JP3173325B2 - How to make stainless steel - Google Patents

How to make stainless steel

Info

Publication number
JP3173325B2
JP3173325B2 JP12663495A JP12663495A JP3173325B2 JP 3173325 B2 JP3173325 B2 JP 3173325B2 JP 12663495 A JP12663495 A JP 12663495A JP 12663495 A JP12663495 A JP 12663495A JP 3173325 B2 JP3173325 B2 JP 3173325B2
Authority
JP
Japan
Prior art keywords
decarburization
slag
crude
stainless steel
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12663495A
Other languages
Japanese (ja)
Other versions
JPH08319508A (en
Inventor
政樹 宮田
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12663495A priority Critical patent/JP3173325B2/en
Publication of JPH08319508A publication Critical patent/JPH08319508A/en
Application granted granted Critical
Publication of JP3173325B2 publication Critical patent/JP3173325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02W30/54

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルゴン酸素脱炭炉(A
OD炉) 、転炉、電気炉などの製鋼炉において、溶銑、ス
クラップ、合金鉄等を用いてステンレス鋼を製造するス
テンレス鋼の精錬方法に関するものである。
The present invention relates to an argon oxygen decarburization furnace (A
The present invention relates to a method for refining stainless steel in a steelmaking furnace such as an OD furnace, a converter, an electric furnace, and the like, in which stainless steel is manufactured using hot metal, scrap, alloyed iron, and the like.

【0002】[0002]

【従来の技術】ステンレス鋼の溶製方法として最も典型
的なプロセスは、スクラップやFe−Cr、Fe−Ni等の合金
鉄を主原料として電気炉で溶解し、その後AOD 炉または
VOD 炉等で脱炭と還元精錬を行い、出鋼後受鋼鍋でArガ
ス吹き込みを行って溶鋼の清浄化および温度コントロー
ルを行うことから成り、しかる後、得られた溶鋼を連続
鋳造機にかけるのである。
2. Description of the Related Art The most typical process for smelting stainless steel is to melt scrap or ferroalloys such as Fe-Cr and Fe-Ni in an electric furnace and then use an AOD furnace or an AOD furnace.
It consists of decarburizing and reducing and refining in a VOD furnace, etc., and after buffing, injecting Ar gas into a steel receiving pan to clean and control the temperature of the molten steel, and then the obtained molten steel is cast into a continuous casting machine. I will put it on.

【0003】また文献 (「鉄と鋼」1985, vol.71, 180)
にあるように、電気炉を用いずに底吹き転炉内に脱燐溶
銑を装入し、ステンレス鋼の成分となるように脱炭吹錬
中または吹錬前にスクラップや合金鉄を添加して所定の
成分とし、脱炭工程終了後、Fe−Si等の合金鉄を投入し
て還元工程に移行し、しかる後出鋼して連続鋳造するプ
ロセスもある。
[0003] References ("Iron and Steel" 1985, vol. 71, 180)
As shown in, the dephosphorized hot metal is charged into the bottom-blowing converter without using an electric furnace, and scrap or alloyed iron is added during or before decarburization blowing so as to become a component of stainless steel. After completion of the decarburization step, there is also a process in which ferrous alloys such as Fe-Si are charged and the process proceeds to the reduction step, and then the steel is cast and continuously cast.

【0004】他にクロム鉱石を用いたステンレス鋼溶製
プロセスも存在する。例えば文献 (鉄と鋼 1985, vol.7
1, 1072)ではAOD 炉に脱燐溶銑を装入し、しかる後クロ
ム鉱石とコークスを投入して、いわゆる溶融還元を行
い、その後スラグを除去して通常の脱炭精錬を行うもの
である。
[0004] There is also a stainless steel smelting process using chromium ore. For example, in the literature (Iron and Steel 1985, vol.7
In 1, 1072), dephosphorized hot metal is charged into an AOD furnace, then chromium ore and coke are charged, so-called smelting reduction is performed, and then slag is removed and ordinary decarburization refining is performed.

【0005】しかし、これらの従来方法では、以下の問
題点がある。 (1) 大量のSi分 (多くの場合Fe−Siの形で使用) を添加
するためコストが高くなる。 (2) 反応生成物としてSiO2が発生するため、それを中和
するのにCaO を大量に必要とする。またその結果、大量
のスラグが発生する。 (3) 酸化クロムの珪素による還元反応は発熱反応のた
め、温度が上昇することおよび上記スラグは流動性に富
むことにより、耐火物が侵食される。
[0005] However, these conventional methods have the following problems. (1) Addition of a large amount of Si (often used in the form of Fe-Si) increases costs. (2) Since SiO 2 is generated as a reaction product, a large amount of CaO is required to neutralize it. As a result, a large amount of slag is generated. (3) Since the reduction reaction of chromium oxide with silicon is an exothermic reaction, the temperature rises and the slag is rich in fluidity, so that the refractory is eroded.

【0006】そこで、特公平4−38806 号公報では、ス
テンレス鋼粗溶鋼の仕上げ脱炭末期の含クロムスラグを
溶融還元炉に戻して、クロム分を還元回収するプロセス
を提案している。これによりFe−Siを用いた還元期を省
略できるため、上記の問題点は解決されるとしている。
In view of this, Japanese Patent Publication No. 4-38806 proposes a process in which chromium-containing slag in the final stage of decarburization of crude stainless steel is returned to a smelting reduction furnace to reduce and recover chromium. It is stated that the above problem can be solved because the reduction period using Fe—Si can be omitted.

【0007】また脱炭炉に残留した含クロムスラグを、
次のチャージのステンレス粗溶鋼中のCで還元回収する
場合については、溶湯中のCが5%、1500℃以上であれ
ば可能としている。
The chromium-containing slag remaining in the decarburization furnace is
Regarding the case of reducing and recovering with C in the next charge of stainless steel crude molten steel, it is possible if C in the molten metal is 5% and 1500 ° C. or more.

【0008】そこで、特公平4−38806 号公報では、ス
テンレス鋼粗溶鋼の脱炭末期の含クロムスラグを溶融還
元炉に戻して、クロム分を還元回収するプロセスを提案
している。これによりFe−Siを用いた還元期を省略でき
るため、上記の問題点は解決されるとしている。また脱
炭炉に残留した含クロムスラグを、次のチャージのステ
ンレス溶鋼中のCで還元回収する場合については、溶湯
中のCが5%、1500℃以上であれば可能としている。
Japanese Patent Publication No. 4-38806 proposes a process in which chromium-containing slag in the final stage of decarburization of a molten stainless steel is returned to a smelting reduction furnace to reduce and recover chromium. It is stated that the above problem can be solved because the reduction period using Fe—Si can be omitted. In the case where chromium-containing slag remaining in the decarburization furnace is reduced and recovered with C in the next charge of stainless steel molten steel, it is possible if C in the molten metal is 5% and 1500 ° C. or higher.

【0009】[0009]

【発明が解決しようとする課題】しかしながらこの方法
では、溶融還元炉と脱炭炉の2炉を持たなければ実現で
きないという問題点がある。また脱炭炉に残留した含ク
ロムスラグを次のチャージのステンレス鋼粗溶鋼中のC
で還元回収する場合については、溶湯中のCが5%、15
00℃以上であれば可能としている。しかし脱炭炉スラグ
組成はCaO:20%、MgO:18%、SiO2:5%、Cr2O3:55%とな
っており、この組成では1500℃以上であっても滓化せ
ず、還元速度は極めて遅いことが予想される。これはス
ラグ中に融点を低下させる作用を持つAl2O3 が10%をこ
えて多量に含まれていないためである。
However, this method has a problem that it cannot be realized without two smelting reduction furnaces and decarburization furnaces. In addition, the chromium-containing slag remaining in the decarburization furnace is replaced with C in the next charge of stainless steel crude molten steel.
In the case of reducing and recovering by C, 5% of C in the molten metal
It is possible if the temperature is higher than 00 ° C. However, decarburization furnace slag composition CaO: 20%, MgO: 18 %, SiO 2: 5%, Cr 2 O 3: has a 55% without slag of even 1500 ° C. or higher in the composition, The rate of reduction is expected to be very slow. This is because Al 2 O 3 having a function of lowering the melting point is not contained in the slag in a large amount exceeding 10%.

【0010】本発明は、脱炭末期スラグ中の (%Al2O3)
を増加せずに還元を速やかに行い、しかも耐火物溶損を
抑制するステンレス鋼の精錬方法を提供することを目的
とする。
[0010] The present invention relates to (% Al 2 O 3 )
It is an object of the present invention to provide a method for refining stainless steel in which reduction is performed promptly without increasing the amount of refractory material and refractory erosion is suppressed.

【0011】また、本発明者らは特願平5−336863号と
して脱炭末期スラグを同一炉にリサイクルして次チャー
ジの粗溶湯の脱炭昇温時にスラグ中酸化クロムを[C] で
還元回収し、還元末期にSi含有合金を少量添加してクロ
ム回収率を向上させるプロセスを提案している。
In addition, the inventors of the present invention disclosed in Japanese Patent Application No. Hei 5-336863, the last stage of decarburization slag was recycled to the same furnace, and the chromium oxide in the slag was reduced with [C] at the time of decarburization of the next charge of the molten metal. We propose a process to improve the chromium recovery rate by recovering and adding a small amount of Si-containing alloy at the end of reduction.

【0012】本発明者らが先に提案した方法では、スラ
グ中のCr2O3 のCによる還元末期にSiを含有する合金を
添加し、クロム回収率の向上を図っているが、単にSi含
有合金を添加して還元するだけでは、脱炭期に投入した
クロム合金中に不可避的に含まれるSiが脱炭時に酸化さ
れ、生成したSiO2を中和するための生石灰添加量は低減
できない。
In the method proposed by the present inventors, an alloy containing Si is added at the end of the reduction of Cr 2 O 3 in slag by C to improve the chromium recovery rate. By simply adding and reducing the contained alloy, Si inevitably contained in the chromium alloy charged during the decarburization period is oxidized during decarburization, and the amount of quicklime to neutralize the generated SiO 2 cannot be reduced .

【0013】ここに、本発明の具体的な目的は、(1) 溶
融還元炉と脱炭炉の2炉を持つ必要もなく、(2) C還元
のみによる酸化クロム未還元問題を解消し、(3) 脱炭期
に要する造滓剤を低減することができるステンレス鋼の
精錬方法を提供することである。
Here, a specific object of the present invention is to (1) eliminate the need for having two furnaces, a smelting reduction furnace and a decarburization furnace, and (2) eliminate the problem of chromium oxide unreduction by only C reduction. (3) An object of the present invention is to provide a method for refining stainless steel capable of reducing the amount of slag-making agent required for the decarburization period.

【0014】[0014]

【課題を解決するための手段】ここに、本発明の要旨と
するところは、転炉へ脱りん銑から成る溶湯を受け入れ
るか、または電気炉で溶湯を溶解する準備工程、該転炉
または電気炉で前記溶湯を粗脱炭・昇温する粗脱炭・昇
温工程、得られた溶湯へのSi分の投入によって粗脱硫と
クロム酸化物の還元を行いステンレス鋼粗溶鋼とする仕
上還元・粗脱硫工程、生成スラグを排出する流滓工程、
前記ステンレス鋼粗溶鋼の仕上げ脱炭を行い、ステンレ
ス鋼溶鋼とする仕上げ脱炭工程、そしてCr2O3 含有スラ
グ生成後に該ステンレス鋼溶鋼の出鋼を行う出鋼工程か
ら成るステンレス鋼の製造方法であって、ステンレス鋼
粗溶鋼の仕上げ脱炭工程で生じるAl2O3 含有率10%以下
の酸化クロムを含有するスラグを、次チャージ以降の前
記粗脱炭・昇温工程にリサイクル使用し、溶湯中の炭素
または粗脱炭時に添加する含炭素材中の炭素により酸化
クロムを還元して溶湯中に回収する際に、スラグ塩基度
を0.9 〜1.5 、還元温度を1500〜1650℃で前記酸化クロ
ムを還元して溶湯中に回収した後、該粗脱炭・昇温工程
における還元末期にSi含有合金 (SiおよびCrを含有する
合金を含む)添加し、該Siによりスラグ中に残留する
酸化クロムを溶湯中に回収した後、前記流滓工程を経
て、さらにCr含有合金および石灰を添加して仕上げ脱炭
を行うことを特徴とするステンレス鋼の精錬方法であ
る。
SUMMARY OF THE INVENTION Here, the gist of the present invention is to receive a molten metal made of dephosphorized iron into a converter or to prepare a step of melting the molten metal in an electric furnace. A rough decarburization and heating step of roughly decarburizing and raising the temperature of the molten metal in the furnace, and performing a rough desulfurization and a reduction of chromium oxide by introducing Si into the obtained molten metal to finish-reduce to a stainless steel coarse molten steel. Coarse desulfurization process, sludge process for discharging generated slag,
A method for producing stainless steel, comprising: a finish decarburization of the stainless steel crude molten steel, a finish decarburization step of forming the stainless steel molten steel, and a tapping step of performing the tapping of the stainless steel molten steel after generating a slag containing Cr 2 O 3. The slag containing chromium oxide having an Al 2 O 3 content of 10% or less generated in the finishing decarburization step of the stainless steel crude molten steel is recycled and used in the crude decarburization / heating step after the next charge, When chromium oxide is reduced and recovered in the molten metal by carbon in the molten metal or carbon in the carbon-containing material added at the time of crude decarburization, the oxidization is performed at a slag basicity of 0.9 to 1.5 and a reduction temperature of 1500 to 1650 ° C. After the chromium is reduced and recovered in the molten metal, an Si-containing alloy (including an alloy containing Si and Cr) is added at the end of the reduction in the rough decarburization / heating step, and the oxidization remaining in the slag by the Si. Chromium is recovered in the molten metal After, through the flow slag process, a refining process of stainless steel, characterized by further performing decarburization finished by adding Cr-containing alloy and lime.

【0015】[0015]

【作用】次に、添付図面を参照しながら、本発明の作用
について、さらに具体的に説明する。
Next, the operation of the present invention will be described more specifically with reference to the accompanying drawings.

【0016】図1は、本発明にかかるステンレス鋼の製
造方法の工程図であって、本発明にあっても従来のよう
に予備処理をした溶湯、つまりクロムを含有しない脱燐
溶湯の準備工程10、脱燐銑または電気炉溶解粗溶湯の脱
炭昇温を図るとともにスラグ中に含有されるクロムを還
元する粗脱炭昇温工程12、Si分 (Si、Cr含有合金を含
む) を添加して粗脱硫とクロム酸化物のより一層の還元
を行う仕上還元・粗脱硫工程14、生成したスラグを排出
する流滓工程16、そしてフェロクロム添加後の脱炭精錬
工程18を経て溶製され、出鋼工程22を経て最後に炉外脱
硫工程24で脱硫処理されてステンレス鋼が得られる。
FIG. 1 is a process chart of a method for producing stainless steel according to the present invention. In the present invention, a process for preparing a molten metal which has been subjected to a pretreatment as in the prior art, ie, a chromium-free dephosphorized molten metal, is also provided. 10.Decarburization of dephosphorized pig iron or electric furnace melting and decarburization heating to reduce chromium contained in slag12.Addition of Si (including alloy containing Si and Cr) The final reduction / crude desulfurization step 14 for further reducing the crude chromium oxide and the crude desulfurization, the slagging step 16 for discharging the generated slag, and the decarburization refining step 18 after the addition of ferrochrome are melted, After passing through the tapping step 22, the steel is finally subjected to desulfurization in an out-of-furnace desulfurization step 24 to obtain stainless steel.

【0017】ここに、本発明によれば、フェロクロム添
加後のステンレス粗溶湯の仕上げ脱炭工程18で得られた
酸化クロム含有スラグ20は、クロムを殆ど含まない脱燐
銑または電気炉溶解粗溶湯の脱炭昇温工程12でリサイク
ル使用し、含有される酸化クロムが還元される。つま
り、酸化クロムは次チャージの粗脱炭昇温工程でリサイ
クル使用され還元される。なお、リサイクルの形態とし
て出鋼工程22でクロム酸化物含有スラグを炉内に残留さ
せたまま準備工程10からの溶湯を受け入れるようにして
もよい。
According to the present invention, the chromium oxide-containing slag 20 obtained in the finishing decarburization step 18 of the molten stainless steel after the addition of ferrochrome is made of dephosphorized iron or electric furnace molten crude molten metal containing almost no chromium. In the decarburization heating step 12, the chromium oxide contained is reduced by being recycled. That is, the chromium oxide is recycled and reduced in the next charge rough decarburization heating step. As a form of recycling, the molten metal from the preparation step 10 may be received in the tapping step 22 with the chromium oxide-containing slag remaining in the furnace.

【0018】このように、本発明において、ステンレス
鋼の粗溶鋼を脱炭するときに生じた酸化クロムを含有す
るスラグを、次チャージ以降の脱炭時にリサイクル使
用することは、溶湯中の炭素、またはコークス等の含炭
素材により酸化クロムを還元し、金属Siの添加を省略ま
たは使用量の節減のため必要である。
As described above, in the present invention, the slag containing chromium oxide generated when decarburizing a crude molten steel of stainless steel is recycled and used at the time of rough decarburization after the next charge. It is necessary to reduce chromium oxide by a carbon-containing material such as coke or the like, to omit the addition of metal Si, or to reduce the amount used.

【0019】本発明によれば、脱炭末期スラグ中のCr2O
3 を溶湯中のCあるいは炭材で還元するには、還元温度
(1500〜1650℃) においてスラグが滓化していなくては
ならない。したがって CaO−SiO2−Cr2O3 系の状態図か
ら判断して還元温度で溶融範囲が広いのは、C/Si=0.
5 〜1.5 の領域であり、1500〜1650℃では還元速度向上
の点からスラグ塩基度=0.9 〜1.5 とする。
According to the present invention, Cr 2 O in the last stage of decarburization slag
To reduce 3 with C or carbon material in the molten metal, the reduction temperature
(1500-1650 ° C), the slag must be slag. Therefore CaO-SiO 2 -Cr 2 O 3 system phase melting range at reduced temperatures to determine the view of that wide, C / Si = 0.
In the range of 5 to 1.5, at 1500 to 1650 ° C, the slag basicity is set to 0.9 to 1.5 from the viewpoint of improving the reduction rate.

【0020】図2は塩基度CaO/SiO2と還元速度との関係
を示すグラフである。AOD 炉において1520〜1650℃とし
た状態でスラグ中Cr2O3 を還元した場合の耐火物溶損速
度とスラグ塩基度の関係を図3に示す。これより耐火物
溶損抑制の点から塩基度を0.9 以上1.5 以下とする必要
のあることが分かる。好ましくは1.0〜1.3 である。
FIG. 2 is a graph showing the relationship between basicity CaO / SiO 2 and reduction rate. The relationship between the refractory erosion rate and slag basicity in the case of reducing the slag Cr 2 O 3 in a state in which the 1,520 to 1,650 ° C. in AOD furnace shown in FIG. From this, it can be seen that the basicity needs to be 0.9 or more and 1.5 or less from the viewpoint of suppressing refractory material damage. Preferably it is 1.0 to 1.3.

【0021】AOD 炉でスラグ中クロム酸化物の還元を行
ったときの還元速度および耐火物溶損速度と温度との関
係を調べた。ただしスラグ塩基度は1.11〜1.22であっ
た。結果は図4、図5にまとめて示す。これより耐火物
溶損抑制と還元速度増大のためには還元温度を1500〜16
50℃とする必要のあることが分かる。
The relationship between the reduction rate and the refractory erosion rate and the temperature when chromium oxide in slag was reduced in an AOD furnace was examined. However, the slag basicity was 1.11 to 1.22. The results are shown in FIG. 4 and FIG. From this, the reduction temperature is set to 1500 to 16 in order to suppress the refractory erosion and increase the reduction rate.
It can be seen that the temperature needs to be 50 ° C.

【0022】スラグ中Al2O3 濃度と還元速度の関係を図
6に示す。これより塩基度2.4 では(%Al2O3)<10%の場
合、還元速度が著しく低下することがわかる。しかし(%
Al2O3)<10でも塩基度1.2 の場合は還元速度は比較的高
い値に維持される。
FIG. 6 shows the relationship between the Al 2 O 3 concentration in the slag and the reduction rate. This shows that at a basicity of 2.4, when (% Al 2 O 3 ) <10%, the reduction rate is significantly reduced. However(%
Even when Al 2 O 3 ) <10, when the basicity is 1.2, the reduction rate is maintained at a relatively high value.

【0023】上記方法において脱P銑中の[C] による前
チャージ脱炭末期スラグ中のCr2O3還元末期に、Si含有
合金 (Si、Cr含有合金も含む) を添加することにより、
合金中のSiでスラグ中に残存するCr2O3 を還元回収しク
ロムの歩留まりを上昇することができる。また、その時
同時に脱硫の進行も期待できる。そしてさらに、粗脱炭
・昇温工程でSi、Cr含有合金を添加した場合は、Cr還元
後の脱炭中に添加するクロム含有合金量を低減できる。
このためクロム含有合金に不可避的に含まれるSiの酸化
によって、脱炭期に生じるSiO2量が低減され、耐火物溶
損抑制を目的としたSiO2中和用の生石灰添加量を低減で
きる。なお、本発明の実施態様としては、前述の(a) 炉
内スラグ残留法および(b) 排出スラグのリサイクル法の
両者を含む。
In the above method, a Si-containing alloy (including a Si- and Cr-containing alloy) is added to the final stage of Cr 2 O 3 reduction in the final stage of pre-charging decarburization slag with [C] in the depigmented pig iron,
Cr 2 O 3 remaining in the slag can be reduced and recovered by the Si in the alloy to increase the chromium yield. At the same time, the progress of desulfurization can also be expected. Further, when the alloy containing Si and Cr is added in the rough decarburization and temperature raising step, the amount of the chromium-containing alloy added during the decarburization after the Cr reduction can be reduced.
For this reason, the amount of SiO 2 generated during the decarburization stage is reduced by the oxidation of Si inevitably contained in the chromium-containing alloy, and the amount of quicklime added for neutralizing SiO 2 for the purpose of suppressing the refractory melting damage can be reduced. The embodiments of the present invention include both the above-mentioned (a) the method for residual slag in a furnace and (b) the method for recycling discharged slag.

【0024】[0024]

【実施例】【Example】

(実施例1)予め準備した脱りん銑70T を上底吹き転炉に
装入し、底吹き羽口よりArガスを45Nm3/min 、上吹きラ
ンスより酸素を350 Nm3/min 吹き込みつつ、前回のチャ
ージでのステンレス鋼の仕上げ脱炭期終了時に回収した
スラグ (組成:T.Cr=20%、T.Fe=3%、CaO/SiO2=1.
6 、MgO =5%、Al2O3 ≦10%) を6000kg、コークスを
9800kg添加し、約35分間の吹錬を行い、酸化クロムの還
元挙動を調査した。ただしスラグ塩基度および(%Al2O3)
を変えるため適宜生石灰、硅砂、Al2O3 を添加した。ま
た、処理温度も変化させた。結果を表1にまとめて示
す。ただし耐火物溶損指数は通常 AOD炉吹錬時の耐火物
溶損速度を1として指数化して示す。
(Example 1) Dephosphorized pig iron 70T prepared in advance was charged into an upper-bottom blow converter, and Ar gas was blown at 45 Nm 3 / min from the bottom blow tuyere and oxygen was blown at 350 Nm 3 / min from the top blow lance. Slag collected at the end of the final decarburization period of stainless steel in the previous charge (Composition: T.Cr = 20%, T.Fe = 3%, CaO / SiO 2 = 1.
6, MgO = 5%, Al 2 O 3 ≦ 10%) 6000kg, coke
9800kg was added and blowing was performed for about 35 minutes, and the reduction behavior of chromium oxide was investigated. Where slag basicity and (% Al 2 O 3 )
Quicklime, silica sand and Al 2 O 3 were added as needed to change the temperature. Also, the processing temperature was changed. The results are summarized in Table 1. However, the refractory erosion index is usually expressed as an index with the refractory erosion rate during blowing in the AOD furnace as 1.

【0025】[0025]

【表1】 [Table 1]

【0026】このように還元温度が高いほど還元速度は
大きいが、耐火物溶損速度も大きくなる。またスラグ塩
基度が0.9 未満もしくは1.5 を超えると還元速度は低下
することが分かる。
As described above, the higher the reduction temperature, the higher the reduction rate, but the higher the refractory erosion rate. It can also be seen that the reduction rate decreases when the slag basicity is less than 0.9 or more than 1.5.

【0027】ただし評価基準としては、還元速度が0.4
%/min 以上、耐火物溶損速度指数が1以下を優良とし
た。なお、還元速度および還元率は次式により算出し
た。 (1) 還元速度 (k)は (0 次) の速度式で求める。
However, as an evaluation criterion, a reduction rate of 0.4
% / min or more and a refractory erosion rate index of 1 or less were regarded as excellent. The reduction rate and the reduction rate were calculated by the following equations. (1) The reduction rate (k) is determined by the (0th-order) rate equation.

【0028】[0028]

【数1】 (Equation 1)

【0029】(%Cr2O3) : スラグ中Cr2O3 濃度 (%)
、t: 時間 (min) (2) 還元率は次式で求める。
(% Cr 2 O 3 ): Cr 2 O 3 concentration in slag (%)
, T: time (min) (2) The reduction rate is obtained by the following equation.

【0030】[0030]

【数2】 (Equation 2)

【0031】(従来法)予め準備した脱りん銑65T を上底
吹き転炉に装入し、底吹き羽口よりArガスを17Nm3/min
、O2ガスを63 Nm3/min、上吹きランスより酸素を83 Nm
3/min吹き込みつつ、ステンレス鋼脱炭期終了時に回収
したスラグ (組成:T.Cr=20%、T.Fe=3%、CaO/SiO2
=1.5 、MgO =5%、Al2O3 ≦10%) を6000kg、生石灰
を570kg、コークスを4000kg添加して、41分間の吹錬を
行った。吹錬末期の塩基度は1.65であった。その後Fe−
Si (組成: Si=75%、残部Fe) を243 kg添加した。
(Conventional method) Dephosphorized pig iron 65T prepared in advance is charged into an upper-bottom blow converter, and Ar gas is supplied from the bottom blow tuyere at 17 Nm 3 / min.
, O 2 gas 63 Nm 3 / min, oxygen from the top blowing lance 83 Nm
Slag collected at the end of the decarburization stage of stainless steel while blowing 3 / min (Composition: T.Cr = 20%, T.Fe = 3%, CaO / SiO 2
= 1.5, MgO = 5%, Al 2 O 3 ≦ 10%), 6000 kg of quicklime and 4,000 kg of coke were added, and blowing was performed for 41 minutes. The basicity at the end of blowing was 1.65. Then Fe-
243 kg of Si (composition: Si = 75%, balance Fe) was added.

【0032】粗脱炭しFe−Si添加後の温度は1632℃、ス
ラグ塩基度は1.5 、[%Cr] =1.65%であった。また粗脱
炭終了時の溶湯中[%C]は1%であった。その後スラグを
排出し、フェロクロム (組成:Cr=60%、C=6%、Si
=2.66%、残部Fe) を21T 、生石灰1.8T添加して、脱炭
処理を行った。脱炭処理後の温度は1700℃、スラグ塩基
度は1.5 、[%Cr] =1.3 であった。
The temperature after the crude decarburization and the addition of Fe—Si was 1632 ° C., the slag basicity was 1.5, and [% Cr] = 1.65%. At the end of the crude decarburization, the [% C] in the molten metal was 1%. After that, the slag is discharged and ferrochrome (composition: Cr = 60%, C = 6%, Si
= 2.66%, the balance Fe) was added to 21T and quick lime 1.8T, and decarburization treatment was performed. The temperature after the decarburization treatment was 1700 ° C., the slag basicity was 1.5, and [% Cr] = 1.3.

【0033】(実施例2)予め用意した脱りん銑65T を上
底吹き転炉に装入し、底吹き羽口よりArガスを17Nm3/mi
n 、O2ガスを63 Nm3/min、上吹きランスより酸素を83 N
m3/min吹き込みつつ、前チャージでのステンレス鋼の仕
上げ脱炭期終了時に回収したスラグ (組成:T.Cr=20
%、T.Fe=3%、CaO/SiO2=1.5 、MgO =5%、Al2O3
<10%) を6000kg、生石灰を570kg 、コークスを4500kg
を添加し、45分間の吹錬を行った。その後フェロクロム
を6600kg添加して粗脱硫を行った。
(Example 2) Dephosphorized pig iron 65T prepared in advance was charged into an upper-bottom blow converter, and Ar gas was supplied from the bottom blow tuyere at 17 Nm 3 / mi.
n, O 2 gas 63 Nm 3 / min, oxygen from the top blowing lance 83 N
The slag collected at the end of the final decarburization stage of stainless steel at the previous charge while blowing m 3 / min (Composition: T.Cr = 20
%, T.Fe = 3%, CaO / SiO 2 = 1.5, MgO = 5%, Al 2 O 3
<10%) 6000 kg, quicklime 570 kg, coke 4500 kg
Was added and blowing was performed for 45 minutes. Thereafter, 6,600 kg of ferrochrome was added to carry out crude desulfurization.

【0034】粗脱炭終了し、フェロクロム添加による粗
脱硫後の温度は1628℃、スラグ塩基度は1.5 、[%Cr] =
7.8 %であった。また粗脱炭および粗脱硫終了時の溶湯
中[%C]は1.1 %であった。
After the crude decarburization was completed, the temperature after the crude desulfurization by adding ferrochrome was 1628 ° C., the slag basicity was 1.5, and [% Cr] =
7.8%. [% C] in the melt at the end of the crude decarburization and crude desulfurization was 1.1%.

【0035】その後スラグを排出し、フェロクロムを1
4.4T 、生石灰1.3T添加して仕上げ脱炭処理を行った。
脱炭処理後の温度は1712℃、スラグ塩基度は1.5 、[%C
r] =12.9であった。なお、従来法と実施例2の本発明
法での脱炭期添加生石灰量を表2に示す。
After that, the slag is discharged, and ferrochrome is
Finish decarburization treatment was performed by adding 4.4 T and quick lime 1.3 T.
Temperature after decarburization treatment is 1712 ° C, slag basicity is 1.5, [% C
r] = 12.9. Table 2 shows the amount of quicklime added during the decarburization period in the conventional method and the method of the present invention in Example 2.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明により次チャージ以降の脱炭中
に、高融点の低Al2O3 濃度のスラグ中の酸化クロムを還
元する際、還元速度を高い値に維持することが可能とな
り、還元時間の短縮および耐火物溶損の抑制が可能とな
り、また連々鋳造することができる。
According to the present invention, during the decarburization after the next charge, when reducing chromium oxide in slag having a high melting point and low Al 2 O 3 concentration, the reduction rate can be maintained at a high value. The reduction time can be reduced and the refractory erosion can be suppressed, and continuous casting can be performed.

【0038】次チャージ以降の粗脱炭中に、Cr2O3 を多
量に含む脱炭末期スラグをリサイクルし、脱りん銑中の
CでCr2O3 を還元し、その末期にSiおよびCrを含有する
合金を添加して合金中のSiでスラグ中に残存するCr2O3
を還元回収することにより、クロム歩留まり向上、還元
と脱硫の同時進行、脱炭期の造滓剤低減が可能となる。
During the rough decarburization after the next charge, the terminal decarburized slag containing a large amount of Cr 2 O 3 is recycled, Cr 2 O 3 is reduced by C in the dephosphorized pig iron, and Si and Cr Cr 2 O 3 remaining in the slag with Si in the alloy by adding an alloy containing
By reducing and recovering chromium, it is possible to improve the chromium yield, simultaneously proceed with reduction and desulfurization, and reduce the amount of slag-making agent in the decarburization period.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる方法の工程図である。FIG. 1 is a process diagram of a method according to the present invention.

【図2】還元速度と塩基度の関係を示すグラフである。FIG. 2 is a graph showing the relationship between reduction rate and basicity.

【図3】耐火物溶損速度と塩基度の関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between refractory erosion rate and basicity.

【図4】還元速度と温度との関係を示すグラフである。FIG. 4 is a graph showing a relationship between a reduction rate and a temperature.

【図5】耐火物溶損速度と温度との関係を示すグラフで
ある。
FIG. 5 is a graph showing the relationship between refractory erosion rate and temperature.

【図6】還元速度と(%Al2O3)の関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between the reduction rate and (% Al 2 O 3 ).

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21C 1/02,5/28,7/00 C21C 7/04,7/064,7/068 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C21C 1 / 02,5 / 28,7 / 00 C21C 7 / 04,7 / 064,7 / 068

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(i) 転炉へ脱りん銑から成る溶湯を受け入
れるか、または電気炉で溶湯を溶解する準備工程; (ii)該転炉または電気炉で前記溶湯を粗脱炭・昇温する
粗脱炭・昇温工程; (iii) 得られた溶湯へのSi分の投入によって粗脱硫とク
ロム酸化物の還元を行いステンレス鋼粗溶鋼とする粗脱
硫工程; (iv)生成スラグを排出する流滓工程; (v) 前記ステンレス鋼粗溶鋼の仕上げ脱炭を行い、ステ
ンレス鋼溶鋼とする仕上げ脱炭工程; そして (vi)含Cr2O3 含有スラグ生成後に該ステンレス鋼溶鋼の
出鋼を行う出鋼工程から成るステンレス鋼の製造方法で
あって、 ステンレス鋼粗溶鋼の仕上げ脱炭工程(v) で生じるAl2O
3 含有率10%以下の酸化クロムを含有するスラグを、次
チャージ以降の前記粗脱炭・昇温工程(ii)にリサイクル
使用し、溶湯中の炭素または粗脱炭時に添加する含炭素
材中の炭素により酸化クロムを還元して溶湯中に回収す
る際に、スラグ塩基度を0.9 〜1.5 、還元温度を1500〜
1650℃として前記酸化クロムを還元した後、該粗脱炭・
昇温工程(ii)における還元末期にSiおよびCr含有合金を
添加し、該Siによりスラグ中に残留する酸化クロムを溶
湯中に回収した後、前記流滓工程(iv)を経て、さらに仕
上げ脱炭工程(v) においてCr含有合金および石灰を添加
して仕上げ脱炭を行うことを特徴とするステンレス鋼の
精錬方法。
1. A step of (i) receiving a molten metal made of dephosphorized iron into a converter or melting the molten metal in an electric furnace; (ii) roughly decarburizing and raising the molten metal in the converter or the electric furnace. (Iii) Crude desulfurization step of heating the crude molten steel; (iii) Crude desulfurization and reduction of chromium oxide by introducing Si content into the obtained molten metal to make crude stainless steel coarse molten steel; (iv) Generated slag (V) finish decarburization of the stainless steel crude molten steel to give a stainless steel molten steel; and (vi) discharge of the stainless steel molten steel after the generation of the slag containing Cr 2 O 3. A method for producing stainless steel comprising a tapping process for producing steel, wherein Al 2 O generated in a finish decarburization process (v) of a stainless steel crude molten steel
3 The slag containing chromium oxide having a content of 10% or less is recycled and used in the crude decarburization / heating step (ii) after the next charge, and the carbon in the molten metal or the carbon-containing material added at the time of crude decarburization is used. When the chromium oxide is reduced by carbon and recovered in the molten metal, the slag basicity is 0.9 to 1.5 and the reduction temperature is 1500 to
After reducing the chromium oxide at 1650 ° C, the crude decarburization
At the end of reduction in the temperature raising step (ii), an alloy containing Si and Cr is added, and the chromium oxide remaining in the slag is recovered in the molten metal by the Si. A method for refining stainless steel, comprising adding a Cr-containing alloy and lime in a charcoal step (v) to perform decarburization.
JP12663495A 1995-05-25 1995-05-25 How to make stainless steel Expired - Fee Related JP3173325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12663495A JP3173325B2 (en) 1995-05-25 1995-05-25 How to make stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12663495A JP3173325B2 (en) 1995-05-25 1995-05-25 How to make stainless steel

Publications (2)

Publication Number Publication Date
JPH08319508A JPH08319508A (en) 1996-12-03
JP3173325B2 true JP3173325B2 (en) 2001-06-04

Family

ID=14940055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12663495A Expired - Fee Related JP3173325B2 (en) 1995-05-25 1995-05-25 How to make stainless steel

Country Status (1)

Country Link
JP (1) JP3173325B2 (en)

Also Published As

Publication number Publication date
JPH08319508A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP2947063B2 (en) Stainless steel manufacturing method
EP0747490A1 (en) Direct use of sulfur-bearing nickel concentrate in making Ni alloyed stainless steel
JP3173325B2 (en) How to make stainless steel
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JP2005015889A (en) Method for preventing effluence of slag in converter
JP3063537B2 (en) Stainless steel manufacturing method
JP2964861B2 (en) Stainless steel manufacturing method
JP3158912B2 (en) Stainless steel refining method
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JPH0987722A (en) Method for refining molten crude stainless steel
JP3380305B2 (en) Melting method of chromium-containing steel
JP4461495B2 (en) Dephosphorization method of hot metal
JPH0967608A (en) Production of stainless steel
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP2972781B2 (en) Operating method of converter using pretreated hot metal
JP2002371313A (en) Method for smelting molten stainless steel
JPS6247417A (en) Melt refining method for scrap
JP3375528B2 (en) Recovery and reuse of ingots on converter mouth
JP2856103B2 (en) Hot metal dephosphorization method
JP2001294926A (en) Refining method using chromium oxide containing slag
JPS61291911A (en) Production of stainless steel
JPH07310109A (en) Production of stainless steel
JP2882236B2 (en) Stainless steel manufacturing method
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPH08325620A (en) Production of stainless steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010227

LAPS Cancellation because of no payment of annual fees