JPH0959708A - Method for efficently decarburization-blowing stainless steel - Google Patents

Method for efficently decarburization-blowing stainless steel

Info

Publication number
JPH0959708A
JPH0959708A JP23590595A JP23590595A JPH0959708A JP H0959708 A JPH0959708 A JP H0959708A JP 23590595 A JP23590595 A JP 23590595A JP 23590595 A JP23590595 A JP 23590595A JP H0959708 A JPH0959708 A JP H0959708A
Authority
JP
Japan
Prior art keywords
refining
slag
molten steel
decarburization
decarburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23590595A
Other languages
Japanese (ja)
Inventor
Kenichiro Miyamoto
健一郎 宮本
Katsuhiko Kato
勝彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23590595A priority Critical patent/JPH0959708A/en
Publication of JPH0959708A publication Critical patent/JPH0959708A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a reducing material cost by executing the oxygen-blowing decarburization refining while adding ferro-chromium alloy into molten steel at the specific temp. after specifying Al2 O3 concn. in slag and C concn. in the molten steel. SOLUTION: Crude molten stainless steel is melted by using molten iron of a blast furnace and ferro-chromium alloy and then, the decarburization- refining is executed in a refining furnace. At this time, a condition just before adding or during adding the ferro-chromium alloy is regulated. That is, the molten steel temp. just before adding the ferro-chromium alloy is made to 1450-1600 deg.C by adding metallic Al or aluminum dross containing the metallic Al as the temp. raising material to raise the temp. into the molten iron charged into the refining furnace. Then, after containing 10-30% Al2 O3 concn. in the slag and 2.5-4.0% [C] concn. in the molten iron, the oxygen-blowing decarburization-refining is executed while continuously adding the ferro- chromium alloy. By this method, the effective refining of the stainless steel can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、精錬炉によるステ
ンレス鋼精錬において、吹酸脱炭中のクロム酸化および
スプラッシュ、ダストの発生を抑制することにより、ク
ロムの回収に必要な還元剤原単位を低減し、安価かつ安
定した高歩留りのステンレス鋼の溶製が可能なことを特
徴とするステンレス鋼の効率的な脱炭吹錬方法である。
TECHNICAL FIELD The present invention relates to the reduction agent basic unit required for recovery of chromium by suppressing the oxidation of chromium and the generation of splash and dust during decarburization of blown acid in the refining of stainless steel in a refining furnace. It is an efficient decarburization and blowing method for stainless steel, which is characterized in that it is possible to melt and produce stainless steel with reduced cost, stable and high yield.

【0002】[0002]

【従来の技術】溶鋼の吹酸脱炭精錬炉としては、上吹転
炉、底吹転炉、上底吹転炉(LD−OB炉)、AODや
VODなどがあり、ステンレス鋼の吹酸脱炭精錬は、電
気炉にてステンレス屑を原料として、これにフェロクロ
ム(Fe−Cr)やフェロニッケル(Fe−Ni)等の
合金鉄を添加して高炭素含有のステンレス粗溶鋼を溶製
後、あるいは、上底吹転炉を用いてクロム鉱石を溶融還
元溶製した高炭素ステンレス粗溶鋼を溶製後にAODや
上底吹転炉で吹酸脱炭し製品を溶製する方法や、また、
日本の高炉メーカーを中心に予め脱燐・脱硫した高炉溶
銑を上底吹転炉に装入し、漸次炉上よりFe−Cr等の
合金を添加しつつ吹酸脱炭する方法、さらには、上底吹
酸転炉での吹酸脱炭を0.25〜0.7%の中炭素域ま
でとし、これ以下の脱炭はVOD等の減圧下での吹酸脱
炭により実施する方法が一般に行われている。
2. Description of the Related Art Blowing acid decarburizing and refining furnaces for molten steel include top blowing converters, bottom blowing converters, top bottom blowing converters (LD-OB furnaces), AODs and VODs. For decarburization refining, stainless steel scrap is used as a raw material in an electric furnace, and ferrochrome (Fe-Cr), ferro-nickel (Fe-Ni), and other ferroalloys are added to it to melt high-carbon-containing stainless crude molten steel. Alternatively, a method of melting high-carbon stainless steel by melting and reducing chromium ore using a top-and-bottom blowing converter, and then melting the product with AOD or a top-and-bottom blowing converter to decarburize the product to produce a product, ,
Japanese blast furnace manufacturers are mainly used to load de-phosphorized and desulfurized blast furnace hot metal into the upper and lower blowing converter and gradually decarburize the acid while adding alloys such as Fe-Cr from the top of the furnace. The method of carrying out the decarburization of the propellant acid in the upper-bottom blown acid converter up to the middle carbon range of 0.25 to 0.7%, and the decarburization below this is carried out by the propellant acid decarburization under reduced pressure such as VOD. It is generally done.

【0003】いずれの方法においても、吹酸終了後に酸
化物となってスラグへ移行したクロムの損失分を、フェ
ロシリコン(Fe−Si)やAlなどの還元材を添加
し、還元回収することが広く行われているが、特に、高
炉溶銑を用いて上底吹転炉にてフェロクロムを漸次炉上
より添加しつつ吹酸脱炭を行う方法においては、他の電
気炉やクロム鉱石を溶融還元溶製によって、ステンレス
粗溶鋼を溶製後吹酸脱炭を行う方法に比べ、ベースメタ
ルである脱燐・脱硫溶銑が低温であり、かつ、冷材であ
るフェロクロム合金を多量に使用することに起因して、
クロムの酸化損失が大きく、還元用フェロシリコン原単
位の増大やスラグ量増加に伴う精錬炉の炉材原単位の悪
化を招いている。
In any of the methods, the loss of chromium, which has become an oxide after the end of blowing acid and has been transferred to slag, can be reduced and recovered by adding a reducing material such as ferrosilicon (Fe-Si) or Al. It is widely used, but especially in the method of decarburization of bromic acid while gradually adding ferrochromium from the top and bottom of the converter using blast furnace hot metal, smelting reduction of other electric furnaces and chrome ores is performed. Compared with the method of melting crude stainless steel by smelting and then decarburizing with blown acid, the dephosphorization / desulfurization hot metal that is the base metal has a lower temperature, and a large amount of ferrochrome alloy that is the cold material is used. Due to
Oxidation loss of chromium is large, leading to an increase in the basic unit of ferrosilicon for reduction and a deterioration in the basic unit of furnace material of the refining furnace due to an increase in the amount of slag.

【0004】一般に、転炉等の精錬炉において脱炭酸素
効率を向上させ、低炭素領域まで効率的に脱炭精錬を行
う方法としては、転炉に底吹き機能を付加し、鋼浴の攪
拌を激しく行い、最も活性な反応領域である吹酸火点部
への溶鋼中炭素の供給を促進し(特公昭62−1460
2号公報)、脱炭酸素効率を高位に維持している酸素供
給律速領域から、脱炭酸素効率の低下する鋼中炭素移動
律速領域へと移行する臨界炭素濃度([%C]* )を、
低位側へ移行させることや、脱炭末期の鋼中炭素移動律
速領域において、吹酸速度を低下させるなどの吹酸速度
コントロールを行うことにより、脱炭酸素効率の低下の
防止を図っていた(鉄と鋼、第68年(1982),p
1946)。
Generally, as a method of improving decarbonation efficiency in a refining furnace such as a converter and efficiently performing decarburization refining to a low carbon region, a bottom blowing function is added to the converter to stir a steel bath. To accelerate the supply of carbon in molten steel to the hot spot of blown acid, which is the most active reaction region (Japanese Patent Publication No. 62-1460).
No. 2), the critical carbon concentration ([% C] * ) that shifts from the oxygen supply rate controlling region where the decarboxylation efficiency is maintained at a high level to the carbon transfer rate controlling region in steel where the decarboxylation efficiency decreases. ,
It was attempted to prevent the decarboxylation efficiency from decreasing by shifting to the lower side and controlling the blowing acid rate such as lowering the blowing acid rate in the carbon rate-controlling region of steel in the final stage of decarburization ( Iron and Steel, 68th year (1982), p.
1946).

【0005】また、ステンレス粗溶鋼の精錬方法とし
て、特公平1−54409号公報に見られるように該溶
鋼の浴面下に非酸化性ガスを導入して溶鋼を攪拌すると
同時に、浴面上へ酸素と非酸化性ガスの混合ガスを吹き
付け、さらに浴面上に吹き付ける混合ガス中の酸素に対
する非酸化性ガスの割合を、溶鋼中炭素濃度の低下に伴
い増加させる方法が提案されている。
Further, as a refining method for crude stainless molten steel, as disclosed in Japanese Patent Publication No. 54409/1989, a non-oxidizing gas is introduced below the bath surface of the molten steel to stir the molten steel, and at the same time, the molten steel is poured onto the bath surface. A method has been proposed in which a mixed gas of oxygen and a non-oxidizing gas is sprayed and the ratio of the non-oxidizing gas to oxygen in the mixed gas sprayed on the bath surface is increased as the carbon concentration in the molten steel decreases.

【0006】[0006]

【発明が解決しようとする課題】以上に述べたように転
炉等の精錬炉にて、ステンレス粗溶鋼の吹酸脱炭精錬を
行う際に、脱炭酸素効率を向上させる、すなわちクロム
の酸化損失を抑制する方法としては、特公昭62−14
602号公報や鉄と鋼、第68年(1982),p19
46、さらには特公平1−54409号公報に示された
方法などがある。
As described above, when carrying out blown acid decarburization refining of stainless crude molten steel in a refining furnace such as a converter, the efficiency of decarboxylation is improved, that is, the oxidation of chromium. As a method for suppressing loss, Japanese Patent Publication No. 62-14
No. 602, Iron and Steel, 68th year (1982), p19
46, and the method disclosed in Japanese Patent Publication No. 1-54409.

【0007】しかしながら、これらの方法では脱炭酸素
効率の向上、およびクロム酸化の抑制はいずれも脱炭中
期から末期にかけてを対象としており、特に、高炉溶銑
を用いて上底吹転炉にて、フェロクロムを炉上より連続
的に添加しつつ吹酸脱炭を行う方法に対しては、脱炭中
期〜末期でのクロム酸化損失は抑制できても、この領域
でのクロム酸化は全体のクロム酸化に対してその割合は
非常に小さく、クロム酸化の大部分が起こっているフェ
ロクロム投入中でのクロム酸化抑制対策は不十分であっ
た。
However, in these methods, improvement of decarboxylation efficiency and suppression of chromium oxidation are aimed at from the middle stage to the final stage of decarburization, and particularly, in the case of using the blast furnace hot metal in the upper and lower blowing converters, For the method of performing decarburization of blown acid while continuously adding ferrochrome from the furnace, chromium oxidation loss in the middle to end decarburization can be suppressed, but chromium oxidation in this region is On the other hand, the ratio was very small, and the measure for suppressing chromium oxidation during the introduction of ferrochrome, where most of the chromium oxidation occurred, was insufficient.

【0008】さらに、ステンレス鋼精錬において生成す
るCr23 含有スラグは、Cr23 が高融点である
ことに起因して滓化性が黒い、すなわち液相率が低いた
め、吹酸脱炭により生成するダストやスプラッシュに対
するカバー効果が低く、ダストやスプラッシュが炉外に
飛散したり、地金が炉頂近辺に付着することにより、溶
鋼歩留りが低下したり作業性が阻害されるなどの問題が
あった。
Further, the Cr 2 O 3 -containing slag produced in stainless steel refining has a black slagification property due to the high melting point of Cr 2 O 3 , that is, the liquid phase ratio is low, and therefore, the removal of the propellant is not possible. The cover effect for dust and splash generated by charcoal is low, dust and splash are scattered outside the furnace, and the ingots adhere to the vicinity of the furnace top, which lowers the molten steel yield and hinders workability. There was a problem.

【0009】したがって、本発明の目的とするところ
は、高炉溶銑とフェロクロムを用いた上底吹転炉におけ
るステンレス粗溶鋼の吹酸脱炭精錬に際し、クロム酸化
の大部分を占めるフェロクロム投入中でのクロム酸化損
失を抑制し、かつ、吹錬途中に発生するダスト、スプラ
ッシュの発生を低減することにより、効率的なステンレ
ス粗溶鋼の溶製を可能とすることにある。
Therefore, an object of the present invention is to introduce ferrochromium, which accounts for most of the chromium oxidation, in the case of blown acid decarburization refining of crude stainless steel melt in a top-and-bottom blow converter using blast furnace hot metal and ferrochrome. By suppressing the chromium oxidation loss and reducing the generation of dust and splash generated during blowing, it is possible to efficiently produce the crude stainless steel melt.

【0010】[0010]

【課題を解決するための手段】本発明は、前記課題を解
決するものであって、高炉溶銑とフェロクロム合金鉄を
用いたステンレス粗溶鋼の溶製において、精錬炉にて脱
炭精錬するに際し、精錬炉に装入された溶銑に金属アル
ミニウム(Al)あるいは金属Al分を10〜80%含
んだアルミドロスを昇熱材として添加して昇熱すること
により、フェロクロム合金添加直前の溶鋼温度を145
0〜1600℃とし、かつ、スラグ中Al23 濃度を
10〜30%、溶鋼中[C]濃度を2.5〜4.0%と
した後、フェロクロム合金を連続的に添加しつつ、吹酸
脱炭精錬を行うことを特徴とするステンレス鋼の効率的
な脱炭吹錬方法である。
Means for Solving the Problems The present invention is to solve the above problems, and in demelting and refining in a refining furnace in smelting of stainless crude molten steel using blast furnace hot metal and ferrochrome alloy iron, By adding aluminum aluminum (Al) or aluminum dross containing 10 to 80% of metal Al as a heat-up material to the hot metal charged in the refining furnace to raise the temperature, the molten steel temperature immediately before the addition of the ferrochrome alloy is 145
0 to 1600 ° C., and an Al 2 O 3 concentration in slag of 10 to 30% and a [C] concentration in molten steel of 2.5 to 4.0%, while continuously adding a ferrochrome alloy, It is an efficient decarburizing and blowing method for stainless steel, which is characterized by carrying out decarburizing and refining with blown acid.

【0011】ここで、望ましくは、前チャージで生成し
たクロム酸化物を含有する脱炭滓を炉内に残存させたま
ま、次チャージの溶銑を装入し、次いで、炭材の添加と
吹酸により昇温還元して前記脱炭滓中のクロム分を還元
した後、クロム回収済スラグを排滓し、次いで、金属ア
ルミニウム(Al)あるいは金属Al分を10〜80%
含んだアルミドロスを昇熱材として添加して昇熱するこ
とにより、フェロクロム合金添加直前の溶鋼温度を14
50〜1600℃とし、かつ、スラグ中Al23 濃度
を10〜30%、溶鋼中[C]濃度を2.5〜4.0%
とした後、フェロクロム合金を連続的に添加しつつ、吹
酸脱炭精錬を行うことにより、さらに大きな効果が得ら
れる。
Here, it is desirable to charge the hot metal of the next charge while leaving the decarburizing slag containing the chromium oxide generated by the precharge in the furnace, and then add the carbonaceous material and the propellant acid. To reduce the chromium content in the decarburizing slag by heating with slag to remove the chromium-recovered slag, and then to remove metal aluminum (Al) or metal Al content from 10 to 80%.
By adding the included aluminum dross as a heat-up material and raising the temperature, the molten steel temperature immediately before the addition of the ferrochrome alloy is increased to 14
50 to 1600 ° C., the Al 2 O 3 concentration in the slag is 10 to 30%, and the [C] concentration in the molten steel is 2.5 to 4.0%
After that, by further adding the ferrochrome alloy while carrying out the decarburizing and refining of the acid, a greater effect can be obtained.

【0012】[0012]

【作用】本発明は以下に記載するステンレス粗溶鋼の吹
酸脱炭精錬に際して、フェロクロム合金添加直前および
添加中の条件を規定し、かつ、脱炭吹錬中のスラグの液
相率を高位に保持し、スラグ/メタル反応界面積を大き
く保つことによって、スラグ中のクロム酸化物(Cr2
3 )の鋼中炭素による還元反応を促進することによ
り、優先脱炭条件を確保する、かつ、吹酸脱炭中に発生
するスプラッシュ、ダストに対するカバー効果を促進す
ることに立脚している。
The present invention defines the conditions immediately before and during the addition of a ferrochrome alloy in the blown acid decarburization refining of a crude stainless steel melt described below, and sets the liquid phase ratio of the slag during the decarburization blow to a high level. By holding the slag / metal reaction interface area large, the chromium oxide (Cr 2
It is based on promoting preferential decarburization conditions by accelerating the reduction reaction of O 3 ) by carbon in steel, and promoting a cover effect against splash and dust generated during decarburization with propionic acid.

【0013】吹酸脱炭精錬における脱炭反応機構として
は、まず、溶鋼中に吹き付けられた酸素が、一旦、クロ
ム酸化物(Cr23 )を形成し、このCr23 がス
ラグ中へと移行する。その後、スラグ中のCr23
溶鋼中の炭素分によって還元されることにより、脱炭反
応が進行することになる。したがって、総括の脱炭反応
はクロム酸化と溶鋼中Cによるクロムの還元バランスで
表され、脱炭反応速度は下記の(1)式で表すことがで
きる。 −d[%C]/dt=(A・k/V) ・([%C]−[%C]e ) ・・・(1) ただし、A:スラグ/メタル間の有効反応界面積 k:脱炭速度定数 V:溶鋼体積 [%C]e :平衡炭素濃度 である。
As the decarburization reaction mechanism in the blown acid decarburization refining, first, oxygen blown into molten steel once forms chromium oxide (Cr 2 O 3 ), and this Cr 2 O 3 is in the slag. Transition to. After that, Cr 2 O 3 in the slag is reduced by the carbon content in the molten steel, so that the decarburization reaction proceeds. Therefore, the general decarburization reaction is represented by the balance of chromium oxidation and reduction of chromium by C in molten steel, and the decarburization reaction rate can be represented by the following equation (1). -D [% C] / dt = (Ak / V)-([% C]-[% C] e ) (1) However, A: effective reaction interfacial area between slag / metal k: Decarburization rate constant V: Molten steel volume [% C] e : Equilibrium carbon concentration.

【0014】ここで、含クロム溶鋼の吹酸脱炭精錬の場
合、(1)式中のドライビングフォース項である
((〔%C〕−〔%C〕e ))が小さくなると、脱炭に
消費されるべき酸素量が小さくなり、クロムの酸化に消
費されたままとなってまうため、結果としてクロム酸化
量が増大することになる。したがって、クロム酸化を抑
制し、優先脱炭を確保するためには、このドライビング
フォース項を極力大きく保持することが重要であること
になる。
Here, in the case of blown acid decarburization refining of molten steel containing chromium, when the driving force term (([% C]-[% C] e )) in the equation (1) becomes small, decarburization is performed. Since the amount of oxygen to be consumed becomes smaller and remains consumed for the oxidation of chromium, the amount of oxidation of chromium increases as a result. Therefore, in order to suppress chromium oxidation and secure preferential decarburization, it is important to keep this driving force term as large as possible.

【0015】具体的には、精錬炉に装入された溶銑に金
属アルミニウム(Al)あるいは金属Al分を含んだア
ルミドロスを昇温材として添加して吹酸昇温する、ある
いは、前チャージで生成したクロム酸化物を含有する脱
炭滓を炉内に残存させたまま、次チャージの溶銑を装入
し、次いで、炭材の添加と吹酸により昇温還元して前記
脱炭滓中のクロム分を還元した後、クロム回収済スラグ
を排滓し、次いで、金属アルミニウム(Al)あるいは
金属Al分を含んだアルミドロスを昇温材として添加し
て昇温することにより、フェロクロム合金添加直前の溶
鋼温度を1450〜1600℃とし、かつ、スラグ中A
23 濃度を10〜30%、溶鋼中〔C〕濃度を2.
5〜4.0とし、その後、フェロクロム合金を連続的に
添加しつつ、吹酸脱炭精錬を行うことにある。
Specifically, metallic aluminum (Al) or aluminum dross containing metallic Al is added as a temperature raising material to the hot metal charged in the refining furnace to raise the temperature of the propellant acid, or by pre-charging. With the decarburizing slag containing the generated chromium oxide remaining in the furnace, the hot metal of the next charge was charged, and then the carbonaceous material in the decarburizing slag was added by adding carbonaceous material and reducing the temperature by blowing acid. Immediately before adding the ferrochrome alloy by reducing the chromium content, discharging the chromium recovered slag, and then adding metallic aluminum (Al) or aluminum dross containing metallic Al as a temperature raising material to raise the temperature. Molten steel temperature of 1450 ~ 1600 ℃, and in the slag A
The l 2 O 3 concentration is 10 to 30%, and the [C] concentration in the molten steel is 2.
It is set to 5 to 4.0, and thereafter, the blown acid decarburization refining is performed while continuously adding the ferrochrome alloy.

【0016】本発明者らは、ステンレス鋼の吹酸脱炭精
錬に際し、種々の実験を行うことにより、Cr23
30%以上含有したステンレス鋼スラグにおいても、A
23 を添加することにより、スラグの液相化が促進
されることを知見し得た。本発明はこの知見に基づきな
されたものである。
The inventors of the present invention have conducted various experiments in carrying out decarburizing and refining of stainless steel with the aid of blown acid to find that even in stainless steel slag containing 30% or more of Cr 2 O 3 ,
It was found that the addition of l 2 O 3 promotes the liquid phase formation of slag. The present invention is based on this finding.

【0017】一般に、ステンレス鋼の吹酸脱炭時に生成
するCr23 含有スラグは滓化性が悪い、すなわちス
ラグの液相率が非常に低いという特性を有している。こ
れは、高融点酸化物であるCr23 の生成に加え、こ
のCr23 と他のスラグ成分系であるMgOやCaO
との反応により、MgO・Cr23 やCaO・Cr2
3 などの高融点化合物の生成に起因したものである。
しかしながら、このような低液相率スラグに10〜30
%のAl23 を添加することにより、スラグの液相率
は向上する(図1)。これは、Al23 の添加によ
り、低融点化合物である12CaO、7Al23 系な
どのCaO−Al23 系化合物の生成によるCaO・
Cr23 相などの消滅によるものである。
In general, Cr 2 O 3 -containing slag produced during decarburization of stainless steel with blown acid has a characteristic that the slag-forming property is poor, that is, the liquid phase ratio of the slag is very low. In addition to the formation of Cr 2 O 3 which is a high melting point oxide, this Cr 2 O 3 and other slag component systems such as MgO and CaO.
By reaction with, MgO · Cr 2 O 3 and CaO · Cr 2
This is due to the formation of high melting point compounds such as O 3 .
However, such a low liquid phase slag has a content of 10 to 30
The liquid phase ratio of the slag is improved by adding Al 2 O 3 ( %) (FIG. 1). This is because the addition of Al 2 O 3, CaO · by formation of CaO-Al 2 O 3 based compounds such as 12CaO, 7Al 2 O 3 system is a low melting compound
This is due to the disappearance of the Cr 2 O 3 phase and the like.

【0018】さらに、このスラグ溶融化の効果により、
スラグ液相率を70%以上に維持することによって、ス
プラッシュの生成に対するカバー効果も促進されること
により、スプラッシュ、ダストの生成量の大幅な抑制が
可能となり、溶鋼歩留りの低下やスプラッシュの発生に
起因して起こる炉口への地金付着による作業性の悪化の
防止が可能となる(図2)。
Further, due to the effect of this slag melting,
By maintaining the slag liquid phase ratio at 70% or more, the cover effect against the generation of splash is also promoted, which makes it possible to significantly reduce the amount of splash and dust generated, which leads to a decrease in molten steel yield and the occurrence of splash. It is possible to prevent the workability from deteriorating due to the adhesion of metal to the furnace mouth (Fig. 2).

【0019】ここで、Al23 の添加量として10〜
30%が望ましい理由としては、スラグ組成がCr2
3 を30%以上含んだ状態でAl23 濃度が10%未
満であるとスラグの滓化が不十分つまり液相率が70%
以下となることに起因して、スプラッシュやダストの大
量発生に伴う溶鋼歩留りの低下や炉口地金の付着による
作業性の悪化を招くことになり、また、30%を超えて
もそれ以上の滓化促進効果はなく、逆に、飽和MgO濃
度の上昇による耐火物溶損の促進が問題となるからであ
る。
Here, the addition amount of Al 2 O 3 is 10 to
The reason why 30% is desirable is that the slag composition is Cr 2 O.
If the Al 2 O 3 concentration is less than 10% with 30% or more of 3 included, slag slag formation is insufficient, that is, the liquid phase ratio is 70%.
Due to the following, the molten steel yield decreases due to the generation of a large amount of splashes and dust, and the workability deteriorates due to the adhesion of the furnace mouth metal, and even if it exceeds 30%, This is because there is no slag formation promoting effect, and conversely, promotion of melting loss of refractory due to an increase in saturated MgO concentration becomes a problem.

【0020】また、この場合の塩基度(CaO/SiO
2 )としては、2.0〜4.0の範囲が望ましい。これ
は、CaO/SiO2 <2.0の範囲では耐火物の溶損
が問題となるためであり、CaO/SiO2 >4.0の
場合ではスラグ量の大量生成に伴うクロム酸化の増大が
問題となるためである。
In this case, the basicity (CaO / SiO 2
As 2 ), the range of 2.0 to 4.0 is desirable. This is because the melting loss of the refractory material becomes a problem in the range of CaO / SiO 2 <2.0, and in the case of CaO / SiO 2 > 4.0, the increase of chromium oxidation due to the large amount of slag is generated. This is a problem.

【0021】さらに、フェロクロム合金添加中でのクロ
ム酸化を抑制するための条件としては、フェロクロム合
金添加直前の溶鋼中[C]濃度を2.5〜4.0%、か
つ、金属アルミニウム(Al)あるいは金属Al分を含
んだアルミドロスを昇温材として添加して昇温すること
により、溶鋼温度を1450〜1600℃とすることが
望ましい。
Further, as conditions for suppressing chromium oxidation during the addition of the ferrochrome alloy, the [C] concentration in the molten steel immediately before the addition of the ferrochrome alloy is 2.5 to 4.0%, and metallic aluminum (Al) is used. Alternatively, it is desirable that the molten steel temperature be set to 1450 to 1600 ° C. by adding aluminum dross containing metal Al as a temperature raising material and raising the temperature.

【0022】この理由としては、フェロクロム合金添加
直前の溶鋼中[C]濃度が2.5%未満であると、フェ
ロクロム添加中での前記(1)式中のドライビングフォ
ース項が低下することに起因する脱炭不足、すなわちク
ロム酸化の増大、ひいては、還元用炭材原単位増大によ
るコストアップを招くことになり、逆に4.0%を超え
ても、それ以上のクロム酸化抑制効果はほとんど認めら
れず、かつ、脱炭量の増大による処理時間延長および熱
過剰による異常温度上昇などの操業阻害を引き起こすこ
とになる。
The reason for this is that if the [C] concentration in the molten steel immediately before the addition of the ferrochrome alloy is less than 2.5%, the driving force term in the above formula (1) during the addition of the ferrochrome decreases. Insufficient decarburization, that is, increase in chrome oxidation, which in turn leads to cost increase due to increase in carbonaceous material for reduction, and conversely, even if it exceeds 4.0%, almost no further effect of suppressing chrome oxidation is recognized. If the amount of decarburization is increased, the processing time is extended, and an excessive temperature causes an abnormal temperature increase, which causes operation inhibition.

【0023】また、溶鋼温度が1450℃に満たない場
合には、例え[C]濃度を上記の範囲に保持しても、平
衡[C]濃度(〔%C〕e )が上昇することに起因して
ドライビングフォースが低下し、クロム酸化の増大を引
き起こすことになる。逆に、1600℃を超えてもクロ
ム酸化抑制効果は小さく、熱過剰による耐火物溶損の増
長や冷却材使用量の増大を引き起こすことになるからで
ある。
When the molten steel temperature is less than 1450 ° C., the equilibrium [C] concentration ([% C] e ) rises even if the [C] concentration is kept in the above range. As a result, the driving force is reduced, which causes an increase in chromium oxidation. On the contrary, even if the temperature exceeds 1600 ° C., the effect of suppressing chromium oxidation is small and the melting of refractories and the amount of coolant used increase due to excessive heat.

【0024】ここで、昇温材として金属アルミニウム
(Al)あるいは金属Al分を含んだアルミドロスが最
適な理由としては、吹酸によるAlの酸化によって生成
するAl23 やアクミドロス中のAl23 分が上記
スラグ組成のコントロールに適用可能なことに加え、下
記(2)、(3)式に見られるようにAl昇熱による単
位発熱量が通常の炭材昇熱に比べて大きく、短時間での
昇熱が可能となり、生産性が大きく向上するためであ
る。 Al+3/4O2 →1/2Al23 +442kcal/Nm3 −O2 ・・・・(2) C+1/2O2 →CO+196kcal/Nm3 −O2 ・・・・(3)
Here, the reason why aluminum aluminum (Al) or aluminum dross containing metallic Al is most suitable as the temperature raising material is Al 2 O 3 produced by the oxidation of Al by propellic acid or Al 2 in acmidross. In addition to the fact that O 3 content can be applied to control the above slag composition, the unit calorific value due to Al heating is larger than that of ordinary carbonaceous material heating as shown in the following equations (2) and (3). This is because the temperature can be raised in a short time and the productivity is greatly improved. Al + 3 / 4O 2 → 1 / 2Al 2 O 3 + 442kcal / Nm 3 -O 2 ···· (2) C + 1 / 2O 2 → CO + 196kcal / Nm 3 -O 2 ···· (3)

【0025】[0025]

【実施例】表1および表2に175トン上底吹き転炉を
用いた場合の、本発明(表1)と比較例と従来法(表
2)による実施例の比較を示す。ここで、本発明−1は
溶銑などの原料装入後にアルミドロスを昇熱剤として吹
酸昇温によりフェロクロム合金添加前の[%C]、温度
を調整した場合であり、本発明−2は前チャージの未還
元スラグを残存させたまま、溶銑を装入し、次いで炭材
を添加しつつ吹酸昇温還元を行った後に排滓処理を行
い、その後にアルミドロスの添加と吹酸を行うことによ
って、その後のフェロクロム合金添加前の[%C]、温
度を調整した場合である。いずれの場合も鋼種は16%
Cr鋼とし、吹止[C]値としては[C]=0.7%と
した。
EXAMPLES Tables 1 and 2 show a comparison between the present invention (Table 1), a comparative example, and an example according to a conventional method (Table 2) when using a 175 ton top-bottom blowing converter. Here, the present invention-1 is a case where the temperature [% C] before addition of the ferrochrome alloy and the temperature were adjusted by the temperature increase of the propellant acid using aluminum dross as the heat-raising agent after charging the raw material such as hot metal. With the pre-charged unreduced slag remaining, the hot metal was charged, the carbonic acid was added and the temperature was reduced while blowing acid was increased, and then the slag was treated, after which the aluminum dross was added and the acid was added. This is the case where the [% C] and temperature before the subsequent addition of the ferrochrome alloy are adjusted by carrying out. Steel type is 16% in each case
Cr steel was used, and the blow-off [C] value was [C] = 0.7%.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表1および表2から明らかなように、本発
明を用いることにより、吹酸中のスプラッシュおよびダ
ストの発生が大幅に抑制されることにより高歩留りが達
成され、かつ、クロム酸化損失を大幅に抑制することが
可能なことがわかる。
As is clear from Tables 1 and 2, the use of the present invention achieves a high yield by greatly suppressing the generation of splashes and dusts in blowing acid, and reduces the chromium oxidation loss. It can be seen that it can be significantly suppressed.

【0029】[0029]

【発明の効果】本発明により、高炉溶銑とフェロクロム
合金を用いて、ステンレス粗溶鋼を精錬炉にて吹酸脱炭
精錬する方法において、吹酸中のスプラッシュ、ダスト
の発生を抑制し、かつ、フェロクロム合金中のクロム酸
化損失を抑制することにより、還元材コストを大幅に低
減し、効率的なステンレス鋼の精錬が可能となった。
According to the present invention, by using blast furnace hot metal and ferrochrome alloy, in a method of decarburizing and refining stainless steel crude molten metal in a refining furnace, splash in propionic acid, and suppressing the generation of dust, and By suppressing the oxidation loss of chromium in the ferrochrome alloy, the cost of reducing material was greatly reduced, and efficient refining of stainless steel became possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラグ中のAl23 濃度とスラグ液相率の関
係を示す図
FIG. 1 is a diagram showing the relationship between the Al 2 O 3 concentration in slag and the liquid phase ratio of slag.

【図2】スラグ液相率とダスト発生指数との関係を示す
FIG. 2 is a diagram showing a relationship between a liquid phase ratio of slag and a dust generation index.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉溶銑とフェロクロム合金鉄を用いた
ステンレス粗溶鋼の溶製において、精錬炉にて脱炭精錬
するに際し、精錬炉に装入された溶銑に金属アルミニウ
ム(Al)あるいは金属Al分を含んだアルミドロスを
昇温材として添加して昇温することにより、フェロクロ
ム合金添加直前の溶鋼温度を1450〜1600℃と
し、かつ、スラグ中Al23 濃度を10〜30%、溶
鋼中[C]濃度を2.5〜4.0%とした後、フェロク
ロム合金を連続的に添加しつつ、吹酸脱炭精錬を行うこ
とを特徴とするステンレス鋼の効率的な脱炭吹錬方法。
1. In the melting of smelting of stainless crude molten steel using blast furnace hot metal and ferrochromium alloy iron, when decarburizing and refining in a refining furnace, the molten iron charged into the refining furnace contains metallic aluminum (Al) or metallic Al content. By adding aluminum dross containing Al as a temperature raising material to raise the temperature, the molten steel temperature immediately before the addition of the ferrochrome alloy is set to 1450 to 1600 ° C., and the Al 2 O 3 concentration in the slag is set to 10 to 30% in the molten steel. Efficient decarburizing and blowing method for stainless steel, characterized by carrying out blown acid decarburizing refining while continuously adding a ferrochrome alloy after the [C] concentration is adjusted to 2.5 to 4.0%. .
【請求項2】 高炉溶銑とフェロクロム合金鉄を用いた
ステンレス粗溶鋼の溶製において、精錬炉にて脱炭精錬
するに際し、前チャージで生成したクロム酸化物を含有
する脱炭滓を炉内に残存させたまま、次チャージの溶銑
を装入し、次いで、炭材の添加と吹酸により昇温還元し
て前記脱炭滓中のクロム分を還元した後、クロム回収済
スラグを排滓し、次いで、金属アルミニウム(Al)あ
るいは金属Al分を10〜80%含んだアルミドロスを
昇温材として添加して昇温することにより、フェロクロ
ム合金添加直前の溶鋼温度を1450〜1600℃と
し、かつ、スラグ中Al23 濃度を10〜30%、溶
鋼中[C]濃度を2.5〜4.0%とした後、フェロク
ロム合金を連続的に添加しつつ、吹酸脱炭精錬を行うこ
とを特徴とするステンレス鋼の効率的な脱炭吹錬方法。
2. When decarburizing and refining in a refining furnace in smelting of stainless crude molten steel using blast furnace hot metal and ferrochromium alloy iron, decarburizing slag containing chromium oxide produced by precharging is placed in the furnace. While still remaining, the hot metal of the next charge is charged, and then the carbon content in the decarburizing slag is reduced by temperature reduction with addition of carbonaceous material and blowing acid, and then the chromium recovered slag is discharged. Then, metal aluminum (Al) or aluminum dross containing 10 to 80% of metal Al content is added as a temperature raising material to raise the temperature, so that the molten steel temperature immediately before the addition of the ferrochrome alloy is 1450 to 1600 ° C., and After the Al 2 O 3 concentration in the slag is 10 to 30% and the [C] concentration in the molten steel is 2.5 to 4.0%, blown acid decarburization refining is performed while continuously adding the ferrochrome alloy. Stainless that is characterized by Efficient decarburization blowing method of the scan steel.
JP23590595A 1995-08-23 1995-08-23 Method for efficently decarburization-blowing stainless steel Withdrawn JPH0959708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23590595A JPH0959708A (en) 1995-08-23 1995-08-23 Method for efficently decarburization-blowing stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23590595A JPH0959708A (en) 1995-08-23 1995-08-23 Method for efficently decarburization-blowing stainless steel

Publications (1)

Publication Number Publication Date
JPH0959708A true JPH0959708A (en) 1997-03-04

Family

ID=16992978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23590595A Withdrawn JPH0959708A (en) 1995-08-23 1995-08-23 Method for efficently decarburization-blowing stainless steel

Country Status (1)

Country Link
JP (1) JPH0959708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116010A (en) * 1997-04-22 1999-01-12 Nippon Steel Corp Reduced pressure oxygen-blowing refining method of stainless steel
JP2003147426A (en) * 2001-11-14 2003-05-21 Sumitomo Metal Ind Ltd Steelmaking method
US11103953B2 (en) 2017-03-02 2021-08-31 Concept Laser Gmbh Device for additive production of three-dimensional objects
CN114854938A (en) * 2021-07-23 2022-08-05 包头洪盛化工有限责任公司 Refining titanium-removing slag and low-titanium ferrochromium refining titanium-removing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116010A (en) * 1997-04-22 1999-01-12 Nippon Steel Corp Reduced pressure oxygen-blowing refining method of stainless steel
JP2003147426A (en) * 2001-11-14 2003-05-21 Sumitomo Metal Ind Ltd Steelmaking method
US11103953B2 (en) 2017-03-02 2021-08-31 Concept Laser Gmbh Device for additive production of three-dimensional objects
CN114854938A (en) * 2021-07-23 2022-08-05 包头洪盛化工有限责任公司 Refining titanium-removing slag and low-titanium ferrochromium refining titanium-removing method
CN114854938B (en) * 2021-07-23 2023-07-25 包头洪盛化工有限责任公司 Refining titanium-removing slag and low-titanium ferrochrome refining titanium-removing method

Similar Documents

Publication Publication Date Title
JP2006233264A (en) Method for smelting high-chromium molten steel
JP5063966B2 (en) Manufacturing method of molten steel
JP4311097B2 (en) Method for preventing slag flow in converter
JP2947063B2 (en) Stainless steel manufacturing method
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JPS6250545B2 (en)
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP3158912B2 (en) Stainless steel refining method
JP4461495B2 (en) Dephosphorization method of hot metal
JPH0987722A (en) Method for refining molten crude stainless steel
JP3063537B2 (en) Stainless steel manufacturing method
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH0967608A (en) Production of stainless steel
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JPH0435529B2 (en)
JP3788392B2 (en) Method for producing high Cr molten steel
JPH07173515A (en) Decarburization refining method of stainless steel
JP2882236B2 (en) Stainless steel manufacturing method
JP2001032009A (en) Method for refining molten steel containing chromium
JPH0673424A (en) Method for efficiently refining stainless steel using decarburized slag
JPH0437137B2 (en)
JP3173325B2 (en) How to make stainless steel
JPH0762413A (en) Production of stainless steel
JPH08295914A (en) Method for refining molten raw stainless steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105