of refining hot metal by using one of two converter type furnaces having both upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace. While taking advantage of the advantages of the "previously proposed steelmaking method," we are conducting research to solve the above-mentioned problems and stably produce high-quality steel with good workability even with a high scrap usage rate. ``The width and thickness of the scrap melted in the dephosphorization furnace must be regulated to below a certain value, and sufficient bottom-blown gas agitation must be carried out to eliminate some of the solid oxygen refining agents such as iron ore and scale.'' If dephosphorization furnace refining is carried out with the charging time at the end of blowing, even if the hot metal temperature is relatively low, the dissolution of scrap by carbon diffusion will be completed quickly without the need to tilt the converter, resulting in high New knowledge was obtained that it is possible to obtain the desired low phosphorus pig iron at a low dephosphorization rate. This invention was made based on the above knowledge, and it is said that ``As shown in Fig. 1, one of the two converter-type furnaces having both upper and lower blowing functions is dephosphorizing furnace 1, and the other is In a steelmaking method in which hot metal is refined using a decarburization furnace 2, after the hot metal is injected into the dephosphorization furnace 1, a refining agent containing converter slag 4 generated in the decarburization furnace 2 as a main component is added to the hot metal. Scrap with a width of 30 mm or less and a thickness of 15 mm or less is added, and while performing bottom-blown gas stirring by blowing gas from the stirring gas blowing nozzle 5 at a flow rate of 0.07 Nm 3 /min・t or more, the lance 6
The hot metal dephosphorization process involves blowing oxygen gas upward to maintain the hot metal temperature below 1400℃, adding a solid oxygen refining agent at the end of this blowing process, and decarburizing the resulting dephosphorized hot metal. By including the process of refining in furnace 2, a high proportion of scrap is used,
It is characterized by the fact that it consumes less slag making agent and can produce high-quality steel at a low cost. Here, the reason why the hot metal treatment temperature in the dephosphorization furnace is adjusted to 1400℃ or less is that if the hot metal temperature is higher than this, decarburization will proceed and the amount of T.Fe in the slag will decrease, and the dephosphorization rate will decrease. This is because it will get worse. but,
It is also necessary to take into account the fact that "if the temperature is too low, the loss of granular iron to the slag increases", so it is preferable to adjust the temperature to about 1250 to 1400°C. Note that such processing temperature is maintained by blowing oxygen gas from the top blowing lance or by using this in combination with blowing oxygen gas from the bottom tuyere. In other words, it is no exaggeration to say that the oxygen gas injection in the dephosphorization furnace is carried out to ensure the dephosphorization treatment temperature. Therefore, the top blowing oxygen lance here may be a normal converter lance, but it may also be a new small flow rate lance for dephosphorization. The amount of oxygen gas blown in is determined by the temperature of the hot metal before treatment, the silicon content, the temperature of the converter slag, the warmth of the dephosphorization furnace, the target temperature of the hot metal to be treated, etc., but is approximately 2.0Nm 3 / It should be less than min・t, usually 0.5~
1.0Nm 3 /min·t is sufficient. The reason for numerically limiting the width and thickness of scrap to be input as described above is that the melting of scrap in the present invention is performed by "lowering the melting point due to carbon diffusion from hot metal into scrap", so the width and thickness of scrap is This is because if the thickness exceeds 30 mm or the thickness exceeds 15 mm, scrap melting will not be completed within the specified blowing time without tilting the converter, even if the bottom blowing gas agitation is increased. Furthermore, the bottom blowing gas flow rate at this time was set to 0.07Nm 3 /
The value set as min・t or more is 0.07Nm 3 /
If it is less than min・t, the stirring of hot metal will be insufficient,
This is because there is a concern that the scrap will not be completely melted without tilting the converter, and dephosphorization failure will occur due to the reduced contact frequency between the solid oxygen refining agent added for dephosphorization and the hot metal. Figure 2 is a graph showing the relationship between the bottom blowing gas flow rate and the phosphor removal rate in the case of ``with scrap melting'' and ``without scrap melting.'' From Figure 2, when performing scrap melting, the bottom blowing gas flow rate must be adjusted.
It can be seen that it is preferable to set it to 0.07Nm 3 /min·t or more. In addition, even if the amount of solid oxygen refining agent (iron ore, etc.) added is small, the bottom blowing gas flow rate can be reduced to 0.07Nm 3 /
The reason why the desired dephosphorization rate is maintained by setting it to min·t or more is that sufficient contact between the refining agent and the hot metal can be achieved by strengthening the stirring force. Stirring gases blown from the bottom of the furnace include Ar, CO 2 ,
It may be any of CO, N 2 , O 2 , air, etc. Also, the "solid oxygen refining agent" mentioned here is a refining agent (dephosphorizing agent) containing iron oxide such as iron ore and scale.
refers to The reason why we decided to add the additional solid oxygen refining agent at the end of the dephosphorization blowing process is because if we add the solid oxygen refining agent in the middle of the dephosphorization blowing process as usual, it would be difficult to add the solid oxygen refining agent at the end of the dephosphorization blowing process. This is because there is a possibility that the dephosphorization effect will not be fully exerted due to the influence. On the other hand, if it is added at the final stage of blowing, the P distribution can be maintained in a favorable state due to the effects of "lowering the temperature of the overlying slag" and "increasing the oxygen potential in the slag at the final stage of blowing". Dephosphorization is complete. The "final stage of dephosphorization blowing" refers to the period from 3 minutes before the end of dephosphorization blowing to 1 minute after the end (during rinsing), and the solid oxygen refining agent is added several times during this period. It is best to add it in divided doses. Figure 3 is a graph showing the relationship between the time of input of solid oxygen refining agent (iron ore) and the dephosphorization rate in dephosphorization furnace refining, and from this figure, the time of input is considered to be the final stage of blowing. It can be seen that this significantly improves the dephosphorization rate of hot metal. Figure 4 is a graph showing the change trend of the dephosphorization rate according to the amount of solid oxygen refining agent (iron ore) input. It has been clearly shown that the results are improved. By the way, as the above-mentioned "converter type furnace with both upper and lower blowing functions", the currently used "top and bottom blowing combined blowing converter" is most preferable, but especially for dephosphorization furnaces, the refining conditions are Since it is milder than a furnace, the furnace itself can be made even smaller, so even if a new one is built specifically for dephosphorization, there will not be much of an impact on the cost. The main component of the refining agent in the dephosphorization furnace is the converter slag generated in the decarburization furnace, but in addition to this converter slag, the aforementioned iron oxide (solid oxygen refining agent) is used as a basic subcomponent. It is also preferable to include fluorite. For example, it is recommended that the composition be comprised of converter slag: 40 to 80% by weight, iron oxide: 20 to 60% by weight, and fluorite: 0 to 20% by weight. Of course, it is not limited to this, but it is possible to convert converter slag into slag to produce dephosphorization slag with a low melting point, or to increase the oxidizing power of slag so that dephosphorization can proceed easily. The concomitant use of these drugs is extremely important. However, in the present invention, as described above, a part of the solid oxygen testing agent (iron oxide content refining agent such as iron ore and scale) is added at the final stage of dephosphorization blowing. In addition to the above-mentioned refining agents in the dephosphorization furnace, quicklime, dolomite, or limestone may be additionally blended, or manganese ore or ferromanganese ore may be blended to improve the hot metal [Mn]. It's okay. Fluorite is commonly used as a solvent, but Na 2 O,
SiO 2 , CaCl 2 , Na 2 CO 3 and the like may be used alone or in combination with fluorite. The amount of refining agent used in the dephosphorization furnace is determined by the [P] level of the steel to be melted, but is usually between 30 and 60.
Kg/t is sufficient. By the way, as the converter slag, which is the main component of the refining agent used in the dephosphorization furnace, molten slag generated in the decarburization furnace is preferable from the viewpoint of thermoeconomics and slag formation of the dephosphorization flux. (If the molten material is used in this way, it is poured into the dephosphorization furnace through a pot lined with refractory material.) Considering ease of handling, etc., the material obtained in the decarburization furnace is used. It may be used after being once cooled and solidified and then crushed into granules or chunks. However, in this case, the smaller the particle size is, the better it is in order to improve the slag formation in the dephosphorization furnace, but since the converter slag is inherently highly slag formation, the particle size is 100 mm.
Even if it is smaller than this, no particular inconvenience will occur, and even if it is larger than this, it can be used. The timing of the converter slag to be used is preferably one that has been previously charged, but it goes without saying that it may also be one that has been taken out of the decarburization furnace before that, or one that was generated in another improved decarburization furnace. When dephosphorization is performed under the above conditions, usually
Within 20 minutes, ``dissolution of scrap up to about 5.0% in proportion to hot metal'' and ``desired dephosphorization or dephosphorization and desulfurization'' can be completed. Blowing in a decarburizing furnace is basically the same as blowing ordinary hot metal that has been dephosphorized and desulfurized outside the furnace. For this purpose, manganese ore or ferromanganese ore can also be added in addition to slag-forming agents mainly composed of quicklime and dolomite. By the way, FIG. 5 diagrammatically shows a preferred example of the steel manufacturing process according to the present invention, which will be described below. First step: Hot metal (which may be either desulfurized hot metal or undesulfurized hot metal) after being tapped in the blast furnace is poured into a dephosphorization furnace. 2nd step: Charge the converter slag to be used as a dephosphorizing agent, and also charge the scrap. Third step: Taking into consideration the amount of hot metal [Si] and the amount of converter slag, a solvent is introduced to achieve a predetermined basicity and blowing is performed. Fourth step: In order to prevent dephosphorization from worsening, iron ore is dispensed at the final stage of blowing (including rinsing) to adjust the temperature. Fifth step: The dephosphorized pig iron discharged from the dephosphorization furnace is poured into the decarburization furnace and refined. <Function> As described above, the present invention is characterized in that one of the two converter type furnaces having both upper and lower blowing functions is used as a dephosphorization furnace.
The other side is used as a decarburization furnace to refine hot metal with less consumption of slag-forming agent, and the strong stirring of the combined blowing furnace is used.
This makes it possible to use scrap raw materials in dephosphorization furnace refining without adversely affecting the dephosphorization rate. In other words, as mentioned above, the mechanism of dissolving scrap at low temperature in the present invention is explained in FIG. In other words, when scrap is thrown into hot metal,
As shown in Figure 5, due to the diffusion of [C] in the hot metal, the carbon concentration at the interface between the scrap (steel) and the hot metal increased, and the liquidus temperature at this area decreased to the temperature of the surrounding hot metal. Lysis occurs at this point.
As this phenomenon progresses, scrap dissolution at low temperature is completed. According to experiments, the speed of scrap melting in a composite blowing furnace is approximately 0.75 mm/min, and if the dimensions are within 30 mm in width and 15 mm in thickness, it will be completely melted within the dephosphorization blowing time. This has been confirmed. However, when scrap is put into the dephosphorization furnace for melting, iron ore (solid oxygen) is used as a dephosphorizing agent (refining agent) to prevent the temperature of the hot metal from dropping.
The amount had to be reduced, and there were concerns that the dephosphorization rate would decrease, but the bottom blowing gas flow rate was set to a sufficient level (0.07Nm 3 /min・
t or more), if the frequency of contact between slag and metal is increased by vigorously stirring the hot metal, the dephosphorization rate will not decrease so much, and in addition to this measure to ensure the dephosphorization rate, When iron ore (solid oxygen) is added to the slag, the temperature of the overlying slag decreases and the oxygen potential in the slag increases, further improving the dephosphorization rate. This made it possible to dissolve scrap into hot metal without any problems. Next, the present invention will be explained in more detail through Examples and in comparison with Comparative Examples. <Example> First, blast furnace hot metal having a composition within the range shown in Table 1 was poured into a "250 ton upper and lower double blowing combined blowing converter used as a dephosphorization furnace", and with the exception of three cases, Scrap having the dimensions shown in Table 2 was input and dephosphorization blowing was carried out under the conditions shown in Table 3. The results of this blowing are also shown in Table 3. As is clear from the blowing results in the dephosphorization furnace shown in Table 3, it goes without saying that no unmelted scrap was left when blowing was carried out under the conditions specified in the present invention. It can be seen that while no phosphorus defects occurred, in the "comparative example" in which the size of the scrap was large and the bottom blowing gas flow rate was small, undissolved scraps and dephosphorization defects occurred. Then, the hot metal that has been refined in the dephosphorization furnace as specified in the present invention is used as a “decarburization furnace.”
When iron was poured into a 250-ton upper and lower double blowing combined blowing converter and decarburization blowing was carried out, it was found that a satisfactorily low phosphorous steel was produced.
【表】【table】
【表】【table】
【表】
(注) *印は、本発明で規定する条件から外れている
ことを示す。
を得ることができた。
この結果、本発明で規定する条件通りに溶銑の
処理を行うと、全製鋼工程で消費される生石灰量
が極めて少なく、しかもスクラツプ添加の故に低
燐鋼を溶銑率低く安定溶製できることが確認され
た。
〈効果の総括〉
以上に説明した如く、この発明によれば、造滓
剤の消費量や高炉銑の使用割合を少なくし、しか
も脱燐不良を生じることなく、高品質の鋼を低コ
ストで能率良く溶製することが可能となるなど、
産業上極めて有用な効果がもたらされる。[Table] (Note) * indicates that the conditions are outside the conditions specified in the present invention.
was able to obtain. As a result, it was confirmed that when hot metal is treated according to the conditions specified in the present invention, the amount of quicklime consumed in the entire steelmaking process is extremely small, and because of the addition of scrap, low-phosphorus steel can be stably produced at a low hot metal rate. Ta. <Summary of Effects> As explained above, according to the present invention, high-quality steel can be produced at low cost by reducing the amount of slag-forming agent consumed and the proportion of blast furnace pig iron used, and without causing dephosphorization defects. Efficient melting becomes possible, etc.
Industrially extremely useful effects are brought about.
第1図は、本発明プロセスの概念図である。第
2図は、底吹きガス流量と脱燐率との関係を示し
たグラフである。第3図は、固体酸素精錬剤(鉄
鉱石)の添加時期と脱燐率の関係を示すグラフで
ある。第4図は、固体酸素精錬剤(鉄鉱石)の添
加量に応じた脱燐率変化傾向を示すグラフであ
る。第5図は、本発明に従つた処理工程例の説明
図である。第6図は、スクラツプの溶解機構を模
式的に説明した図面である。第7図は、先に提案
した製鋼法に係るプロセスの概念図である。
図面において、1……脱燐炉、2……脱炭炉、
3……溶銑、4……転炉滓、4′……転炉滓を主
成分とする脱燐スラグ、5……撹拌ガス吹込みノ
ズル、6……ランス。
FIG. 1 is a conceptual diagram of the process of the present invention. FIG. 2 is a graph showing the relationship between the bottom blowing gas flow rate and the dephosphorization rate. FIG. 3 is a graph showing the relationship between the addition timing of the solid oxygen refining agent (iron ore) and the dephosphorization rate. FIG. 4 is a graph showing a change in dephosphorization rate depending on the amount of solid oxygen refining agent (iron ore) added. FIG. 5 is an explanatory diagram of an example of a processing step according to the present invention. FIG. 6 is a diagram schematically explaining the scrap dissolution mechanism. FIG. 7 is a conceptual diagram of the process related to the steel manufacturing method proposed earlier. In the drawings, 1... dephosphorization furnace, 2... decarburization furnace,
3...Hot metal, 4...Converter slag, 4'...Dephosphorization slag mainly composed of converter slag, 5...Stirring gas injection nozzle, 6...Lance.
Claims (1)
のうちの一方を脱燐炉、他方を脱炭炉として溶銑
の精錬を行う製鋼方法であつて、溶銑を前記脱燐
炉内へ注入した後、これに前記脱炭炉で発生した
転炉滓を主成分とする精錬剤と幅が30mm以下で厚
さが15mm以下の軽量スクラツプとを添加し、吹き
込みガス流量:0.07Nm3/min・t以上で底吹き
ガス撹拌を行いつつ酸素ガスを上吹きして溶銑温
度を1400℃以下に保ちながら吹錬を行い、この吹
錬の末期に固体酸素精錬剤を添加する溶銑脱燐工
程と、得られた脱燐溶銑を脱炭炉にて精錬する工
程とを含んで成ることを特徴とする製鋼法。1. A steelmaking method in which hot metal is refined by using one of two converter-type furnaces having upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, and in which the hot metal is introduced into the dephosphorization furnace. After injecting, a refining agent mainly composed of converter slag generated in the decarburization furnace and lightweight scrap with a width of 30 mm or less and a thickness of 15 mm or less were added, and the blowing gas flow rate was 0.07 Nm 3 / A hot metal dephosphorization process in which blowing is performed while bottom blowing gas is stirred at min・t or more while oxygen gas is blown upward to maintain the hot metal temperature below 1400℃, and a solid oxygen refining agent is added at the end of this blowing. and a step of refining the obtained dephosphorized hot metal in a decarburization furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62304446A JPH01147011A (en) | 1987-12-03 | 1987-12-03 | Steelmaking method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62304446A JPH01147011A (en) | 1987-12-03 | 1987-12-03 | Steelmaking method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01147011A JPH01147011A (en) | 1989-06-08 |
JPH0437135B2 true JPH0437135B2 (en) | 1992-06-18 |
Family
ID=17933108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62304446A Granted JPH01147011A (en) | 1987-12-03 | 1987-12-03 | Steelmaking method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01147011A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5230062B2 (en) * | 2005-08-04 | 2013-07-10 | 株式会社神戸製鋼所 | Operation method of converter facilities |
JP4894325B2 (en) * | 2006-03-31 | 2012-03-14 | Jfeスチール株式会社 | Hot metal dephosphorization method |
JP2012031452A (en) * | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | Method of dephosphorizing hot metal |
JP2013047371A (en) * | 2011-07-27 | 2013-03-07 | Jfe Steel Corp | Method for refining molten iron |
BR112015008720B1 (en) * | 2012-10-30 | 2020-02-11 | Jfe Steel Corporation | METHOD FOR REFINING HOT METAL |
-
1987
- 1987-12-03 JP JP62304446A patent/JPH01147011A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01147011A (en) | 1989-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6693536B2 (en) | Converter steelmaking method | |
JP3557910B2 (en) | Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method | |
JPH0437132B2 (en) | ||
JPH0437135B2 (en) | ||
WO2003029498A1 (en) | Method for pretreatment of molten iron and method for refining | |
JP3458890B2 (en) | Hot metal refining method | |
JPH11323420A (en) | Pretreating method for molten iron | |
JPH0557327B2 (en) | ||
JPH0297611A (en) | Method for melting cold iron source | |
JP3194212B2 (en) | Converter steelmaking method | |
JP2587286B2 (en) | Steelmaking method | |
JP7211557B2 (en) | Molten iron smelting method | |
JP2004010935A (en) | Method for manufacturing molten steel | |
JPS6393813A (en) | Steel making method | |
JPS6247417A (en) | Melt refining method for scrap | |
JPH0214404B2 (en) | ||
JP2842185B2 (en) | Method for producing molten stainless steel by smelting reduction | |
JPH0641608B2 (en) | Two-stage countercurrent refining steelmaking process using compound converter | |
JPH0433844B2 (en) | ||
JPH0437137B2 (en) | ||
JP2755027B2 (en) | Steelmaking method | |
JP2004307941A (en) | Method for dephosphorizing molten iron using converter-type vessel | |
JPH01142009A (en) | Steel making method | |
JPH02182820A (en) | Refining method for increasing mn-content in molten steel in converter | |
JPH032312A (en) | Production of low-phosphorus pig iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 16 |