JP2842185B2 - Method for producing molten stainless steel by smelting reduction - Google Patents

Method for producing molten stainless steel by smelting reduction

Info

Publication number
JP2842185B2
JP2842185B2 JP32163093A JP32163093A JP2842185B2 JP 2842185 B2 JP2842185 B2 JP 2842185B2 JP 32163093 A JP32163093 A JP 32163093A JP 32163093 A JP32163093 A JP 32163093A JP 2842185 B2 JP2842185 B2 JP 2842185B2
Authority
JP
Japan
Prior art keywords
hot metal
smelting
blowing
smelting reduction
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32163093A
Other languages
Japanese (ja)
Other versions
JPH0711321A (en
Inventor
治良 田辺
千尋 滝
敦 渡辺
秀昭 水上
英夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP32163093A priority Critical patent/JP2842185B2/en
Publication of JPH0711321A publication Critical patent/JPH0711321A/en
Application granted granted Critical
Publication of JP2842185B2 publication Critical patent/JP2842185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は炭材を燃料及び還元材
として用い、溶銑と共にNi鉱石及びCr鉱石,半還元
クロムペレット等を転炉型製錬炉内において溶融還元
し、ステンレス溶湯を得る溶融還元によるステンレス溶
湯の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a carbonaceous material as a fuel and a reducing agent, and melts and reduces Ni ore, Cr ore, semi-reduced chromium pellets, etc. together with hot metal in a converter type smelting furnace to obtain a molten stainless steel. The present invention relates to a method for producing molten stainless steel by smelting reduction.

【0002】[0002]

【従来の技術】従来、ステンレス鋼の溶製は、スクラッ
プ、FeCr、FeNi等の合金鉄又は電解法によるN
i等の原料を電気炉或いは転炉で再溶解することにより
行われていた。この方法によると、ステンレス鋼の主要
成分であるCr,Niは予め電気炉等で還元された合金
鉄を原料としており、高価な電気エネルギ−を使用して
いるため、経済的な方法ではない。このような観点から
より経済的にステンレス鋼を製造する方法としてCr源
としてCr鉱石を用い、これを転炉またはその他の溶解
炉において溶融還元する方法が提案されている。
2. Description of the Related Art Conventionally, stainless steel is melted by scrap, alloyed iron such as FeCr or FeNi, or N 2 by an electrolytic method.
This has been done by re-melting raw materials such as i in an electric furnace or a converter. According to this method, Cr and Ni, which are the main components of stainless steel, are made of ferro-alloy reduced in advance in an electric furnace or the like and use expensive electric energy, so that they are not economical. From such a viewpoint, there has been proposed a method for producing stainless steel more economically by using Cr ore as a Cr source and smelting and reducing it in a converter or other melting furnace.

【0003】一方、Ni源として安価原料を使用する方
法は、FeNi溶解費の低減を目的とした電気炉におけ
るFeNi溶湯の直接使用[鉄と鋼、69(1983)
7,p.59]、転炉におけるニッケルマットの溶融還
元(特開昭58−104153号公報)或いはニッケル
酸化物に炭材を混合、成型したものを加熱して予備還元
する方法(特開昭60−36613号公報)等がある。
一方、Cr源としてCr鉱石を用い、これを転炉又はそ
の他の溶解炉において溶融還元する方法がいくつか提案
されている。例えば、ランスからの酸素上吹きと共に、
底吹き羽口から酸素、横吹き羽口から窒素を夫々吹き込
む方法、或いはランスからの酸素上吹きと共に、底吹き
羽口から酸素、横吹き羽口から酸素及び窒素を夫々吹き
込む方法が知られている。例えば、後者の例としては特
開昭61−279608号公報をあげることができる。
On the other hand, a method of using inexpensive raw materials as a Ni source is to directly use molten FeNi in an electric furnace for the purpose of reducing FeNi melting cost [Iron and Steel, 69 (1983)
7, p. 59], a method of melting and reducing nickel matte in a converter (Japanese Patent Laid-Open No. 58-104153) or a method of preliminarily reducing a nickel oxide mixed with a carbon material and heating the mixture (JP-A-60-36613). Gazette).
On the other hand, several methods have been proposed in which Cr ore is used as a Cr source and is melt-reduced in a converter or other melting furnace. For example, with oxygen blowing from a lance,
It is known to blow oxygen from the bottom tuyere and nitrogen from the side tuyere, or to blow oxygen from the bottom tuyere, and oxygen and nitrogen from the horizontal tuyere together with oxygen from the lance. I have. For example, JP-A-61-279608 can be cited as an example of the latter.

【0004】しかしながら、従来の含Ni溶湯の製造法
は、いずれもNi鉱石を直接溶解炉に装入して溶融還元
するものではない。Ni鉱石は、Ni成分が2〜3重量
%と低いので、Ni鉱石重量の約70%はスラグとなる
ので、溶融還元においては多量のスラグを発生する。従
って、所定のNi濃度の溶湯を得ようとすると、多量の
スラグが発生する。例えば、8%含Ni溶湯を得る場合
は溶湯ton 当たり2〜3ton のスラグが発生する。これ
に伴って、 (1) 溶融還元の工程で還元材、または熱源として装入
する酸素と炭材により発生する反応ガスによってスロッ
ピング(炉口からのメタル粒を含むスラグ塊の飛散)が
発生し易く、定常的な操業が困難となり、操業が不安定
となる虞があり、さらには (2) 上記スロッピングに伴う設備機器の損傷 (3) 上記スロッピングに伴うNi歩留まりの低下が顕
著になる。
[0004] However, none of the conventional methods for producing a molten Ni-containing metal melt the Ni ore directly into a smelting furnace for smelting reduction. Since the Ni ore has a low Ni content of 2 to 3% by weight, about 70% of the Ni ore weight becomes slag, so that a large amount of slag is generated in the smelting reduction. Therefore, a large amount of slag is generated when trying to obtain a molten metal having a predetermined Ni concentration. For example, when 8% Ni-containing molten metal is obtained, 2-3 tons of slag are generated per ton of molten metal. Along with this, (1) Slopping (scattering of slag lump including metal particles from the furnace port) is generated by the reactant gas generated by the reducing agent or the oxygen and carbon material charged as a heat source during the smelting reduction process. It is difficult to perform regular operation, and there is a risk that the operation may become unstable. (2) Damage to equipment due to the above-mentioned slopping (3) Reduction of Ni yield due to the above-mentioned slopping is remarkable Become.

【0005】こうした問題があるため、前述の従来技術
では、Ni源としてNi鉱石を直接製錬炉に装入せず、
何等かの予備処理をして含有Ni成分の割合を増加させ
たものを用いている。以上のような理由から特開平2−
221336号公報では、多量のスラグの発生にも拘ら
ず、安定した操業を行うことが出来、スロッピングに伴
う設備機器の損傷、Ni歩留まりの低下等の問題が解消
出来るNi鉱石の溶融還元法を提供している。その方法
によるNi鉱石の溶融還元法は、Ni鉱石を炭材、造滓
剤とともに製錬炉に装入し、脱炭用および2次燃焼用ノ
ズルを有する上吹き酸素ランスから酸素を吹き込むと共
に、該製錬炉の炉底に設けられた底吹き羽口から攪拌ガ
スを吹き込んでNi鉱石を溶融還元する方法である。そ
して該製錬炉内の2次燃焼比 (H2 O+CO2 )/(H2 +H2 O+CO+CO2 ) を0.3以上とすることを特徴とするものである。
[0005] Because of these problems, in the above-mentioned conventional technique, Ni ore as a Ni source is not directly charged into a smelting furnace,
What used the thing which increased the ratio of the contained Ni component by performing some pre-processing is used. For the reasons described above,
Japanese Patent No. 221336 discloses a method for smelting and reducing Ni ore that can stably operate despite the generation of a large amount of slag, and can solve problems such as damage to equipment and equipment caused by slopping and a decrease in Ni yield. providing. In the smelting reduction method of Ni ore by the method, Ni ore is charged into a smelting furnace together with a carbonaceous material and a slag-making agent, and oxygen is blown from a top-blown oxygen lance having nozzles for decarburization and secondary combustion, This is a method in which a stirring gas is blown from a bottom blowing tuyere provided at the furnace bottom of the smelting furnace to melt and reduce Ni ore. The secondary combustion ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) in the smelting furnace is 0.3 or more.

【0006】この方法によれば、溶湯中の[C]は、脱
炭用酸素によってCOガスとなって脱炭されるが、この
COガスは2次燃焼用酸素によってCO2 ガスとなる。
この脱炭および2次燃焼の反応熱が溶融還元の主たる熱
源であり、製錬炉からの排出ガスの上式で示される酸化
度が大きいほど発生熱が増大する。これにともなって製
錬炉に投入する炭材を低減することができ、従ってスロ
ッピングの発生要因であるCO、CO2 ガスが低減され
るので、スロッピングの発生頻度は顕著に低減される。
According to this method, [C] in the molten metal is decarbonized as CO gas by oxygen for decarburization, and this CO gas is converted to CO 2 gas by oxygen for secondary combustion.
The reaction heat of the decarburization and the secondary combustion is the main heat source of the smelting reduction, and the generated heat increases as the degree of oxidation of the exhaust gas from the smelting furnace, which is represented by the above equation, increases. Accordingly, it is possible to reduce the amount of carbon material to be supplied to the smelting furnace, and therefore, CO and CO 2 gas, which are factors causing the occurrence of the slopping, are reduced, so that the frequency of the occurrence of the slopping is remarkably reduced.

【0007】また特開平2−274804号公報では、
前述の方法でNi溶融還元した含Ni溶銑を得た後、引
き続いて排滓して石灰、蛍石、珪石及び炭材を装入して
脱硫する工程により脱燐・脱硫された含Ni溶湯を得た
後、製錬炉にCr原料を炭材、造滓剤とともに製錬炉に
装入し、上吹酸素ランスからの送酸及び底吹羽口からの
攪拌ガスによる攪拌によりCr鉱石を溶融還元すること
を特徴とするNi・Cr溶湯の製造方法を提案してい
る。
In Japanese Patent Application Laid-Open No. 2-274804,
After obtaining Ni-containing hot metal melted and reduced by the above-described method, the molten Ni-containing molten metal which has been dephosphorized and desulfurized by the process of discharging lime, fluorite, silica stone and carbonaceous material and desulfurizing the molten metal is obtained. After that, the Cr raw material is charged into the smelting furnace together with the carbon material and the slag-making agent into the smelting furnace, and the Cr ore is melted by acid supply from the top blowing oxygen lance and stirring by the stirring gas from the bottom blowing tuyere. A method for producing a Ni / Cr molten metal characterized by reduction is proposed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記特
開平2−221336号公報並びに特開平2−2748
04号公報において含Ni・Cr溶湯を製造する場合に
も以下のような問題がある。即ち、一般に溶融還元に用
いられるような製錬炉で使用される炉体耐火物として
は、例えばマグカーボン,マグクロレンガ等のマグネシ
ア系レンガが考えられるが、Ni溶融還元が長時間処理
となることから、高二次燃焼(高スラグ温度)では (1) MgOのスラグ中への溶出 (2) スラグ中のFeOとの反応による(酸化)溶出 (3) MgO−Cの高温でのマグカーボン(還元)反応 等により炉体損耗が無視できなくなる。また、二次燃焼
による熱効率アップ、スロッピング対策のために底吹き
を強化すると、スピッティング(炉口からの細かいメタ
ル粒の飛散)の発生が大となり、その結果メタルロスの
問題が実生産では無視できなくなる。
However, Japanese Patent Application Laid-Open Nos. 2-221336 and 2-2748 describe the above.
In the production of a molten Ni / Cr alloy in Japanese Patent Publication No. 04, there are the following problems. That is, as a furnace body refractory used in a smelting furnace generally used for smelting reduction, for example, magnesia bricks such as mag carbon and magcro brick can be considered, but since Ni smelting reduction is a long-term treatment, In high secondary combustion (high slag temperature), (1) elution of MgO into slag (2) elution (oxidation) due to reaction with FeO in slag (3) magcarbon (reduction) of MgO-C at high temperature Furnace body wear cannot be ignored due to reactions and the like. In addition, if bottom blowing is strengthened to increase thermal efficiency and countermeasures against slopping due to secondary combustion, spitting (dispersion of fine metal particles from the furnace opening) will increase, and as a result, the problem of metal loss will be ignored in actual production become unable.

【0009】本発明は、かかる事情に鑑みてなされたも
ので、炉体レンガ損耗の問題を克服し、底吹きガスに起
因するスピッティングの問題が無く、かつ、スロッピン
グが無く安定したNi鉱石の溶融還元操業を行うことが
でき、溶融還元による低燐・低硫のステンレス溶湯の製
造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and overcomes the problem of furnace body brick wear, has no problem of spitting caused by bottom blown gas, and has a stable Ni ore without slopping. It is an object of the present invention to provide a method for producing a low-phosphorus and low-sulfur molten stainless steel by smelting reduction.

【0010】[0010]

【課題を解決するための手段】本発明者らは、Ni鉱石
の直接溶融還元に関して鋭意研究を重ね、炉体レンガ損
耗や操業の安定性に関して後述する知見を得て本発明を
完成したものである。即ち、本発明の第1は、上吹酸素
ランス、底吹及び/又は横吹羽口を備えた転炉型製錬炉
において、 (1) a. 溶銑を装入し、これにNi鉱石を炭材と共に該
製錬炉に装入する工程 b. 上吹酸素ランスから酸素を吹込む工程 c. 底吹及び/又は横吹羽口からN2 又はAr,COな
どの攪拌ガスを吹込み攪拌する工程 d. 排滓して含Ni溶銑を得る工程から成るNiの溶融
還元工程、次いで (2) 前記含Ni溶銑に媒溶剤、酸素源、及び/又は
炭材を添加することにより脱燐・脱硫溶銑を得る脱燐・
脱硫工程、次いで (3) a. 前記脱燐・脱硫溶銑にCr鉱石、半還元クロム
ペレット等を媒溶剤、炭材と共に装入する工程 b. 上吹酸素ランスから酸素を吹込む工程 c. 底吹及び/又は横吹羽口からN2 又はAr,COな
どの攪拌ガスを吹込み攪拌する工程 d. 排滓して含Ni・Cr溶銑を得る工程から成るCr
の溶融還元工程、次いで (4) 含Ni・Cr溶銑を脱炭する脱炭工程の (1)〜(4)
工程からなり、更に前記Niの還元工程において下式
にて示される二次燃焼比 (H2 O+CO2 )/(H2 +H2 O+CO+CO2 ) を0.3未満に保持することを特徴とする溶融還元によ
るステンレス溶湯の製造方法である。
Means for Solving the Problems The present inventors have conducted intensive studies on the direct smelting reduction of Ni ore, and have completed the present invention based on the knowledge described below regarding furnace body brick wear and operation stability. is there. That is, a first aspect of the present invention is to provide a converter type smelting furnace provided with a top blowing oxygen lance, a bottom blowing and / or a side blowing tuyere. (1) a. B. A step of injecting oxygen from a top-blown oxygen lance c. A step of blowing and stirring a stirring gas such as N 2 or Ar, CO from a bottom-blowing and / or side-blowing tuyere. d. A smelting and reducing step of Ni comprising a step of obtaining molten Ni-containing hot metal by discharging the slag, and then (2) a dephosphorizing / desulfurizing hot metal by adding a medium solvent, an oxygen source, and / or a carbon material to the molten Ni-containing hot metal. Dephosphorization to get
Desulfurization step, then (3) a. Step of charging Cr ore, semi-reduced chromium pellets, etc. with medium solvent and carbon material to the dephosphorized / desulfurized hot metal b. Step of injecting oxygen from top-blown oxygen lance c. Bottom Step of blowing and / or stirring a stirring gas such as N 2 or Ar, CO from a blowing and / or side blowing tuyere. D. Cr comprising a step of obtaining molten Ni-Cr hot metal by discharging slag
(1) to (4) of the decarburization step of decarburizing Ni-Cr-containing hot metal
Melting, wherein the secondary combustion ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) represented by the following formula is maintained at less than 0.3 in the Ni reduction step: This is a method for producing a molten stainless steel by reduction.

【0011】また本発明の第2は、前述の本発明の第1
のNiの溶融還元工程において、排滓して取鍋に出湯
後、含Ni溶銑を得て、次いで取鍋にて又は得られた含
Ni溶銑を別の製錬炉に移し、その製錬炉にて第1発明
と同様の脱燐・脱硫工程を行い、次いで脱燐・脱硫溶銑
をNiの溶融還元工程の製錬炉に戻し、第1発明と同様
のCr溶融還元工程を行い含Ni・Cr溶銑を得て、次
いで脱炭する工程からなり、更に前記Niの溶融還元に
おいて上式にて示される二次燃焼比が第1発明と同様に
0.3未満に保持することを特徴とする溶融還元による
ステンレス溶湯の製造方法である。更に、本発明の第3
は、本発明の第1又は第2の含Ni・Cr溶銑を得た
後、全量を炉外に出湯し、完全に排滓した後、再び初め
の製錬炉に戻し、含Ni・Cr溶銑を脱炭することを特
徴とする溶融還元によるステンレス溶湯の製造方法であ
り、次に、本発明の第4は、本発明の第1又は第2にお
いて、脱燐・脱硫工程を省略することを特徴とする溶融
還元によるステンレス溶湯の製造方法であり、また本発
明の第5〜第7は、上述のNi溶融還元工程において、 (1)スラグ温度を1580℃以下に調節すること (2)スラグ中のT.Feを10重量%以下に保持するこ
と (3)底吹及び/又は横吹羽口からの攪拌ガス流量を0.
1〜1.0Nm3 /min.ton に調節すること を特徴とする溶融還元によるステンレス溶湯の製造方法
である。
The second aspect of the present invention is the first aspect of the present invention.
In the Ni smelting reduction step, after the molten metal is discharged to a ladle to obtain molten iron containing Ni, then the molten iron containing Ni obtained in the ladle or is transferred to another smelting furnace, and the smelting furnace Performs the same dephosphorization and desulfurization step as in the first invention, then returns the dephosphorized and desulfurized hot metal to the smelting furnace in the smelting reduction step of Ni, and performs the same smelting reduction step of Cr as in the first invention to include Ni. A step of obtaining Cr hot metal and then decarburizing, and further maintaining the secondary combustion ratio represented by the above formula in the smelting reduction of Ni at less than 0.3 as in the first invention. This is a method for producing molten stainless steel by smelting reduction. Further, the third aspect of the present invention
After obtaining the first or second Ni-Cr hot metal containing iron of the present invention, the whole amount is taken out of the furnace, completely discharged, and then returned to the first smelting furnace again, where the hot metal containing Ni-Cr hot metal is returned. Is a method for producing a molten stainless steel by smelting reduction, which is characterized by decarburizing, and a fourth aspect of the present invention is to omit the dephosphorization / desulfurization step in the first or second aspect of the present invention. A method for producing a molten stainless steel by smelting reduction, which is characterized in that the slag temperature is adjusted to 1580 ° C. or lower in the Ni smelting reduction step described above. T. in Fe should be kept at 10% by weight or less. (3) The stirring gas flow rate from the bottom and / or side blowing tuyere should be 0.
A method for producing molten stainless steel by smelting reduction, wherein the method is adjusted to 1 to 1.0 Nm 3 /min.ton.

【0012】[0012]

【作用】本発明は、前述の如く、上吹酸素ランス、底吹
及び/又は横吹羽口を備えた転炉型製錬炉において、先
ず溶銑を装入し、これにNi鉱石を炭素材と共に該製錬
炉に装入して溶融還元するに当たって下式にて示される
二次燃焼比 (H2 O+CO2 )/(H2 +H2 O+CO+CO2 ) を0.3未満に保持すること、即ち、排ガスの酸化度を
下げることにより、反応熱を下げ溶融還元するので製錬
炉の炉体構造物の損耗を少なくしてステンレス溶湯を得
る本願発明の目的を達成するものである。
According to the present invention, as described above, in a converter type smelting furnace provided with a top blowing oxygen lance, a bottom blowing and / or a side blowing tuyere, first, molten iron is charged, and Ni ore and carbon material are added thereto. In charging the smelting furnace and performing smelting reduction, the secondary combustion ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) represented by the following formula is maintained at less than 0.3, It is an object of the present invention to obtain a molten stainless steel by reducing the degree of oxidation of exhaust gas, thereby reducing the heat of reaction and performing smelting reduction, thereby reducing the wear of the furnace body structure of the smelting furnace.

【0013】本発明において、二次燃焼比を0.3未満
に限定した理由は、二次燃焼比を0.3以上にした場
合、後述する図2に示すごとく、スラグ中のMgOを飽
和にコントロ−ルしても、スラグ温度が1600℃以上
にもなり、炉体レンガの損耗が急激に進行する。また二
次燃焼比を0.3以上に高くするためには、酸化度を上
げるための二次燃焼用ノズルを複雑な構造のランスを用
いることが必要となり、そのランスのメンテナンスが困
難となること、さらには高二次燃焼比を一定に維持制御
することが困難である等の操業性に問題が生じ、操業
中、二次燃焼比が安定しないなどの問題があり、短期間
の操業でも二次燃焼比が上昇した時には炉体レンガの損
耗が加速されることがある。以上から二次燃焼比を0.
3未満とした。
In the present invention, the reason why the secondary combustion ratio is limited to less than 0.3 is that when the secondary combustion ratio is set to 0.3 or more, as shown in FIG. 2 described later, MgO in the slag is saturated. Even if it is controlled, the slag temperature becomes 1600 ° C. or more, and the furnace body bricks rapidly wear. In addition, in order to increase the secondary combustion ratio to 0.3 or more, it is necessary to use a lance having a complicated structure for the secondary combustion nozzle for increasing the degree of oxidation, which makes maintenance of the lance difficult. In addition, there are problems in operability such as difficulty in maintaining and controlling the high secondary combustion ratio at a constant level, and problems such as instability of the secondary combustion ratio during operation. When the combustion ratio increases, the wear of the furnace body brick may be accelerated. From the above, the secondary combustion ratio was set to 0.
It was less than 3.

【0014】二次燃焼比を上げると酸化度が高くなるの
で発熱量が増加し、高生産性が確保できるが同時に着熱
効率が低下するためスラグ温度が上昇する。本発明では
着熱効率を考慮してスラグ温度を1580℃以下とし
た。一方、二次燃焼比を下げると排ガス流量が増大し、
スロッピング頻度が高くなる傾向があるが、本発明者は
鋭意実験を行った結果、スロッピング発生が低二次燃焼
比でも抑えられる条件を見出だした。
When the secondary combustion ratio is increased, the degree of oxidation is increased, so that the calorific value is increased, and high productivity can be ensured, but at the same time, the slag temperature rises because the heat transfer efficiency decreases. In the present invention, the slag temperature is set to 1580 ° C. or less in consideration of the heating efficiency. On the other hand, lowering the secondary combustion ratio increases the exhaust gas flow rate,
Although the frequency of slopping tends to increase, the present inventor has conducted intensive experiments and found a condition under which slopping can be suppressed even at a low secondary combustion ratio.

【0015】後述する図3〜図5に示す通り、底吹きガ
ス量が0.1Nm3 /min.ton 以上あれば、スラグ中の
T.Feは10重量%以下に出来、スロッピングを抑え
ることができる。しかし、底吹きガス量が1Nm3 /mi
n.ton を超えると、スラグ中のFeOは低下するものの
スピッティングが激しくなり歩留まりが悪化するので、
底吹ガス量を0.1〜1.0Nm3 /min.ton にするこ
とにより、二次燃焼比が0.3未満でもスロッピング並
びにスピッテングが全く無い操業を達成することができ
た。さらに、スラグ中のT.Feを10%以下と低濃度
にするのはMgO系炉体の保護にも有利な作用を及ぼす
ためである。
As shown in FIGS. 3 to 5, which will be described later, if the amount of bottom blown gas is 0.1 Nm 3 / min. Fe can be reduced to 10% by weight or less, and slopping can be suppressed. However, the bottom blowing gas amount is 1 Nm 3 / mi
If it exceeds n.ton, FeO in the slag decreases, but spitting becomes severe and the yield deteriorates.
By adjusting the amount of bottom blown gas to 0.1 to 1.0 Nm 3 /min.ton, even without a secondary combustion ratio of less than 0.3, an operation without any slopping and spitting could be achieved. Furthermore, T. in slag The reason why the concentration of Fe is as low as 10% or less is to exert an advantageous effect also on protection of the MgO-based furnace body.

【0016】また、得られた含Ni溶銑に関して、排滓
した後、製錬炉に残った湯に又は排滓して取鍋に出湯
後、或るいは別の製錬炉に移し、その製錬炉の湯に、媒
溶剤、酸素源、及び/又は炭材を添加することにより脱
燐・脱硫された含Ni溶銑を得て、充分スラグを除去し
た後、Cr鉱石、半還元クロムペレット等を媒溶剤、炭
材と共に装入し、前記Niの溶融還元工程と同様にして
Crを溶融還元して含Ni・Cr溶銑を得るものであ
る。又、一旦取鍋に出湯して取鍋で又は別の製錬炉で脱
燐・脱硫した場合には、この脱燐・脱硫溶銑を初めの製
錬炉に戻し、これにCr鉱石、半還元クロムペレット等
を媒溶剤、炭材と共に装入し、前記Niの溶融還元工程
と同様にして溶融還元して含Ni・Cr溶銑を得るもの
である。さらに得られたNi・Cr溶銑に関しては排滓
後通常の脱炭を行う。また、同一炉内で排滓すると、特
に多量のスラグの場合、次のような問題がある。 (1)スラグが完全に除去されないため復硫の問題が生ず
る。 (2)多量のスラグを除くときに時間が長くかかるため、 イ.製錬炉を占有する時間が長く生産性を阻害する。 ロ.高温のスラグと炉体が接触する時間が長いため炉体
の損耗が激しい。 以上のために、得られた含Ni・Cr溶銑全量を炉外に
出湯し、完全に排滓した後、再び初めの製錬炉に戻し、
通常の脱炭する、Ni還元−脱燐・脱硫−Cr還元−全
量出湯−排滓−脱炭の工程とすることにより、製錬炉か
らの排滓時間も短縮でき、またこのことにより脱炭時の
Crロス、復硫の問題が解決される。この方法によれば
前述のような復燐、復硫の問題が全くないので、安定し
て低燐・低硫黄濃度の含Ni・Cr溶銑を製造すること
が可能となる。次に実施例により本発明について述べ
る。
The obtained Ni-containing hot metal is drained, and then discharged into hot water remaining in the smelting furnace or discharged into a ladle, and then transferred to another smelting furnace. Addition of a solvent, oxygen source, and / or carbon material to smelting furnace water to obtain dephosphorized and desulfurized Ni-containing hot metal, and after sufficient slag removal, Cr ore, semi-reduced chromium pellets, etc. Is charged together with a solvent and a carbon material, and Cr is melt-reduced in the same manner as in the above-mentioned Ni melt-reduction step to obtain Ni-Cr-containing hot metal. In addition, when the hot water is once poured into the ladle and dephosphorized and desulfurized in the ladle or in another smelting furnace, the dephosphorized and desulfurized hot metal is returned to the first smelting furnace, where the Cr ore, semi-reduced A chromium pellet or the like is charged together with a medium solvent and a carbon material, and is subjected to smelting reduction in the same manner as in the smelting reduction step of Ni to obtain molten iron containing Ni / Cr. Further, with respect to the obtained Ni / Cr hot metal, normal decarburization is performed after slag disposal. Further, when the waste is discharged in the same furnace, there are the following problems, particularly in the case of a large amount of slag. (1) The problem of resulfurization arises because the slag is not completely removed. (2) It takes a long time to remove a large amount of slag. The time required to occupy the smelting furnace is long, which hinders productivity. B. Since the contact time between the high temperature slag and the furnace body is long, the furnace body is severely worn. For the above, the entire amount of the obtained Ni-Cr-containing hot metal was poured out of the furnace, completely discharged, and then returned to the original smelting furnace again.
By performing the normal decarburization process of Ni reduction-phosphorus / desulfurization-Cr reduction-full tapping-drainage-decarburization, the time required for waste from the smelting furnace can be shortened. The problem of Cr loss and resulfurization at the time is solved. According to this method, since there is no problem of rephosphorization and resulfurization as described above, it is possible to stably produce a hot metal containing Ni / Cr having a low phosphorus and low sulfur concentration. Next, the present invention will be described by way of examples.

【0017】[0017]

【実施例】【Example】

[実施例1]図1は、本発明を実施するための態様例で
ある転炉型製錬炉の説明図である。図1において、10
はマグネシア系レンガからなる転炉型製錬炉体、11は
メタル層、12はスラグ浴、21は上吹酸素ランス、2
4は底吹羽口、25は原料であるNi鉱石、炭材または
造滓材を製錬炉に投入するためのホッパー、26は攪拌
ガス、27はスラグ測温体、28は排ガス分析用サンプ
ル口である。なお本実施例において用いられた製錬炉体
10の容量は120ton で送酸量は平均35,000N
3 /Hrである。
[Embodiment 1] FIG. 1 is an explanatory view of a converter type smelting furnace which is an embodiment for carrying out the present invention. In FIG. 1, 10
Is a converter type smelting furnace made of magnesia-based brick, 11 is a metal layer, 12 is a slag bath, 21 is an upper oxygen lance, 2
4 is a bottom tuyere, 25 is a hopper for charging the raw material Ni ore, carbonaceous material or slag material into a smelting furnace, 26 is a stirring gas, 27 is a slag temperature sensor, and 28 is a sample for exhaust gas analysis. Mouth. The capacity of the smelting furnace body 10 used in this embodiment was 120 tons, and the amount of acid supplied was 35,000 N on average.
m 3 / Hr.

【0018】この様な製錬炉体10を用いて、ステンレ
ス溶湯の製造試験をバッチで行った。まず、操業手順に
ついて述べる。 (1)Niの溶融還元工程 最初に製錬炉体10に溶銑(Fe:95重量%)を約5
0ton 装入し、次いで炭材としてコ−クス(F.C:8
7重量%)を装入して上吹酸素ランス21から酸素を吹
き込むことにより、溶湯が1500℃程度に昇温した
後、Ni鉱石の投入を開始する。一方、溶銑が装入され
た時から底吹羽口24が閉塞されないように、底吹羽口
24からN2 又はAr,COなどの攪拌ガス26を吹き
込み、必要に応じてその吹き込み量を増大して溶融還元
反応を起こし、図1に示すように炉体内にメタル層11
とスラグ浴12を生成せしめ、途中2回程度排滓を実施
し4〜5時間後に取鍋に出湯して含Ni溶銑を得る。
Using such a smelting furnace body 10, a production test of molten stainless steel was performed in batches. First, the operation procedure will be described. (1) Melt reduction step of Ni First, molten iron (Fe: 95% by weight)
0 ton, and then coke (FC: 8
(7% by weight), and oxygen is blown from the upper blowing oxygen lance 21 to raise the temperature of the molten metal to about 1500 ° C., and thereafter, charging of Ni ore is started. On the other hand, a stirring gas 26 such as N 2 or Ar or CO is blown from the bottom blowing port 24 so as to prevent the bottom blowing port 24 from being blocked from the time when the hot metal is charged, and the blowing amount is increased as necessary. As a result, a smelting reduction reaction occurs, and as shown in FIG.
And the slag bath 12 is generated, and the slag is discharged about twice in the middle, and after 4 to 5 hours, the molten metal is discharged into a ladle to obtain hot metal containing Ni.

【0019】(2)脱燐・脱硫工程 次に、取鍋中の含Ni溶銑に石灰、蛍石等の媒溶剤、酸
素源としてスケール、及び/又は炭材を装入し、上吹酸
素ランス21から酸素を吹き込むことにより脱燐・脱硫
し、充分スラグを除去し脱燐・脱硫溶銑を得る。尚、排
滓出湯後に、脱燐・脱硫工程を行う場合、脱燐・脱硫工
程を前記 (1)の工程で排滓後、製錬炉に残った含Ni溶
銑に行うことは勿論、又は排滓出湯後、含Ni溶銑を別
の製錬炉に移し、その含Ni溶銑に石灰、蛍石等の媒溶
剤、酸素源としてスケール及び/又は炭材を装入し、上
吹酸素ランスから酸素を吹き込むことにより炉外で脱燐
・脱硫し、充分スラグを除去し脱燐・脱硫溶銑を得ても
よい。 (3)Crの溶融還元工程 次いで、この取鍋で処理した脱燐・脱硫溶銑を或るいは
別の製錬炉で処理した脱燐・脱硫溶銑を製錬炉本体10
に戻し、Cr鉱石、半還元クロムペレット等を媒溶剤、
炭材と共に装入し、前記 (1)Niの溶融還元工程と同様
にして溶融還元して含Ni・Cr溶銑を得る。尚、製錬
炉体10で引続いて処理してもよい。 (4)脱炭工程 得られたNi・Cr溶銑を全量炉外に出湯し完全に排滓
し、再び初めの製錬炉体10に戻し脱炭をする。以上の
ようにしてステンレス溶湯を製造する。
(2) Dephosphorization / desulfurization step Next, a medium solvent such as lime and fluorite and a scale and / or a carbon material as an oxygen source are charged into the Ni-containing hot metal in the ladle, and the upper oxygen lance Dephosphorization and desulfurization are performed by blowing oxygen from 21 to sufficiently remove slag to obtain dephosphorized and desulfurized hot metal. In the case where the dephosphorization / desulfurization step is performed after the discharge of the slag, the dephosphorization / desulfurization step is, of course, performed on the Ni-containing hot metal remaining in the smelting furnace after the slag in the step (1). After the slag is poured, the hot metal containing Ni is transferred to another smelting furnace, and a medium solvent such as lime and fluorite, a scale and / or a carbon material as an oxygen source are charged into the hot metal containing Ni, and oxygen is supplied from an oxygen lance above. To remove dephosphorization and desulfurization outside the furnace to sufficiently remove slag to obtain dephosphorization and desulfurization hot metal. (3) Cr smelting reduction step Next, the dephosphorized and desulfurized hot metal treated in this ladle or dephosphorized and desulfurized hot metal treated in another smelting furnace is converted into smelting furnace body 10.
And return the Cr ore, semi-reduced chromium pellets, etc.
It is charged together with the carbonaceous material and melt-reduced in the same manner as in the above (1) Ni melt-reduction step to obtain molten iron containing Ni / Cr. In addition, you may process continuously with the smelting furnace body 10. (4) Decarburization Step The entire amount of the obtained Ni / Cr hot metal is taken out of the furnace, completely discharged, and returned to the original smelting furnace body 10 again for decarburization. The molten stainless steel is manufactured as described above.

【0020】Niの溶融還元工程における2次燃焼比
(O.D)を求めるには、排ガス分析用サンプル口28
より排ガスをサンプリングして、排ガス分析を行い、H
2 、H2 O及びCO、CO2 濃度を求め、次式に代入し
てO.Dを求める。 O.D=(H2 O+CO2 )/(H2 +H2 O+CO+
CO2 ) この2次燃焼比は、上吹酸素ランス21の高さ及び送酸
量を操作することにより調節し得る。例えば、上吹きラ
ンス21の高さを上げればCO2 濃度は上昇し、反対に
ランスの高さを下げればCO2 濃度は低下し2次燃焼比
は低下する。同様に送酸量の増減によりCO2 濃度は上
下して2次燃焼比も上下する。更に底吹き撹拌ガス量を
上げれば2次燃焼比は逆に下がり、底吹き撹拌ガス量を
下げれば2次燃焼比は上昇する。さらに、スラグ温度の
調節は、該温度をスラグ測温体27により測定し、高い
場合は、鉱石と造滓剤を増加する等して調節する。
In order to determine the secondary combustion ratio (OD) in the smelting reduction step of Ni, the sample port 28 for exhaust gas analysis is used.
Exhaust gas is sampled, exhaust gas is analyzed, and H
2 , H 2 O, CO, and CO 2 concentrations were determined and substituted into Find D. O. D = (H 2 O + CO 2 ) / (H 2 + H 2 O + CO +
CO 2 ) This secondary combustion ratio can be adjusted by manipulating the height of the top blowing oxygen lance 21 and the amount of acid supply. For example, if the height of the upper blowing lance 21 is increased, the CO 2 concentration is increased, and if the height of the lance is decreased, the CO 2 concentration is decreased and the secondary combustion ratio is decreased. Similarly, the CO 2 concentration goes up and down due to the increase and decrease in the amount of acid supply, so that the secondary combustion ratio goes up and down. Further, if the amount of the bottom-blown stirring gas is increased, the secondary combustion ratio will be reduced, and if the amount of the bottom-blown stirring gas is reduced, the secondary combustion ratio will be increased. Further, the slag temperature is adjusted by measuring the temperature with a slag temperature measuring element 27, and if the temperature is high, the ore and the slag-making agent are increased.

【0021】上記のようにして、Ni鉱石の溶融還元を
行った場合に溶湯温度を1520℃とした時の二次燃焼
比と製錬炉体10のMgO−Cレンガの損耗度合いを調
査した。なお、一般に二次燃焼比を上げると発熱量が増
加し、高生産性が確保できるが同時に着熱効率が低下す
るためスラグ温度が上昇するので、スラグ温度も調査し
た。図2は、Ni溶融還元時に溶湯温度を1520℃に
した時の二次燃焼比、スラグ温度とMgO−Cレンガの
損耗指数の関係を示したグラフである。図2から、二次
燃焼比が0.3以上ではスラグ中のMgOを飽和にコン
トロ−ルしても、スラグ温度が1600℃以上にもな
り、炉体の損耗が急激に進行し、二次燃焼比が0.3未
満が好ましいことが判る。またスラグ温度は1580℃
以下に保持することが好ましいことが示されている。ま
た0.3以上の高二次燃焼は、二次燃焼用ノズルを有す
る複雑な構造の上吹き酸素ランスの使用により得られ、
この時のスラグ中のT.Feは全て8重量%以下であっ
た。
As described above, the secondary combustion ratio when the melt temperature was set to 1520 ° C. and the degree of wear of the MgO—C bricks in the smelting furnace body 10 when the smelting reduction of Ni ore was performed were examined. In general, when the secondary combustion ratio is increased, the calorific value increases, and high productivity can be ensured, but at the same time, the slag temperature rises due to a decrease in the heat transfer efficiency. Therefore, the slag temperature was also investigated. FIG. 2 is a graph showing the relationship between the secondary combustion ratio, the slag temperature, and the wear index of the MgO-C brick when the temperature of the molten metal is set to 1520 ° C. during Ni smelting reduction. As can be seen from FIG. 2, when the secondary combustion ratio is 0.3 or more, even if the MgO in the slag is controlled to be saturated, the slag temperature becomes 1600 ° C. or more, and the furnace body rapidly wears out. It turns out that the combustion ratio is preferably less than 0.3. Slag temperature is 1580 ℃
The following shows that it is preferable to hold. High secondary combustion of 0.3 or more is obtained by using an upper-blowing oxygen lance of a complicated structure having a nozzle for secondary combustion,
T. in the slag at this time Fe was 8% by weight or less in all cases.

【0022】一方、二次燃焼比を下げると排ガス流量が
増大し、スロッピング頻度が高くなる傾向があるので、
この点の影響を調べるために2次燃焼比を0.1〜0.
3としてスラグ中のT.Feとスロッピング頻度との関
係を調べるために試験を行った。図3はスラグ中のT.
Fe(重量%)とスロッピング頻度(%)の関係グラフ
である。図3に示す如く、スラグ中のT.Feを10重
量%以下にすることによりスロッピング頻度は著しく少
なくなることが判る。次に、この条件を達成するための
底吹きガス攪拌の影響を調べた。図4は底吹きガス量と
スラグ中T.Fe(重量%)との関係を示したグラフで
ある。図4に示す通り、底吹きガス量が0.1Nm3
min.ton でスラグ中のT.Feが10重量%にコントロ
−ルできており、底吹きガス量はこれ以上であればよい
ことが判る。しかし、1Nm3 /min.ton 以上ではスラ
グ中のFeOは低下するもののスピッティングが激しく
なり歩留まりが悪化する。更に、図4の結果から底吹ガ
ス量のスピッティングに及ぼす影響を調べた。図5は底
吹ガス量(Nm3 /min.ton )とスピッティング指数と
の関係を示したグラフである。以上より、底吹ガス量を
0.1〜1.0Nm3 /min.ton にすることにより二次
燃焼比0.3未満でもスロッピング並びにスピッテング
が全く無い操業を達成することができることが判った。
On the other hand, when the secondary combustion ratio is lowered, the flow rate of exhaust gas increases, and the frequency of slopping tends to increase.
In order to examine the effect of this point, the secondary combustion ratio is set to 0.1 to 0.
As T.3 in slag as A test was conducted to examine the relationship between Fe and the frequency of slopping. FIG.
5 is a graph showing the relationship between Fe (% by weight) and the frequency of slopping (%). As shown in FIG. It can be seen that the frequency of slopping is remarkably reduced by making Fe 10% by weight or less. Next, the effect of bottom-blown gas stirring to achieve this condition was investigated. Fig. 4 shows the amount of bottom blown gas and T.C. It is the graph which showed the relationship with Fe (weight%). As shown in FIG. 4, the amount of bottom blown gas is 0.1 Nm 3 /
T. in slag at min.ton It can be seen that Fe can be controlled to 10% by weight and the amount of bottom blown gas should be more than this. However, at 1 Nm 3 /min.ton or more, FeO in the slag decreases, but spitting becomes severe and the yield deteriorates. Further, the effect of the bottom blowing gas amount on spitting was examined from the results of FIG. FIG. 5 is a graph showing the relationship between the bottom blowing gas amount (Nm 3 /min.ton) and the spitting index. From the above, it was found that an operation without any slopping and spitting can be achieved even when the secondary combustion ratio is less than 0.3 by setting the bottom blown gas amount to 0.1 to 1.0 Nm 3 /min.ton. .

【0023】[実施例2]次に、前述の転炉型製錬炉を
用いて同様な操業手順で4〜5時間のバッチの溶融還元
を行った。Ni溶融還元時の二次燃焼比は前述したよう
に高二次燃焼比では炉体損耗が激しくなるため、二次燃
焼比を0.3未満の範囲に設定する。一方二次燃焼比が
0.3未満では前述したようにスロツピングの発生が問
題になるので、前述の図3よりスラグ中のT.Feを5
重量%以下に設定した。
Example 2 Next, using the above-mentioned converter type smelting furnace, the batch was subjected to smelting reduction for 4 to 5 hours in the same operation procedure. As described above, the secondary combustion ratio at the time of Ni smelting reduction is set to a range of less than 0.3 because the furnace body wear becomes severe at a high secondary combustion ratio. On the other hand, if the secondary combustion ratio is less than 0.3, the occurrence of slopping becomes a problem as described above. Fe 5
% By weight or less.

【0024】また、Ni溶融還元時の炉体損耗は二次燃
焼比の因子以外に実際のスラグ温度のコントロ−ルによ
っても軽減でき、1550℃とすることが望ましくその
ように設定した。さらにスラグ組成のコントロールによ
っても軽減でき、スラグ組成をT.Fe5重量%以下、
スラグ中のMgO%を(飽和+1%)以上の組成とす
る。MgO%はMgO−Cレンガ屑等をNi鉱石、炭材
とともに操業中に添加して、MgO%が(飽和+1%)
以下にならないように常に保つ。スラグ中のT.Fe5
重量%以下は底吹ガス量0.5Nm3 /min.ton で得ら
れ、これにより長時間操業でのメタルロスを低減でき
た。
Furnace body wear during Ni smelting reduction can be reduced by controlling the actual slag temperature in addition to the factor of the secondary combustion ratio, and is desirably set to 1550 ° C. Furthermore, the slag composition can be reduced by controlling the slag composition. Fe 5% by weight or less,
The composition of MgO% in the slag is (saturation + 1%) or more. MgO% is added during operation with MgO-C brick debris etc. together with Ni ore and carbonaceous material, and MgO% becomes (saturated + 1%)
Always keep it below. T. in slag Fe5
% By weight or less was obtained with a bottom blown gas amount of 0.5 Nm 3 /min.ton, thereby reducing metal loss in long-term operation.

【0025】この様な条件の下で次に示す組成のNi鉱
石平均1200kg/min.、コークス平均650kg/
min.の投入速度でNi鉱石を溶融還元し、途中排滓を2
回実施し約70ton の含i溶銑(Ni:9.7重量%)
が得られた。スラグ温度は1550℃±20℃に保持で
きた。
Under these conditions, the average composition of Ni ore having the following composition was 1200 kg / min.
smelting and reducing Ni ore at min.
Approximately 70 tons of hot metal containing i (Ni: 9.7% by weight)
was gotten. The slag temperature could be maintained at 1550 ° C ± 20 ° C.

【0026】[0026]

【表1】 [Table 1]

【0027】また、排滓して、製錬炉体10内に得られ
た70ton の含Ni溶銑に、石灰(CaO:2.9ton
)、蛍石(CaF:0.8ton )、珪石(0.8ton
)等の媒溶剤、スケール(1.0ton )及びコークス
(0.8ton )を装入して、上吹酸素ランス21からの
送酸により脱燐・脱硫せしめ、脱燐・脱硫された含Ni
溶銑を得、充分スラグを除去した。これにより含Ni溶
銑中の[P]が0.09%から0.005%に、[S]
が0.15%から0.01%に低下した。次いでこの脱
燐・脱硫された含Ni溶銑に表1に示す組成のCr鉱石
(500kg/min )とコークス(600kg/min )
を共に装入し、上吹酸素ランス21から送酸(量:25
000Nm3 / Hr )、底吹羽口からのN2 ガスは5つ
の羽口より、2500Nm3 / Hr 、吹き込んで攪拌し
て、Cr源を溶融還元して含Ni・Cr溶銑約95ton
を得た。尚、Ni濃度は電解Niの追加で微調整を行っ
た。この時のスラグ温度は1600±20℃で保持し
た。さらに得られたNi・Cr溶銑を排滓し、脱炭を行
った。かくして、次の表2に示すような組成のステンレ
ス溶湯を製造した。
Further, lime (CaO: 2.9 tons) was added to the 70 tons of Ni-containing hot metal obtained in the smelting furnace body 10 by discharging the slag.
), Fluorite (CaF: 0.8 ton), silica stone (0.8 ton)
), A scale (1.0 ton) and coke (0.8 ton) are charged and dephosphorized and desulfurized by acid supply from the top-blown oxygen lance 21 to remove dephosphorized and desulfurized Ni-containing.
Hot metal was obtained and slag was sufficiently removed. As a result, [P] in the hot metal containing Ni is reduced from 0.09% to 0.005%, and [S] is increased.
Decreased from 0.15% to 0.01%. Next, Cr ore (500 kg / min) and coke (600 kg / min) having the compositions shown in Table 1 were added to the dephosphorized and desulfurized Ni-containing hot metal.
, And acid is fed from the top blowing oxygen lance 21 (amount: 25).
2,000 Nm 3 / Hr), N 2 gas from the bottom tuyere is blown and stirred at 2,500 Nm 3 / Hr from five tuyeres, and the Cr source is melt-reduced to reduce Ni-Cr hot metal content to about 95 tons.
I got The Ni concentration was finely adjusted by adding electrolytic Ni. The slag temperature at this time was kept at 1600 ± 20 ° C. Further, the obtained Ni / Cr hot metal was discharged and decarburized. Thus, a molten stainless steel having a composition as shown in the following Table 2 was produced.

【0028】[0028]

【表2】 [Table 2]

【0029】この実施例のNiの溶融還元操業におい
て、特にスロッピングも無くダスト、ヒュームの発生も
軽微で10チャージ溶解後の炉体レンガ損耗速度の測定
結果も0.1mm/Hrと本発明を実施しない場合の1〜
2mm/Hrに比較して損耗速度を格段に低く抑えること
が出来た。更に、本実施例では転炉型製錬炉を用い脱燐
・脱硫工程を行ったがNi溶融還元工程において、排滓
して取鍋に出湯後、取鍋又は別の製錬炉において脱燐・
脱硫工程を実施しても、本実施例同様の効果を得るもの
である。なお、前述の如く、得られた含Ni・Cr溶銑
全量を炉外に出湯し、完全に排滓した後、再び初めの製
錬炉に戻し、通常の脱炭する、Ni還元−脱燐・脱硫−
Cr還元−全量出湯−排滓−脱炭の工程としてもよい。
In the smelting reduction operation of Ni of this embodiment, dust and fume are not generated without slopping, and the measurement result of the rate of wear of the furnace body brick after melting 10 charges is 0.1 mm / Hr. 1 if not implemented
The wear rate was much lower than 2 mm / Hr. Further, in the present embodiment, the dephosphorization / desulfurization step was performed using a converter type smelting furnace. However, in the Ni smelting reduction step, the slag was drained and discharged to a ladle, and then dephosphorized in a ladle or another smelting furnace.・
Even if the desulfurization step is performed, the same effect as in the present embodiment is obtained. As described above, the entire amount of the obtained Ni-Cr-containing hot metal obtained is discharged from the furnace, completely discharged, and then returned to the first smelting furnace again to perform normal decarburization. Desulfurization
It may be a process of Cr reduction, total tapping, waste, and decarburization.

【0030】本実施例に於ける製錬炉は底吹羽口により
攪拌ガスを吹き込んで攪拌したが、横羽口を設けた製錬
炉の横羽口または底吹羽口と横羽口の両方を設けた製錬
炉の底吹羽口と横羽口の両羽口より攪拌ガスを吹き込ん
でよい。又、溶銑中の[P]及び[S]の濃度により脱
燐・脱硫工程が必要ない場合はこの工程を省略して前記
(1)のNiの溶融還元工程と (3)のCrの溶融還元及び
(4)の脱炭工程にてステンレス溶湯を製造する方法も本
発明の範囲に入るものである。更に、本発明の各工程に
おいて使用される媒溶剤、酸素源、及び/又は炭材は本
実施例に限定されず、通常用いられるものであれば各種
のものが使用できるものである。
In the smelting furnace of this embodiment, the stirring gas was blown into the smelting furnace through the bottom tuyere to stir the smelting furnace. Stirring gas may be blown from both the tuyere and the bottom tuyere of the smelting furnace provided with both. If the dephosphorization / desulfurization step is not necessary due to the concentrations of [P] and [S] in the hot metal, this step is omitted and
(1) the smelting reduction step of Ni and (3) the smelting reduction of Cr and
The method for producing molten stainless steel in the decarburization step (4) also falls within the scope of the present invention. Furthermore, the solvent, oxygen source, and / or carbon material used in each step of the present invention are not limited to those of the present embodiment, and various types can be used as long as they are commonly used.

【0031】[0031]

【発明の効果】本発明により、溶銑、Ni鉱石及び炭
材、造滓材等の原料が装入された転炉型製錬炉に上吹ラ
ンスからの送酸、炉底からの攪拌ガス吹き込みにより、
二次燃焼比を0.3未満に設定し、さらにスラグ中T.
Feのコントロ−ル、スラグ温度のコントロール、底吹
ガスの適正化により、炉体レンガ損耗を軽減でき、スロ
ッピング、スピッテングが少なく安定したNi鉱石の溶
融還元ができ、さらに、また、得られた含Ni溶銑に関
して、該溶銑に媒溶剤、酸素源、及び/又は炭材と共に
装入することにより脱燐・脱硫する工程により脱燐・脱
硫された含Ni溶銑を得、充分スラグを除去した後、次
いで、この脱燐・脱硫溶銑にCr鉱石、半還元クロムペ
レットを媒溶剤、炭材と共に装入し、Niの溶融還元工
程と同様にして溶融還元して含Ni・Cr溶銑を得て、
次にスラグを除去して脱炭して含Ni・Cr溶銑を得る
ものであり、安定して低燐・低硫黄濃度のステンレス溶
湯を製造することが可能となる。
According to the present invention, acid is supplied from a top blowing lance to a converter type smelting furnace charged with raw materials such as hot metal, Ni ore, carbonaceous material, and slag-making material, and agitated gas is blown from the furnace bottom. By
The secondary combustion ratio was set to less than 0.3, and the T.C.
By controlling the Fe, controlling the slag temperature, and optimizing the bottom blowing gas, it was possible to reduce the wear of the furnace body bricks, to reduce the sloping and spitting, and to achieve a stable smelting reduction of Ni ore. With regard to the hot metal containing Ni, the hot metal is charged together with a medium solvent, an oxygen source, and / or a carbon material to obtain a hot metal containing Ni that has been dephosphorized and desulfurized by a process of dephosphorization and desulfurization. Next, Cr ore and semi-reduced chromium pellets are charged into the dephosphorized and desulfurized hot metal together with a solvent and a carbon material, and are melt-reduced in the same manner as in the process of smelting and reducing Ni to obtain hot metal containing Ni / Cr.
Next, the slag is removed and decarburized to obtain molten iron containing Ni / Cr, and it is possible to stably produce a molten stainless steel having a low phosphorus and low sulfur concentration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例において用いた転炉型製錬炉の
説明図である。
FIG. 1 is an explanatory view of a converter type smelting furnace used in an embodiment of the present invention.

【図2】実施例における二次燃焼比とMgO−Cレンガ
の損耗指数の関係を示したグラフである。
FIG. 2 is a graph showing a relationship between a secondary combustion ratio and a wear index of MgO—C brick in Examples.

【図3】実施例におけるスラグ中のT.Fe(重量%)
とスロッピング頻度(%)の関係グラフである。
FIG. 3 is a graph showing T.V. Fe (% by weight)
6 is a graph showing the relationship between the frequency and the dropping frequency (%).

【図4】実施例における底吹きガス量(Nm3 /min.to
n )とスラグ中のT.Fe(重量%)との関係を示した
グラフである。
FIG. 4 shows the amount of bottom blown gas (Nm 3 /min.to
n) and T. in slag. It is the graph which showed the relationship with Fe (weight%).

【図5】実施例における底吹ガス量(Nm3 /min.ton
)とスピッティング指数との関係グラフである。
FIG. 5 shows the amount of bottom blown gas (Nm 3 /min.ton) in the embodiment.
7) is a graph showing the relationship between a spitting index and a spitting index.

【符号の説明】[Explanation of symbols]

10 製錬炉体 11 メタル層 12 スラグ浴 21 上吹ランス 24 底吹羽口 25 原料ホッパー 26 攪拌ガス 27 スラグ測温体 28 排ガス分析用サンプル口 DESCRIPTION OF SYMBOLS 10 Smelting furnace body 11 Metal layer 12 Slag bath 21 Top blowing lance 24 Bottom blowing tuyere 25 Raw material hopper 26 Stirred gas 27 Slag thermometer 28 Sample port for exhaust gas analysis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水上 秀昭 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 中村 英夫 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平2−221310(JP,A) 特開 平2−221311(JP,A) 特開 平2−285017(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21C 5/28 C21B 11/00 C21B 13/00 C22C 33/04────────────────────────────────────────────────── ─── Continued on the front page (72) Hideaki Mizukami, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Hideo Nakamura 1-1-2, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (56) References JP-A-2-221310 (JP, A) JP-A-2-22131 (JP, A) JP-A-2-285017 (JP, A) (58) Fields surveyed (Int. Cl. 6 , DB name) C21C 5/28 C21B 11/00 C21B 13/00 C22C 33/04

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上吹酸素ランス、底吹及び/又は横吹羽
口を備えた転炉型製錬炉において、 (1) a. 溶銑を装入し、これにNi鉱石を炭材と共に該
製錬炉に装入する工程 b. 前記上吹酸素ランスから酸素を吹込む工程 c. 前記底吹及び/又は横吹羽口からN2 又はAr,C
Oなどの攪拌ガスを吹込み攪拌する工程 d. 排滓して含Ni溶銑を得る工程から成るNiの溶融
還元工程、次いで (2) 前記含Ni溶銑に媒溶剤、酸素源、及び/又は
炭材を添加することにより、脱燐・脱硫溶銑を得る脱燐
・脱硫工程、次いで (3) a. 前記脱燐・脱硫溶銑にCr鉱石、半還元クロム
ペレット等を媒溶剤、炭材と共に装入する工程 b. 前記上吹酸素ランスから酸素を吹込む工程 c. 前記底吹及び/又は横吹羽口からN2 又はAr,C
Oなどの攪拌ガスを吹込み攪拌する工程 d. 排滓して含Ni・Cr溶銑を得る工程から成るCr
の溶融還元工程、次いで (4) 前記含Ni・Cr溶銑を脱炭する脱炭工程の (1)
〜(4) 工程からなり、更に前記Niの溶融還元工程にお
いて下式にて示される二次燃焼比 (H2 O+CO2 )/(H2 +H2 O+CO+CO2 ) を0.3未満に保持することを特徴とする溶融還元によ
るステンレス溶湯の製造方法。
In a converter type smelting furnace provided with a top blowing oxygen lance, a bottom blowing and / or a side blowing tuyere, (1) a. Hot metal is charged and Ni ore and carbon material are added to the hot metal. A step of charging oxygen into the smelting furnace b. A step of injecting oxygen from the top-blown oxygen lance c. N 2 or Ar, C from the bottom-blow and / or side-blow tuyere
A step of blowing and stirring a stirring gas such as O. d. A smelting reduction step of Ni consisting of a step of obtaining molten iron containing iron by discharging, and (2) a medium solvent, an oxygen source, and / or Dephosphorization / desulfurization process to obtain dephosphorized / desulfurized hot metal by adding material, and then (3) a. Charge the above dephosphorized / desulfurized hot metal with Cr ore, semi-reduced chromium pellets, etc. B. Injecting oxygen from the top-blown oxygen lance c. N 2 or Ar, C from the bottom-blown and / or side-blown tuyere
Step of blowing and stirring a stirring gas such as O. d. Cr comprising a step of obtaining molten Ni-Cr hot metal by discharging slag.
Smelting reduction step, and then (4) the decarburization step of decarburizing the Ni-containing Cr hot metal (1)
And (4) maintaining the secondary combustion ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) represented by the following formula in the Ni smelting reduction step at less than 0.3: A method for producing molten stainless steel by smelting reduction.
【請求項2】 (1)上吹酸素ランス、底吹及び/又は横
吹羽口を備えた転炉型製錬炉において、 a. 溶銑を装入し、これにNi鉱石を炭材と共に該製錬
炉に装入する工程 b. 前記上吹酸素ランスから酸素を吹込む工程 c. 前記底吹及び/又は横吹羽口からN2 又はAr,C
Oなどの攪拌ガスを吹込み攪拌する工程 d. 排滓して取鍋に出湯後、含Ni溶銑を得る工程から
成るNiの溶融還元工程、次いで (2) 前記取鍋に又は含Ni溶銑を別の製錬炉に移
し、該製錬炉に媒溶剤、酸素源、及び/又は炭材を添加
することにより脱燐・脱硫溶銑を得る脱燐・脱硫工程、
次いで (3) a. 前記脱燐・脱硫溶銑を前記 (1)の製錬炉に戻
し、Cr鉱石、半還元クロムペレット等を媒溶剤、炭材
と共に装入する工程 b. 前記上吹酸素ランスから酸素を吹込む工程 c. 前記底吹及び/又は横吹羽口からN2 又はAr,C
Oなどの攪拌ガスを吹込み攪拌する工程 d. 排滓して含Ni・Cr溶銑を得る工程から成るCr
の溶融還元工程、次いで (4) 前記含Ni・Cr溶銑を脱炭する脱炭工程の (1)
〜(4) 工程からなり、更に前記Niの溶融還元工程にお
いて下式にて示される二次燃焼比 (H2 O+CO2 )/(H2 +H2 O+CO+CO2 ) を0.3未満に保持することを特徴とする溶融還元によ
るステンレス溶湯の製造方法。
(1) In a converter type smelting furnace provided with a top blowing oxygen lance, a bottom blowing and / or a side blowing tuyere, a. Hot metal is charged, and Ni ore and carbon material are added to the hot metal. A step of charging oxygen into the smelting furnace b. A step of injecting oxygen from the top-blown oxygen lance c. N 2 or Ar, C from the bottom-blow and / or side-blow tuyere
A step of blowing and stirring a stirring gas such as O. d. A smelting and reducing step of Ni which comprises a step of obtaining molten Ni-containing hot metal after draining and tapping into a ladle; Transferring to another smelting furnace, a dephosphorization / desulfurization step of obtaining a dephosphorized / desulfurized hot metal by adding a medium solvent, an oxygen source, and / or a carbon material to the smelting furnace,
Then, (3) a. A step of returning the dephosphorized and desulfurized hot metal to the smelting furnace of (1) and charging Cr ore, semi-reduced chromium pellets, etc. together with a solvent and a carbon material; b. C. N 2 or Ar, C from the bottom and / or side blowing tuyere
Step of blowing and stirring a stirring gas such as O. d. Cr comprising a step of obtaining molten Ni-Cr hot metal by discharging slag.
Smelting reduction step, and then (4) the decarburization step of decarburizing the Ni-containing Cr hot metal (1)
And (4) maintaining the secondary combustion ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) represented by the following formula in the Ni smelting reduction step at less than 0.3: A method for producing molten stainless steel by smelting reduction.
【請求項3】 前記含Ni・Cr溶銑を得た後、全量を
炉外に出湯し、完全に排滓した後、再び前記 (1)の製錬
炉に戻し、該含Ni・Cr溶銑を脱炭することを特徴と
する請求項1又は請求項2記載の溶融還元によるステン
レス溶湯の製造方法。
3. After obtaining the Ni-Cr containing hot metal, the whole amount is discharged outside the furnace, and after completely draining, the molten iron is returned to the smelting furnace of (1) above. The method for producing a molten stainless steel by smelting reduction according to claim 1 or 2, wherein decarburization is performed.
【請求項4】 前記脱燐・脱硫工程を省略することを特
徴とする請求項1乃至請求項3記載の溶融還元によるス
テンレス溶湯の製造方法。
4. The method for producing a molten stainless steel by smelting reduction according to claim 1, wherein said dephosphorization / desulfurization step is omitted.
【請求項5】 前記Niの溶融還元工程において、スラ
グ温度を1580℃以下に調節することを特徴とする請
求項1乃至請求項4記載の溶融還元によるステンレス溶
湯の製造方法。
5. The method for producing a molten stainless steel by smelting reduction according to claim 1, wherein the slag temperature is adjusted to 1580 ° C. or lower in the Ni smelting reduction step.
【請求項6】 前記Niの溶融還元工程において、スラ
グ中のT.Feを10重量%以下に保持することを特徴
とする請求項1乃至請求項5記載の溶融還元によるステ
ンレス溶湯の製造方法。
6. The method according to claim 1, wherein in the step of smelting and reducing Ni, T.C. 6. The method for producing molten stainless steel by smelting reduction according to claim 1, wherein Fe is kept at 10% by weight or less.
【請求項7】 前記Niの溶融還元工程において、底吹
及び/又は横吹羽口からの攪拌ガス流量を0.1〜1.
0Nm3 /min.ton に調節することを特徴とする請求項
1乃至請求項6記載の溶融還元によるステンレス溶湯の
製造方法。
7. A flow rate of a stirring gas from a bottom-blowing and / or side-blowing tuyere is 0.1 to 1.
The method for producing molten stainless steel by smelting reduction according to claim 1, wherein the molten stainless steel is adjusted to 0 Nm 3 /min.ton.
JP32163093A 1993-04-27 1993-12-21 Method for producing molten stainless steel by smelting reduction Expired - Fee Related JP2842185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32163093A JP2842185B2 (en) 1993-04-27 1993-12-21 Method for producing molten stainless steel by smelting reduction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10085093 1993-04-27
JP5-100850 1993-04-27
JP32163093A JP2842185B2 (en) 1993-04-27 1993-12-21 Method for producing molten stainless steel by smelting reduction

Publications (2)

Publication Number Publication Date
JPH0711321A JPH0711321A (en) 1995-01-13
JP2842185B2 true JP2842185B2 (en) 1998-12-24

Family

ID=26441807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32163093A Expired - Fee Related JP2842185B2 (en) 1993-04-27 1993-12-21 Method for producing molten stainless steel by smelting reduction

Country Status (1)

Country Link
JP (1) JP2842185B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650226B2 (en) * 2005-11-16 2011-03-16 Jfeスチール株式会社 Melting reduction method
CN114807483A (en) * 2022-04-22 2022-07-29 中国恩菲工程技术有限公司 Smelting method and smelting device for high-phosphorus iron ore

Also Published As

Publication number Publication date
JPH0711321A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
US5039480A (en) Method for manufacturing molten metal containing Ni and Cr
KR930001129B1 (en) Method for smelting reduction of ni ore
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JP2959368B2 (en) Manufacturing method of Ni-Cr containing hot metal
EP0360954B1 (en) Method of melting cold material including iron
JP3119015B2 (en) Smelting reduction of Ni ore
JPH0723494B2 (en) Method and apparatus for refining molten metal
JPH07310110A (en) Production of stainless steel
JP2757761B2 (en) Method for producing molten stainless steel by smelting reduction
JPH0987722A (en) Method for refining molten crude stainless steel
JP4461495B2 (en) Dephosphorization method of hot metal
JP3486886B2 (en) Steelmaking method using two or more converters
JPH0437135B2 (en)
JPH0244887B2 (en)
EP1524322A2 (en) Method of liquid steel production with slag recycling in a converter, equipment to employ the method
JP2882236B2 (en) Stainless steel manufacturing method
JP2797953B2 (en) Method for smelting reduction of Ni ore
JPH07100810B2 (en) Method for producing molten alloy containing Ni and Cr
JP3788392B2 (en) Method for producing high Cr molten steel
SU1071645A1 (en) Method for making steel
JPH01147012A (en) Steelmaking method
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JPH0892627A (en) Production of stainless steel
JPS6154081B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees