JP3788392B2 - Method for producing high Cr molten steel - Google Patents

Method for producing high Cr molten steel Download PDF

Info

Publication number
JP3788392B2
JP3788392B2 JP2002164101A JP2002164101A JP3788392B2 JP 3788392 B2 JP3788392 B2 JP 3788392B2 JP 2002164101 A JP2002164101 A JP 2002164101A JP 2002164101 A JP2002164101 A JP 2002164101A JP 3788392 B2 JP3788392 B2 JP 3788392B2
Authority
JP
Japan
Prior art keywords
furnace
molten
refining
molten metal
metal holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002164101A
Other languages
Japanese (ja)
Other versions
JP2004010939A (en
Inventor
孝幸 柏
茂之 鍋島
伸和 北川
嘉久 北野
廣 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002164101A priority Critical patent/JP3788392B2/en
Publication of JP2004010939A publication Critical patent/JP2004010939A/en
Application granted granted Critical
Publication of JP3788392B2 publication Critical patent/JP3788392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶湯保持炉に保持した高Cr溶鉄を脱炭精錬炉でのステンレス鋼等の高Cr溶鋼の溶製要求に合わせて適時に供給し、効率的に高Cr溶鋼を溶製する方法に係わり、特に、前記溶湯保持炉での耐火物の溶損や前記脱炭精錬炉でのCrの酸化損失を防止できる高Cr溶鋼の溶製方法に関する。
【0002】
【従来の技術】
一般に、ステンレス鋼に代表される高Cr鋼は、フェロ・クロム、鋼スクラップ(以下、単にスクラップ)あるいはCr鉱石を溶融還元する等して溶解し、含Cr溶鉄を得る溶製炉と、該含Cr溶鉄の脱炭精錬を行う脱炭精錬炉とを順次経て(これに引き続いて、必要に応じてさらに減圧下で仕上げ脱炭精錬を行う)、目標とする成分に調整した後、連続鋳造機等で鋼鋳片に鋳造することで製造されている。このような高Cr鋼の製造コストは、大部分がCr及びNi原料のコストで占められている。そのため、フェロクロム等の合金原料よりも安価なCr源及びNi源として、現在も多量のスクラップが使用されているが、製造コスト低減のためには、スクラップ使用量のさらなる増大が望まれる。しかし、スクラップ使用量を増大すると、前記含Cr溶鉄の溶製時間は、スクラップ溶解に必要な熱量を供給するため、昇熱時間が延長し、溶製時間の延長を招くという問題があった。
【0003】
また、高Cr溶鋼の溶製に際しては、Cr、Ni等の歩留りを高めることもコスト面で重要であり、少なくとも2ヒート以上の溶製で得た溶鋼(1ヒートの溶製で得た溶鋼は一つの取鍋へ出鋼する)を保持した取鍋を、連続鋳造機に順次送り、連続鋳造を停止することなく行うことが望ましい。このような連続鋳造機の操業を連々鋳と称するが、鋼鋳片の切捨て部分が低減し、前記歩留りが向上する。しかし、この連々鋳での取鍋交換のピッチに合わせるには、溶製時間の短縮が必要となるので、前記含Cr溶鉄の溶解炉でのスクラップ使用量は、制限される。
【0004】
このようなステンレス鋼の製造における相反する2つの要求(スクラップ使用量の増大及び歩留り向上)を解決する方法として、例えば、特開昭57−161020号公報に開示された技術が挙げられる。それは、フェロ・クロム、スクラップを溶解する転炉型反応容器(前記含Cr溶鉄の溶製炉に相当)と脱炭精錬炉との間に、加熱機能を有した溶湯保持炉を別途配置することで、スクラップ溶解量の確保と、連続鋳造での取鍋交換のピッチに合わせた脱炭精錬炉への含Cr溶鉄の供給とを同時に可能にするものである。そして、この特開昭57−161020号公報記載の技術では、別途設ける溶湯保持炉の耐火物の溶損を防止するため、該溶湯保持炉内で溶湯中Crの酸化を生じさせること、及び含Cr溶鉄の過熱量(スーパー・ヒートと称し、該溶鉄の実際の温度と液相線温度との差で代表させる)を50℃以内にすることを提案している。
【0005】
【発明が解決しようとする課題】
しかしながら、本発明者の実験によれば、溶湯保持炉内で溶湯中のCrを酸化させると、生成したCr酸化物がスラグ中に移行してスラグの融点が高まるので、スラグの耐火物に対する浸食性は低下するが、一方において、この高融点スラグが炉壁や出湯口、あるいは排滓口に付着して、炉の内容積を低下させたり、出湯や排滓を著しく妨げるという、操業上軽視すべからざる問題を引き起こすことが判明した。また、溶湯のスーパー・ヒートを50℃以内にすると、溶湯保持炉から取鍋に出湯し、次の工程である仕上げ脱炭精錬装置に到る過程で含Cr溶鉄の温度が低下し、仕上げ脱炭精錬装置で酸素を供給して脱炭する際に、Crの酸化損失が著しく多くなることもわかった。
【0006】
本発明は、かかる事情に鑑み、含Cr溶鉄の溶製炉と脱炭精錬炉との間に加熱機能を備えた溶湯保持炉を設けても、該溶湯保持炉において過剰のCrの酸化を生じさせず、しかも炉壁耐火物の浸食を防止する一方で、脱炭精錬炉でのCrの酸化損失をも効果的に抑制可能な高Cr溶鋼の溶製方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。
【0008】
すなわち、本発明は、含Cr溶鉄の溶製炉と脱炭精錬炉との間に配設され、溶湯の加熱機能を備えた溶湯保持炉に、前記含Cr溶鉄を一時的に保持し、前記脱炭精錬炉での精錬スケジュールに合わせて該溶湯保持炉から含Cr溶鉄を該脱炭精錬炉に出湯し、精錬する高Cr溶鋼の溶製方法において、前記脱炭精錬炉を転炉型反応容器とすると共に、前記溶湯保持炉内での含Cr溶鉄中のC濃度を3質量%以上に、その温度を該Cr溶鉄の液相線温度より50〜150℃高い温度に保持することを特徴とする高Cr溶鋼の溶製方法である。
【0009】
この場合、前記脱炭精錬炉で精錬して得られた高Cr溶鋼を、さらに減圧機能を備えた精錬装置にて仕上げ脱炭精錬を行うと一層良い。
【0010】
本発明によれば、含Cr溶鉄の溶製炉と脱炭精錬炉との間に加熱機能を有する溶湯保持炉を設けても、該溶湯保持炉において過剰のCrの酸化を生じさせず、しかも炉壁耐火物の浸食を防止できるようになる。また、脱炭精錬炉でのCrの酸化損失をも効果的に抑制できる。その結果、高Cr溶鋼の溶製が従来より安価に行えるようになった。
【0011】
【発明の実施の形態】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
【0012】
本発明者は、上記した従来技術において、溶湯保持炉内で含Cr溶鉄中のCrを酸化させないと、該溶湯保持炉の耐火物の浸食を防止できない理由について詳細に調査した。その結果、従来技術では、溶湯保持炉から出湯された含Cr溶鉄を直ちに仕上げ脱炭する精錬装置にて精錬するために、含Cr溶鉄の温度をかなり高くしなければならないことが明らかになった。
【0013】
すなわち、ステンレス鋼等の高Cr溶鋼を製造する仕上げ脱炭精錬装置は、上記した従来技術に具体的に記載されているAOD炉やVOD炉が一般的であるが、これらの仕上げ脱炭する精錬装置では、普通鋼の脱炭精錬に多用されている転炉等に比べて酸素供給速度が小さいので、脱炭されるべき含Cr溶鉄中のC濃度は1.0〜2.5質量%と、一般の溶銑(C:4.5質量%)や含Cr溶鉄(C:5〜7質量%)より低くしておく必要がある。このようなC濃度が低い含Cr溶鉄は、通常の溶銑や含Cr溶鉄に比べて液相線温度が高いので、溶湯保持炉内で含Cr溶鉄を凝固させないためには、保持する溶鉄の温度を高くしなければならない。さらに、脱炭精錬装置で脱炭された溶鋼が溶融状態でありうるためには、脱炭精錬前の含Cr溶鉄の有する温度に脱炭反応によって発生する熱による昇温量を加えた温度が溶鋼の融点以上でなければならない。しかるに、上記先行技術のように、含Cr溶鉄の炭素含有量が低い場合には、脱炭反応による昇熱量が少ない。したがって、脱炭精錬後の溶鋼が融点以上の温度であるためにも、溶湯保持炉から出湯される含Cr溶鉄の温度は高温であることが要求される。ところが、上記従来技術では、溶湯保持炉から出湯される含Cr溶鉄は、Cが1.2〜2.6質量%であり、温度は1590〜1620℃である。このような温度は、到底溶銑領域の温度ではなく、むしろ溶鋼の温度に近いので、溶湯保持炉の耐火物の損失が著しく大きくなるのである。
【0014】
一方、上記の従来技術では、溶湯保持炉内での含Cr溶鉄のスーパー・ヒートを50℃以内に保つことを提唱しているが、該溶湯保持炉から取鍋に出湯する際の温度降下を考慮すると、次工程である仕上げ脱炭を行う精錬装置に到着した際の含Cr溶鉄は、その液相線より10〜20℃程度しか余裕がないことになってしまう。そして、該含Cr溶鉄中のC濃度が1〜2〜2.6質量%と低いこともあって、仕上げ脱炭精錬初期の低温時にCrの酸化損失を著しく大きくする。一旦酸化生成した酸化クロム系のスラグは、極めて高融点であるため、炉壁等に固着したり、溶鉄浴面上で互いに固着しあって大きな塊状で存在する。そのため、脱炭精錬の進行に伴って溶鉄の温度が上昇しても、容易に溶鉄中のCで再還元されることがない。その結果、溶鋼中のCr歩留りが著しく低下してしまうのである。
【0015】
そこで、本発明では、溶湯保持炉内のC含有量を増大させて、溶湯の融点を降下させることで、溶湯保持炉の耐火物の受ける熱的負荷を軽減する。具体的には、C濃度を3質量%以上にする。このようにC濃度を高めると、含Cr溶鉄の液相線温度を著しく低下させることができるから、本発明での含クロム溶鉄では、そのスーパー・ヒートを高くしても、従来技術における溶湯保持炉内の含Cr溶鉄温度よりも低い温度に抑れるのである。具体的なスーパー・ヒートは50〜150℃の範囲である。液相線温度が1250℃程度である場合、含Cr溶鉄の温度は1300〜1400℃で良いので、従来技術よりも200〜300℃低くすることができる。なお、含Cr溶鉄のCr含有量は、ステンレス鋼や耐熱鋼を製造することを想定しているので、10〜40質量%とするのが適当である。
【0016】
一方、溶湯保持炉から出湯される含Cr溶鉄は、従来技術に比べて著しくC濃度が高いので、これをAODやVODのような仕上げ脱炭精錬装置で脱炭すると、精錬時間の長期化と、それに伴う耐火物の溶損を招くので、好ましくない。そこで、本発明では、脱炭精錬を転炉型反応容器にて行う。転炉型反応容器は、AODやVODよりも大きなフリーボード(溶湯浴面から容器上端までの空間の高さ)を有し、10倍近い速度で酸素ガスを供給可能な酸素吹込み手段を備えている。したがって、従来技術よりも著しく高いC濃度の含Cr溶鉄であっても、従来技術でC:1.5〜2.6質量%の含Cr溶鉄をAODで脱炭する場合の精錬時間約80分に対して、かなり短時間(40〜60分程度)で脱炭を完了することが可能となる。
【0017】
本発明で溶湯保持炉に装入する前の高Cr溶鉄を得る方法としては、アークや誘導溶解等の電気による加熱源、あるいは各種燃料を燃焼した火炎による加熱源を備えた炉を用い、Cr含有原料を鉄源と共に溶解する方法でも良いが、Cr鉱石、Cr含有スラグ、ダスト、スラジCr含有耐火物屑等を還元性雰囲気を利用して溶融還元するのがより好ましい。そのような溶融還元を可能にする炉としては、特公平02−40723号公報記載の竪型炉、あるいは特公平04−38806号公報記載の転炉型溶融還元炉等が好ましい。なお、本発明では、溶湯保持炉に装入する含Cr溶鉄は、1基の溶融還元炉にて溶製されたものだけでなく、複数の溶融還元炉にて溶製されたものを合わせ湯して溶湯保持炉に装入したり、溶湯保持炉において混合後に保持しても構わない。
【0018】
また、溶湯保持炉は、装入された含Cr溶鉄を、次工程の脱炭精錬炉に供給するまでの不定な期間、それを所定温度に保持したり、あるいは後述するように、当該溶湯保持炉内でスクラップ等を添加して溶解するため、溶湯の加熱機能を備えている必要がある。溶湯の加熱機能を備えた溶湯保持炉としては、従来より公知の混銑炉が代表として挙げられるが、熱効率や温度調整の容易さ並びに加熱の迅速性の観点から、前述の特開昭57−161020号公報において言及されている電気式加熱装置を有する溶湯保持炉が好ましい。そのような溶湯保持炉としては、特公昭50−25666号公報に開示された溝型誘導加熱手段を設けた溶湯保持炉が特に適する。
【0019】
溶湯保持炉においては、安価な鉄源、Cr源あるいはNi源としてスクラップ、特にステンレス鋼のスクラップを添加して溶解することが好ましい。なお、スクラップの添加量は、前工程からの含Cr溶鉄の供給能力と溶湯保持炉の加熱能力とを勘案して、特に次工程での精錬スケジュールを阻害しないように定めることが必要である。これは、本発明では、連続鋳造機の操業に合わせて定められた脱炭精錬炉の精錬スケジュールが、含Cr溶鉄の溶解炉の能力によって阻害されないようにすることを目的としているからである。
【0020】
脱炭精錬炉は、前述したとおり、転炉型反応容器とする。その転炉型反応容器としては、上吹き転炉、底吹き転炉、あるいは上底吹き転炉があるが、溶鉄中のCrの酸化損失を防止する観点から、スラグと溶鉄とを強攪拌できる底吹き転炉や上底吹き転炉の利用が好ましい。また、脱炭精錬末期の低炭素領域においてもCrよりもCの酸化を優先させるために、酸素ガス中に窒素やアルゴン等の希釈ガスを供給する手段を備えていることが一層好ましい。
【0021】
また、このような転炉型反応容器での脱炭精錬の後に、さらに仕上げ脱炭を行う場合は、減圧下あるいは調整された雰囲気下で脱炭が行える装置として、従来より公知のVODやRH真空脱ガス槽等が好ましく利用できる。
【0022】
次に、本発明に係る高Cr溶鋼の溶製方法のプロセス・フロー例を図を参照して説明する。図1は、高炉にて製造された溶銑とCr鉱石及び石炭等の還元材を用いて溶融還元する転炉型溶融還元炉によって含Cr溶鉄を溶製し、これによって得られた含Cr溶鉄を溶湯保持炉に保持し、次工程である脱炭精錬炉での精錬スケジュールに応じて、該溶湯保持炉から脱炭精錬炉に含Cr溶鉄を供給する例である。この例では、脱炭精錬は、一次的な脱炭精錬を行う転炉と、さらに得られた含Cr溶鋼を仕上げ脱炭(二次脱炭精錬)するVODから成り立っている。これらの脱炭精錬において脱炭精錬と所定の成分への調整を済ませた高Cr溶鋼は、連続鋳造機において鋳造され、スラブやブルーム等の鋼鋳片とされる。
【0023】
また、溶湯保持炉では、安価なスクラップを装入して溶解することもできる。溶湯保持炉におけるスクラップの溶解は、安価な原料の使用によるコストの削減の他、溶融還元炉からの含Cr溶鉄の供給速度が不足する場合の補完手段としての機能も発揮する。
【0024】
図2に示す例は、含Cr溶鉄を溶製する溶融還元炉として、上記した図1の例の転炉型溶融還元炉に加えて、Cr含有スラグ、Cr含有ダスト、Cr含有スラジ等をコークス等の固体還元剤で還元する竪型炉式溶融還元炉を併設した例である。高Cr鋼の製造を行う製鋼工場、並びにその下工程では、種々のCr含有廃棄物やCr含有副産物が発生する。それらのうち、スクラップは、溶湯保持炉や脱炭精錬炉で溶解することができるが、Cr含有スラグ、Cr含有ダスト、Cr含有スラジ、Cr含有耐火物屑等は、Crが酸化しており、還元工程を経なければ、高Cr溶鋼の原料に再生できない。そこで、このような物質は、溶融還元炉に装入して含Cr溶鉄を製造する。また、これらの物質は、転炉型溶融還元炉において還元しても良いが、転炉型溶融還元炉の操業を阻害しないため、図2に示す例のように、専用の竪型炉式溶融還元炉を設けることがより好ましい。
【0025】
【実施例】
以下に、本発明の実施例を、本発明に係る好適範囲を外れた比較例(比較例1〜3)と対比して説明する。
【0026】
本発明の実施例(以下、本発明例と呼ぶ)は、前述の図2に示した工程によった。転炉型溶融還元炉は、炉容量185tonで、上吹き酸素ランスと、底吹き酸素羽口とを備えた上底吹き転炉形式の炉である。また、Cr含有スラグやダスト、スラジ等を溶融還元製錬する竪型溶融還元炉を併設している。溶湯保持炉は、容量1000tonで、溝型誘導加熱手段を備えている。脱炭精錬炉は、炉容量185tonの上底吹き式転炉であり、二次脱炭する精錬装置としては、容量180tonの取鍋内溶鋼を精錬できるVODである。
【0027】
比較例1は、前記の従来例(特開昭57−161020号公報)を模し、溶湯保持炉中の含Cr溶鉄のC濃度を2.5質量%とし、スーパー・ヒートを50℃以下にして操業したものである。また、比較例1及び2は、従来例で提唱されるように、溶湯保持炉内を酸化雰囲気として積極的に含Cr溶鉄中のCrを酸化させ、耐火物の溶損防止を図った。
【0028】
本発明例、比較例1〜3の溶湯保持炉中の含Cr溶鉄のC濃度、スーパー・ヒート、溶湯保持炉での耐火物の溶損量、脱炭精錬炉での耐火物の溶損量、脱炭精錬炉でのCrの酸化損失量を対比し、表1に一括して示す。なお、本発明例、比較例とも、脱炭精錬炉では、100ヒートを連続的に操業して調査を行った。
【0029】
【表1】

Figure 0003788392
【0030】
表1で下線を付した数値は、本発明の範囲を外れていることを示す。また、溶湯保持炉での耐火物の溶損量は、溝型誘導加熱手段と溶湯保持炉本体との接合部での耐火物溶損量(mm)を測定し、本発明の場合を基準に相対化した値である。脱炭精錬炉における耐火物溶損量は、スラグ・ラインの耐火物溶損量(mm)を測定し、本発明の場合を基準に相対化した値である。Crの酸化損失量は、本発明例の脱炭精錬炉でのCrの酸化損失量を基準として相対化した値である。
【0031】
表1によれば、比較例1,2では、溶湯保持炉内を酸化雰囲気としたため、溶湯の耐火物溶損は防止できたが、脱炭精錬炉でのCrの酸化損失が大きいことが明らかである。また、溶湯保持炉の内部にCr酸化物からなる固体のスラグが分厚く付着し、50ヒートを超えると、溶湯の装入及び出湯、並びにスラグの排出に困難をきたした。さらに、比較例3では、溶湯保持炉内での含Cr溶鉄の温度が高過ぎるために、溶湯保持炉、脱炭精錬炉とも耐火物の溶損が大きかった。一方、本発明例では、溶湯保持炉、脱炭精錬炉とも、耐火物の溶損が少なく、また脱炭精錬炉でのCrの酸化損失も小さくなっている。
【0032】
【発明の効果】
以上述べたように、本発明により、高Cr溶鋼を溶製するに際して、溶湯保持炉において過剰のCrの酸化損失を生じさせず、しかも溶湯保持炉の耐火物の浸食を防止した操業が可能になる。また、脱炭精錬炉でのCrの酸化損失をも低減できるようになる。
【図面の簡単な説明】
【図1】本発明に係る高Cr鋼の溶製方法の一例を示すフロー図である。
【図2】本発明に係る高Cr鋼の溶製方法の別例を示すフロー図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for efficiently melting high Cr molten steel by supplying high Cr molten iron held in a molten metal holding furnace in a timely manner according to the melting requirement of high Cr molten steel such as stainless steel in a decarburizing and refining furnace. In particular, the present invention relates to a high-Cr molten steel melting method capable of preventing refractory melting loss in the molten metal holding furnace and Cr oxidation loss in the decarburization refining furnace.
[0002]
[Prior art]
In general, high Cr steel typified by stainless steel is a smelting furnace in which ferro-chromium, steel scrap (hereinafter simply scrap) or Cr ore is melted and reduced to obtain Cr-containing molten iron, After passing through a decarburizing and refining furnace for decarburizing and refining Cr molten iron (followed by further decarburizing and refining under reduced pressure if necessary), after adjusting to the target components, continuous casting machine It is manufactured by casting into a steel slab using a method such as The production cost of such high Cr steel is mostly occupied by the cost of Cr and Ni raw materials. For this reason, a large amount of scrap is still used as a Cr source and Ni source that are cheaper than alloy raw materials such as ferrochrome, but a further increase in the amount of scrap used is desired in order to reduce manufacturing costs. However, when the amount of scrap used is increased, the melting time of the Cr-containing molten iron supplies the amount of heat necessary for melting the scrap, so that there is a problem that the heating time is extended and the melting time is extended.
[0003]
In addition, in the production of high Cr molten steel, it is also important in terms of cost to increase the yield of Cr, Ni, etc. Molten steel obtained by melting at least 2 heats (molten steel obtained by 1 heat melting) It is desirable to feed the ladle holding the steel) to a continuous ladle sequentially to a continuous casting machine without stopping continuous casting. Although the operation of such a continuous casting machine is called continuous casting, the cut portion of the steel slab is reduced and the yield is improved. However, since it is necessary to shorten the melting time in order to match the pitch of the ladle exchange in continuous casting, the amount of scrap used in the melting furnace for Cr-containing molten iron is limited.
[0004]
As a method for solving two conflicting requirements (increase in the amount of scrap used and improvement in yield) in the production of such stainless steel, for example, a technique disclosed in Japanese Patent Application Laid-Open No. 57-161020 can be cited. That is, a molten metal holding furnace having a heating function is separately disposed between a converter reactor (equivalent to the Cr-containing molten iron melting furnace) for melting ferro-chrome and scrap and a decarburizing and refining furnace. Thus, it is possible to simultaneously secure the amount of melted scrap and to supply molten iron containing Cr to the decarburization refining furnace in accordance with the pitch of ladle replacement in continuous casting. In the technique described in Japanese Patent Application Laid-Open No. 57-161020, in order to prevent the refractory of a separately provided molten metal holding furnace, the oxidation of Cr in the molten metal is caused in the molten metal holding furnace, and It has been proposed that the amount of superheated Cr molten iron (referred to as super heat, represented by the difference between the actual temperature of the molten iron and the liquidus temperature) be within 50 ° C.
[0005]
[Problems to be solved by the invention]
However, according to the inventor's experiment, when Cr in the molten metal is oxidized in the molten metal holding furnace, the generated Cr oxide moves into the slag and the melting point of the slag is increased. On the other hand, this high melting point slag adheres to the furnace wall, the tapping outlet, or the drainage port, reducing the internal volume of the furnace or significantly hindering the tapping or drainage. It turns out to cause all problems. If the superheat of the molten metal is set to 50 ° C or less, the molten iron is discharged from the molten metal holding furnace to the ladle, and the temperature of the molten iron containing Cr decreases in the process of reaching the final decarburizing and refining equipment, which is the final process. It has also been found that the oxidation loss of Cr is remarkably increased when decarburization is performed by supplying oxygen with a coal refining apparatus.
[0006]
In view of such circumstances, the present invention causes excessive Cr oxidation in the molten metal holding furnace even if a molten metal holding furnace having a heating function is provided between the smelting furnace of the molten iron containing Cr and the decarburizing and refining furnace. In addition, an object of the present invention is to provide a method for producing high Cr molten steel that can effectively prevent oxidization loss of Cr in a decarburization refining furnace while preventing erosion of the furnace wall refractory.
[0007]
[Means for Solving the Problems]
The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.
[0008]
That is, the present invention is disposed between a smelting furnace and a decarburizing and refining furnace for Cr-containing molten iron, temporarily holding the Cr-containing molten iron in a molten metal holding furnace having a heating function of the molten metal, In the method of melting high Cr molten steel, the molten iron containing Cr is discharged from the molten metal holding furnace to the decarburized refining furnace in accordance with the refining schedule in the decarburizing refining furnace. In addition to the container , the C concentration in the Cr-containing molten iron in the molten metal holding furnace is set to 3% by mass or more, and the temperature is maintained at a temperature 50 to 150 ° C. higher than the liquidus temperature of the Cr molten iron. This is a method for producing high Cr molten steel.
[0009]
In this case, a high Cr molten steel obtained by refining the previous SL decarburization refining furnace, even better when performing finishing decarburization refining further in refining apparatus having a pressure reducing function.
[0010]
According to the present invention, even if a molten metal holding furnace having a heating function is provided between the smelting furnace of the Cr-containing molten iron and the decarburizing and refining furnace, excess Cr is not oxidized in the molten metal holding furnace. Erosion of furnace wall refractories can be prevented. Moreover, the oxidation loss of Cr in a decarburization refining furnace can also be suppressed effectively. As a result, high Cr molten steel can be produced at a lower cost than before.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the circumstances leading to the invention.
[0012]
The present inventor investigated in detail the reason why the refractory corrosion of the molten metal holding furnace cannot be prevented unless the Cr in the molten iron-containing iron is oxidized in the molten metal holding furnace. As a result, it has been clarified that in the prior art, the temperature of the Cr-containing molten iron must be considerably increased in order to refine the Cr-containing molten iron discharged from the molten metal holding furnace immediately by a refining device that finishes and decarburizes. .
[0013]
That is, the finishing decarburization refining apparatus for producing high Cr molten steel such as stainless steel is generally an AOD furnace or a VOD furnace specifically described in the above-described prior art. In the equipment, the oxygen supply rate is small compared to converters and the like that are frequently used for decarburization and refining of ordinary steel, so the C concentration in the molten iron containing Cr to be decarburized is 1.0 to 2.5% by mass. It is necessary to make it lower than general hot metal (C: 4.5% by mass) or Cr-containing molten iron (C: 5-7% by mass). Since the Cr-containing molten iron having such a low C concentration has a higher liquidus temperature than ordinary molten iron or Cr-containing molten iron, in order not to solidify the Cr-containing molten iron in the molten metal holding furnace, the temperature of the molten iron to be retained Must be high. Furthermore, in order for the molten steel decarburized by the decarburization refining apparatus to be in a molten state, the temperature obtained by adding the temperature increase due to the heat generated by the decarburization reaction to the temperature of the Cr-containing molten iron before decarburization refining is Must be above the melting point of the molten steel. However, when the carbon content of the Cr-containing molten iron is low as in the above prior art, the amount of heat increase due to the decarburization reaction is small. Therefore, even when the molten steel after decarburization refining has a temperature equal to or higher than the melting point, the temperature of the Cr-containing molten iron discharged from the molten metal holding furnace is required to be high. However, in the above prior art, the Cr-containing molten iron discharged from the molten metal holding furnace has C of 1.2 to 2.6% by mass and a temperature of 1590 to 1620 ° C. Such a temperature is not the temperature of the hot metal region at all, but rather close to the temperature of the molten steel, so that the loss of the refractory in the molten metal holding furnace becomes remarkably large.
[0014]
On the other hand, in the above prior art, it is proposed that the super heat of the Cr-containing molten iron in the molten metal holding furnace is kept within 50 ° C., but the temperature drop at the time of discharging the molten metal from the molten metal holding furnace to the ladle is reduced. Considering this, the Cr-containing molten iron when it arrives at the refining apparatus that performs the final decarburization that is the next step has a margin of only about 10 to 20 ° C. from its liquidus. And since the C density | concentration in this Cr-containing molten iron is as low as 1-2 to 2.6 mass%, the oxidation loss of Cr is remarkably enlarged at the low temperature of the initial stage of final decarburization refining. Chromium oxide-based slag once generated by oxidation has a very high melting point, and therefore, it adheres to the furnace wall or the like, and adheres to each other on the surface of the molten iron and exists in a large lump shape. Therefore, even if the temperature of the molten iron rises with the progress of decarburization refining, it is not easily reduced again by C in the molten iron. As a result, the Cr yield in the molten steel is significantly reduced.
[0015]
Therefore, in the present invention, the thermal load received by the refractory in the molten metal holding furnace is reduced by increasing the C content in the molten metal holding furnace and lowering the melting point of the molten metal. Specifically, the C concentration is set to 3% by mass or more. When the C concentration is increased in this way, the liquidus temperature of Cr-containing molten iron can be remarkably lowered. Therefore, even if the super heat is increased, the molten metal retention in the prior art is maintained in the chromium-containing molten iron in the present invention. The temperature is lower than the Cr-containing molten iron temperature in the furnace. The specific super heat is in the range of 50 to 150 ° C. When the liquidus temperature is about 1250 ° C., the temperature of the Cr-containing molten iron may be 1300 to 1400 ° C., and can be 200 to 300 ° C. lower than the prior art. The Cr content of the Cr-containing molten iron is assumed to be 10 to 40% by mass because it is assumed that stainless steel or heat-resistant steel is produced.
[0016]
On the other hand, the Cr-containing molten iron discharged from the molten metal holding furnace has a remarkably high C concentration compared to the prior art. Therefore, decarburization with a finishing decarburization refining device such as AOD or VOD will prolong the refining time. This is not preferable because it causes the refractory to melt. Therefore, in the present invention, decarburization refining is performed in a converter reactor. The converter reactor has a freeboard larger than the AOD or VOD (the height of the space from the molten bath surface to the top of the vessel) and is equipped with oxygen blowing means that can supply oxygen gas at a rate nearly 10 times higher. ing. Therefore, even if the Cr-containing molten iron having a C concentration significantly higher than that of the prior art is used, the refining time in the case of decarburizing C: 1.5 to 2.6 mass% of Cr-containing molten iron by AOD is about 80 minutes. On the other hand, decarburization can be completed in a considerably short time (about 40 to 60 minutes).
[0017]
As a method of obtaining high Cr molten iron before charging into a molten metal holding furnace in the present invention, a furnace equipped with an electric heating source such as arc or induction melting, or a heating source using a flame in which various fuels are burned is used. Although the method of melt | dissolving a containing raw material with an iron source may be sufficient, it is more preferable to carry out melting reduction of Cr ore, Cr containing slag, dust, sludge Cr containing refractory waste, etc. using a reducing atmosphere. As a furnace that enables such smelting reduction, a vertical furnace described in Japanese Patent Publication No. 02-40723 or a converter type smelting reduction furnace described in Japanese Patent Publication No. 04-38806 is preferable. In the present invention, the Cr-containing molten iron to be charged into the molten metal holding furnace is not limited to one melted in one smelting reduction furnace, but is also combined with one smelted in a plurality of smelting reduction furnaces. Then, it may be charged into the molten metal holding furnace or held after mixing in the molten metal holding furnace.
[0018]
Also, the molten metal holding furnace holds the molten Cr-containing iron at a predetermined temperature for an indefinite period until it is supplied to the decarburizing and refining furnace of the next process, or as described later, Since scrap and the like are added and melted in the furnace, it is necessary to have a molten metal heating function. As a molten metal holding furnace equipped with a molten metal heating function, a conventionally known kneading furnace can be cited as a representative. However, from the viewpoint of thermal efficiency, ease of temperature adjustment, and rapid heating, the above-mentioned Japanese Patent Laid-Open No. 57-161020 is used. A molten metal holding furnace having an electric heating device mentioned in the publication is preferred. As such a molten metal holding furnace, a molten metal holding furnace provided with a groove type induction heating means disclosed in Japanese Patent Publication No. 50-25666 is particularly suitable.
[0019]
In the molten metal holding furnace, it is preferable to add and melt scrap, particularly stainless steel scrap, as an inexpensive iron source, Cr source or Ni source. In addition, it is necessary to determine the addition amount of scrap so that the refining schedule in the next process is not hindered in consideration of the supply capacity of the Cr-containing molten iron from the previous process and the heating capacity of the molten metal holding furnace. This is because the purpose of the present invention is to prevent the refining schedule of the decarburization refining furnace determined in accordance with the operation of the continuous casting machine from being hindered by the ability of the melting furnace for Cr-containing molten iron.
[0020]
As described above, the decarburization refining furnace is a converter reactor. As the converter reactor, there are a top blowing converter, a bottom blowing converter, and a top bottom blowing converter. From the viewpoint of preventing oxidation loss of Cr in molten iron, slag and molten iron can be vigorously stirred. It is preferable to use a bottom blowing converter or an upper bottom blowing converter. Further, in order to give priority to oxidation of C over Cr even in the low carbon region at the end of decarburization refining, it is more preferable to include means for supplying a diluent gas such as nitrogen or argon into the oxygen gas.
[0021]
In addition, when further decarburization is performed after decarburization and refining in such a converter-type reaction vessel, as a device that can perform decarburization under reduced pressure or in an adjusted atmosphere, conventionally known VOD and RH A vacuum degassing tank or the like can be preferably used.
[0022]
Next, a process flow example of the high Cr molten steel manufacturing method according to the present invention will be described with reference to the drawings. FIG. 1 shows the production of Cr-containing molten iron in a converter-type smelting reduction furnace in which a hot metal produced in a blast furnace and a reducing material such as Cr ore and coal are smelted and reduced. This is an example in which molten iron containing Cr is supplied from the molten metal holding furnace to the decarburizing and refining furnace according to the refining schedule in the decarburizing and refining furnace which is the next process. In this example, decarburization refining consists of a converter that performs primary decarburization refining, and VOD that finishes decarburization (secondary decarburization refining) of the obtained Cr-containing molten steel. The high Cr molten steel that has been decarburized and refined to a predetermined component in these decarburizing and refining is cast in a continuous casting machine to form a steel slab such as slab or bloom.
[0023]
In the molten metal holding furnace, it is also possible to charge and melt cheap scrap. The melting of scrap in the molten metal holding furnace exhibits a function as a supplementary means when the supply rate of molten Cr-containing iron from the smelting reduction furnace is insufficient, in addition to cost reduction by using inexpensive raw materials.
[0024]
In the example shown in FIG. 2, as a smelting reduction furnace for melting Cr-containing molten iron, in addition to the converter type smelting reduction furnace in the example of FIG. 1 described above, Cr-containing slag, Cr-containing dust, Cr-containing sludge, etc. are coke. This is an example in which a vertical furnace type smelting reduction furnace for reducing with a solid reducing agent such as the above is provided. Various steels containing Cr and various by-products of Cr are generated in a steelmaking factory that manufactures high Cr steel and its lower processes. Among them, scrap can be melted in a molten metal holding furnace or a decarburization refining furnace, but Cr-containing slag, Cr-containing dust, Cr-containing sludge, Cr-containing refractory waste, etc., Cr is oxidized, Without the reduction process, it cannot be regenerated as a raw material for high Cr molten steel. Therefore, such a substance is charged into a smelting reduction furnace to produce Cr-containing molten iron. These materials may be reduced in a converter type smelting reduction furnace, but since they do not hinder the operation of the converter type smelting reduction furnace, as shown in FIG. More preferably, a reduction furnace is provided.
[0025]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples (comparative examples 1 to 3) out of the preferred range according to the present invention.
[0026]
The embodiment of the present invention (hereinafter referred to as the present invention example) was based on the process shown in FIG. The converter-type smelting reduction furnace is a top-bottom-blown converter type furnace having a furnace capacity of 185 tons, and having a top-blown oxygen lance and a bottom-blown oxygen tuyere. In addition, a vertical smelting reduction furnace that melts and smelts Cr-containing slag, dust, sludge, and the like is also provided. The molten metal holding furnace has a capacity of 1000 tons and is provided with a groove type induction heating means. The decarburization refining furnace is an upper bottom blowing converter with a furnace capacity of 185 tons, and a refining apparatus for secondary decarburization is a VOD capable of refining molten steel in a ladle with a capacity of 180 tons.
[0027]
Comparative Example 1 is similar to the above-described conventional example (Japanese Patent Laid-Open No. 57-161020), and the C concentration of Cr-containing molten iron in the molten metal holding furnace is 2.5 mass%, and the super heat is 50 ° C. or less. It has been operated. In Comparative Examples 1 and 2, as proposed in the prior art, Cr in the Cr-containing molten iron was actively oxidized using the inside of the molten metal holding furnace as an oxidizing atmosphere to prevent the refractory from being damaged.
[0028]
Example of the present invention, C concentration of molten iron containing Cr in the molten metal holding furnaces of Comparative Examples 1 to 3, super heat, refractory erosion amount in the molten metal holding furnace, refractory erosion amount in the decarburization refining furnace Table 1 collectively shows the amount of Cr oxidation loss in the decarburization refining furnace. In addition, in the present invention example and the comparative example, in the decarburization refining furnace, 100 heats were continuously operated for investigation.
[0029]
[Table 1]
Figure 0003788392
[0030]
The numbers underlined in Table 1 indicate that they are outside the scope of the present invention. In addition, the amount of refractory erosion in the molten metal holding furnace was measured by measuring the amount of refractory erosion (mm) at the junction between the groove-type induction heating means and the molten metal holding furnace body, and based on the case of the present invention. It is a relative value. The refractory erosion amount in the decarburization refining furnace is a value relative to the refractory erosion amount (mm) of the slag line measured based on the case of the present invention. The amount of Cr oxidation loss is a value relative to the amount of Cr oxidation loss in the decarburization refining furnace of the present invention.
[0031]
According to Table 1, in Comparative Examples 1 and 2, since the inside of the molten metal holding furnace was an oxidizing atmosphere, it was possible to prevent the refractory from being melted by the refractory, but it was clear that the oxidation loss of Cr in the decarburization refining furnace was large. It is. Further, solid slag composed of Cr oxide adhered to the inside of the molten metal holding furnace, and when it exceeded 50 heats, it was difficult to charge and discharge the molten metal and discharge the slag. Further, in Comparative Example 3, since the temperature of the Cr-containing molten iron in the molten metal holding furnace was too high, the refractory had a large melting loss in both the molten metal holding furnace and the decarburization refining furnace. On the other hand, in the example of the present invention, both the molten metal holding furnace and the decarburizing and refining furnace have little refractory melting loss, and Cr oxidation loss in the decarburizing and refining furnace is also small.
[0032]
【The invention's effect】
As described above, according to the present invention, when melting high Cr molten steel, it is possible to operate without causing excessive Cr oxidation loss in the molten metal holding furnace and preventing erosion of the refractory in the molten metal holding furnace. Become. Moreover, the oxidation loss of Cr in the decarburization refining furnace can be reduced.
[Brief description of the drawings]
FIG. 1 is a flow chart showing an example of a method for melting high Cr steel according to the present invention.
FIG. 2 is a flowchart showing another example of the method for melting high Cr steel according to the present invention.

Claims (2)

含Cr溶鉄の溶製炉と脱炭精錬炉との間に配設され、溶湯の加熱機能を備えた溶湯保持炉に、前記含Cr溶鉄を一時的に保持し、前記脱炭精錬炉での精錬スケジュールに合わせて該溶湯保持炉から含Cr溶鉄を該脱炭精錬炉に出湯し、精錬する高Cr溶鋼の溶製方法において、
前記脱炭精錬炉を転炉型反応容器とすると共に、前記溶湯保持炉内での含Cr溶鉄中のC濃度を3質量%以上に、その温度を該Cr溶鉄の液相線温度より50〜150℃高い温度に保持することを特徴とする高Cr溶鋼の溶製方法。
The Cr-containing molten iron is temporarily held in a molten metal holding furnace provided between the smelting furnace of the Cr-containing molten iron and the decarburizing and refining furnace, and having a heating function of the molten metal. In the method of melting high Cr molten steel, the molten iron containing Cr is discharged from the molten metal holding furnace to the decarburizing and refining furnace in accordance with the refining schedule,
The decarburization refining furnace is a converter type reaction vessel, and the C concentration in the molten iron containing Cr in the molten metal holding furnace is set to 3% by mass or more, and the temperature is 50% higher than the liquidus temperature of the molten Cr. A method for producing high Cr molten steel, characterized in that the high Cr molten steel is maintained at a temperature as high as ˜150 ° C.
前記脱炭精錬炉で精錬して得られた高Cr溶鋼を、さらに減圧機能を備えた精錬装置にて仕上げ脱炭精錬を行うことを特徴とする請求項1記載の高Cr溶鋼の溶製方法。The high Cr molten steel smelting method according to claim 1, wherein the high Cr molten steel obtained by refining in the decarburizing refining furnace is further subjected to finishing decarburization refining in a refining apparatus having a pressure reducing function. .
JP2002164101A 2002-06-05 2002-06-05 Method for producing high Cr molten steel Expired - Lifetime JP3788392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164101A JP3788392B2 (en) 2002-06-05 2002-06-05 Method for producing high Cr molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164101A JP3788392B2 (en) 2002-06-05 2002-06-05 Method for producing high Cr molten steel

Publications (2)

Publication Number Publication Date
JP2004010939A JP2004010939A (en) 2004-01-15
JP3788392B2 true JP3788392B2 (en) 2006-06-21

Family

ID=30432345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164101A Expired - Lifetime JP3788392B2 (en) 2002-06-05 2002-06-05 Method for producing high Cr molten steel

Country Status (1)

Country Link
JP (1) JP3788392B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702097B2 (en) * 2006-02-24 2011-06-15 Jfeスチール株式会社 Operation method of chromium-containing hot metal holding furnace

Also Published As

Publication number Publication date
JP2004010939A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP4736466B2 (en) Method for producing high chromium molten steel
US4410360A (en) Process for producing high chromium steel
US3323907A (en) Production of chromium steels
JP3788392B2 (en) Method for producing high Cr molten steel
Fruehan Overview of steelmaking processes and their development
JPS6250545B2 (en)
JP2004137572A (en) Method for refining molten metal containing chromium
JP4114346B2 (en) Manufacturing method of high Cr molten steel
JPS60106912A (en) Manufacture of low carbon-containing steel
JPH0987722A (en) Method for refining molten crude stainless steel
JP4049106B2 (en) Melting method of nickel-containing stainless steel
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JPH0967608A (en) Production of stainless steel
Biswas et al. Iron-and Steel-Making Process
JP2757761B2 (en) Method for producing molten stainless steel by smelting reduction
JP2002371313A (en) Method for smelting molten stainless steel
JP3560637B2 (en) Converter furnace blowing method for stainless steel
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPS6152208B2 (en)
JP2001032009A (en) Method for refining molten steel containing chromium
US4066442A (en) Method of making chrome steel in an electric arc furnace
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JP3902446B2 (en) Converter blowing method
JPH02221310A (en) Production of ni-and cr-containing molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Ref document number: 3788392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8