JPH07310109A - Production of stainless steel - Google Patents

Production of stainless steel

Info

Publication number
JPH07310109A
JPH07310109A JP9862294A JP9862294A JPH07310109A JP H07310109 A JPH07310109 A JP H07310109A JP 9862294 A JP9862294 A JP 9862294A JP 9862294 A JP9862294 A JP 9862294A JP H07310109 A JPH07310109 A JP H07310109A
Authority
JP
Japan
Prior art keywords
slag
blowing
stainless steel
decarburization
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9862294A
Other languages
Japanese (ja)
Inventor
Masaki Miyata
政樹 宮田
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9862294A priority Critical patent/JPH07310109A/en
Publication of JPH07310109A publication Critical patent/JPH07310109A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To provide a producing method of a stainless steel, by which the production is easily executed without need to provide two furnaces of a smelting reduction furnace and a decarburizing furnace and the recovery of chromium and desulfurization are effectively executed. CONSTITUTION:In a method to recover chromium into molten steel by reducing the chromium oxide in slag with carbon in the molten steel or carbon in a carbon-containing material by bringing recycled chromium oxide-containing slag into contact with the molten steel before blowing for roughly decarburizing and temp.-raising or during the blowing, the heating by plasma-arc is executed before the blowing or after the blowing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルゴン酸素脱炭炉
(AOD 炉) 、転炉などの製鋼炉において、溶銑、スクラ
ップ、合金鉄等を用いてステンレス鋼を製造する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing stainless steel using hot metal, scrap, ferroalloy, etc. in a steelmaking furnace such as an argon oxygen decarburization furnace (AOD furnace) and a converter.

【0002】[0002]

【従来の技術】ステンレス鋼の溶製方法として最も典型
的なプロセスは、スクラップやFe−Cr、Fe−Ni等の合金
鉄を主原料として、これを電気炉で溶解し、その後アル
ゴン酸素脱炭炉(AOD炉) また真空酸素脱炭炉(VOD炉) 等
で脱炭と還元精錬を行い、出鋼後受鋼鍋でAr吹き込みを
行って溶鋼の清浄化および温度コントロールを行い、し
かる後連続鋳造機にかけるというものである。
2. Description of the Related Art The most typical process for smelting stainless steel is to use scrap or ferro-alloy such as Fe-Cr and Fe-Ni as a main raw material, melt this in an electric furnace, and then decarburize with argon oxygen. Furnace (AOD furnace), vacuum oxygen decarburization furnace (VOD furnace), etc. for decarburization and reduction refining.After tapping, Ar injection is performed in a steel pan to clean molten steel and control the temperature, and then continuously. It is a casting machine.

【0003】また文献 (「鉄と鋼」1985,vol.71,180)に
あるように、電気炉を用いずに底吹き転炉内に溶銑を装
入し、ステンレス鋼の成分となるように脱炭吹錬中また
は吹錬前にスクラップや合金鉄を添加して所定の成分と
し、脱炭吹錬終了後Fe−Si等の合金鉄を投入して還元工
程に移行し、しかる後出鋼して連続鋳造するプロセスも
ある。
Further, as described in the literature (“Iron and Steel” 1985, vol.71, 180), the hot metal is charged into a bottom-blown converter without using an electric furnace to decarburize it so that it becomes a component of stainless steel. During scraping or before blowing, add scrap or ferroalloy to a predetermined component, and after decarburizing brazing, add ferroalloy such as Fe-Si and shift to the reduction process, and then tap steel. There is also a continuous casting process.

【0004】他に原料の1種にクロム鉱石を用いたステ
ンレス鋼溶製プロセスが存在する。例えば文献 (「鉄と
鋼」 1985,vol.71,1072)ではAOD 炉に溶銑を装入して、
しかる後クロム鉱石とコークスを投入して、いわゆる溶
融還元を行い、その後スラグを除去して通常の脱炭精錬
を行うというものである。
There is also a stainless steel melting process using chromium ore as one of the raw materials. For example, in the literature (“Iron and Steel” 1985, vol.71,1072), AOD furnace was charged with hot metal,
After that, chrome ore and coke are added, so-called smelting reduction is performed, and then slag is removed and normal decarburization refining is performed.

【0005】しかし上記方法には、以下の問題点があ
る。 (1) 大量のSi (多くの場合Fe−Si) を添加するためコス
トが高くなる。 (2) 反応生成物としてSiO2が発生するため、それを中和
するのにCaO を大量に必要とする。またその結果、大量
のスラグが発生する。 (3) 酸化クロムのシリコンによる還元反応は発熱反応の
ため、温度が上昇することおよび上記スラグは流動性に
富むことにより、耐火物を侵食する。
However, the above method has the following problems. (1) Addition of a large amount of Si (often Fe-Si) increases the cost. (2) Since SiO 2 is generated as a reaction product, a large amount of CaO is required to neutralize it. As a result, a large amount of slag is generated. (3) Since the reduction reaction of chromium oxide with silicon is an exothermic reaction, the temperature rises and the slag has a high fluidity, so that it erodes refractory materials.

【0006】そこで特公平4−38806 号公報では、ステ
ンレス粗溶鋼の脱炭末期の含酸化クロムスラグを溶融還
元炉に戻して、クロム分を還元回収するプロセスを提案
している。これによりFe−Siを用いた還元期を省略でき
るため、上記の問題点は解決されるとしている。また脱
炭炉に残留した酸化クロム含有スラグを次チャージのス
テンレス溶鋼中のCで還元回収する場合については、溶
湯中のCが5%、1500℃以上であれば可能としている。
Therefore, Japanese Patent Publication No. 38806/1992 proposes a process for returning chromium-containing chromium slag at the final stage of decarburization of crude stainless steel to a smelting reduction furnace to reduce and recover chromium. As a result, the reduction period using Fe-Si can be omitted, and the above problems are solved. Further, when the chromium oxide-containing slag remaining in the decarburizing furnace is reduced and recovered by C in the next charge of molten stainless steel, it is possible if the C in the molten metal is 5% and 1500 ° C or higher.

【0007】[0007]

【発明が解決しようとする課題】しかし、特公平4−38
806 号公報の開示する方法では、溶融還元炉と脱炭炉の
2炉を持たなければ実現できないという問題点がある。
また脱炭炉に残留した酸化クロム含有スラグを次チャー
ジの溶銑中のCで還元回収する場合には、溶湯中のCに
よるCr2O3 還元率が十分でないという問題点がある。
[Problems to be Solved by the Invention] However, Japanese Patent Publication No. 4-38
The method disclosed in Japanese Patent No. 806 has a problem that it cannot be realized without having two furnaces, a smelting reduction furnace and a decarburization furnace.
Further, when the chromium oxide-containing slag remaining in the decarburizing furnace is reduced and recovered by C in the hot metal of the next charge, there is a problem that the Cr 2 O 3 reduction rate by C in the molten metal is not sufficient.

【0008】そこで、本件特許出願人は、特願平5−14
6167号として脱炭末期スラグを同一炉にリサイクルして
次チャージの粗溶湯の脱炭昇温時にスラグ中酸化クロム
を[C] で還元回収し、還元末期にSi含有合金を添加して
クロム回収率を向上させるプロセスを提案している。
Therefore, the applicant of the present patent application filed Japanese Patent Application No. 5-14.
As No. 6167, the final decarburization slag was recycled to the same furnace and the chromium oxide in the slag was reduced and recovered with [C] during the decarburization temperature rise of the next charge of the crude melt, and the Si-containing alloy was added at the final reduction stage to recover chromium. Propose a process to improve the rate.

【0009】たしかに、特願平5−146167号の方法で
は、スラグ中のCr2O3 をCにより還元するとしている
が、単に脱炭末期スラグを炉内に添加してCにより還元
するだけでは、C還元速度が遅くCr2O3 還元率が十分で
ないという問題点が判明した。すなわち、スラグが滓化
する還元温度 (1500〜1600℃) にまで吹錬開始後早急に
昇熱する必要があるにもかかわらず、注銑時の溶銑温度
は高々1300℃程度であり、吹錬開始前あるいは吹錬開始
直後に酸化クロム含有スラグを添加する場合、スラグ添
加による抜熱により還元温度 (1500〜1600℃) までの昇
熱時間が長くなってしまうからである。
Certainly, in the method of Japanese Patent Application No. 5-146167, Cr 2 O 3 in the slag is reduced by C, but it is not necessary to simply add the final decarburization slag into the furnace and reduce it by C. , The C reduction rate is slow and the Cr 2 O 3 reduction rate is not sufficient. In other words, although it is necessary to raise the temperature immediately after the start of blowing to the reduction temperature (1500 to 1600 ° C) at which slag turns into slag, the hot metal temperature during pouring is at most 1300 ° C, This is because when the chromium oxide-containing slag is added before the start or immediately after the start of the blowing, the heat removal time due to the addition of the slag increases the heating time to the reduction temperature (1500 to 1600 ° C).

【0010】したがって、Cにより還元しなかったクロ
ム酸化物をSi含有合金で還元する必要があり、還元用Si
合金の削減という当初の目的を十分に達しない可能性が
ある。さらに脱硫のため還元末期に小量のSi含有合金の
添加は必要である。またこの方法では昇熱用のC原単位
が増加し、その結果脱炭吹錬時間の延長が懸念される。
Therefore, it is necessary to reduce the chromium oxide that has not been reduced by C with the Si-containing alloy.
The original goal of reducing alloys may not be fully met. Furthermore, for desulfurization, it is necessary to add a small amount of Si-containing alloy at the final stage of reduction. Further, in this method, the C basic unit for heating is increased, and as a result, there is a concern that the decarburizing and blowing time may be extended.

【0011】ところで、特開昭58−16037 号公報の開示
する方法では、高クロム合金の溶製を、クロムを含有す
る固体を原料としてプラズマトーチを設置したシャフト
型反応炉で行うことにより高クロム合金が溶製できると
しているが、シャフト炉は熱効率は良いものの、炉高を
高くする必要があり設備費が高くなること、バッチ処理
が困難なため色々な鋼種を溶製するのが困難であること
等の問題点がある。また、その方法はシャフト炉に限定
されており、通常の脱炭炉 (例えば転炉またはAOD 炉)
におけるプラズマ加熱の利用方法についての情報は皆無
である。
In the method disclosed in Japanese Patent Laid-Open No. 58-16037, a high chromium alloy is produced by melting a high chromium alloy in a shaft type reactor equipped with a plasma torch using a solid containing chromium as a raw material. Although it is said that alloys can be melted, although the shaft furnace has good thermal efficiency, it is difficult to melt various steel types because the furnace height needs to be increased, the equipment cost is high, and batch processing is difficult. There are problems such as this. In addition, the method is limited to shaft furnaces, and ordinary decarburization furnaces (such as converters or AOD furnaces)
There is no information on how to use plasma heating in.

【0012】ここに、本発明の目的は、(1) 溶融還元炉
と脱炭炉の2炉を持つ必要もなく、(2) C還元のみによ
るクロム未還元問題および脱硫問題を解消し、(3) C原
単位を低減するとともに脱炭吹錬時間の延長を抑制し、
(4) 色々な鋼種をバッチ処理により容易に溶製すること
のできる方法を提供することである。
The object of the present invention is (1) it is not necessary to have two furnaces, a smelting reduction furnace and a decarburization furnace, and (2) the problem of chromium unreduction and desulfurization by only C reduction is solved. 3) Reduce the C intensity and suppress the extension of decarburization blowing time,
(4) To provide a method capable of easily producing various steel types by batch processing.

【0013】具体的には、本発明の目的は、熱源として
のコークス量が低減でき、金属SiおよびCaO 投入量を低
減し、Cr還元率および脱硫率の改善を同時に実現できる
経済的なステンレス鋼の製造方法を提供することであ
る。
Specifically, the object of the present invention is to reduce the amount of coke as a heat source, reduce the amount of metallic Si and CaO input, and simultaneously realize the improvement of the Cr reduction rate and the desulfurization rate. Is to provide a method for manufacturing the same.

【0014】[0014]

【課題を解決するための手段】そこで、本発明者らは、
かかる課題達成のために種々検討を重ね、従来検討され
ることのなかった脱炭炉におけるプラズマの利用に着目
して、本発明を完成した。
Therefore, the present inventors have
The present invention has been completed by paying attention to the use of plasma in a decarburizing furnace, which has not been conventionally studied, in order to achieve such a subject.

【0015】ここに、本発明の要旨とするところは、ス
テンレス鋼の粗溶鋼の仕上げ脱炭精錬期に得られた酸化
クロム含有スラグを用意すること、該スラグと粗脱炭昇
温吹錬前もしくは吹錬中の溶湯との接触下に、該溶湯中
の炭素または含炭素材中の炭素により前記スラグ中の酸
化クロムを還元して溶湯中に回収すること、その際、プ
ラズマアークによりメタルおよびスラグを昇熱して還元
効率を向上させること、粗脱炭昇温吹錬により得られた
ステンレス溶鋼の粗溶鋼に、必要に応じて、Si含有合
金を添加して仕上げ還元および脱硫を行い、その後、ス
ラグを排滓し、Cr含有合金を所定量添加して仕上げ脱
炭精錬を行うことを特徴とするステンレス鋼の製造方法
である。ここで、仕上げ脱炭精錬期に得られた酸化クロ
ムを含むスラグとしては、仕上げ脱炭精錬末期に得られ
るスラグが好ましい。
Here, the gist of the present invention is to prepare a chromium oxide-containing slag obtained during the finishing decarburization refining stage of the crude molten steel of stainless steel, and to prepare the slag and the crude decarburization temperature rising blowing before Or, in contact with the molten metal during blowing, recover the chromium oxide in the slag by recovering it in the molten metal by the carbon in the molten metal or the carbon in the carbon-containing material, in which case metal and Raising the slag to improve the reduction efficiency, to the crude molten steel of the molten stainless steel obtained by the crude decarburization temperature-rising blowing, if necessary, add Si-containing alloy for finish reduction and desulfurization, then The method for producing stainless steel is characterized in that slag is discharged and a Cr-containing alloy is added in a predetermined amount to perform final decarburization refining. Here, as the slag containing chromium oxide obtained in the final decarburizing and refining stage, the slag obtained in the final decarburizing and refining final stage is preferable.

【0016】本発明の好適態様によれば、前記プラズマ
アークによる溶湯およびスラグを昇温する際に、不活性
ガスをキャリアーガスとして、ステンレス鋼の粗溶鋼を
脱炭するときに生じる酸化クロム含有スラグを回収・粉
砕し、粉砕によって得たスラグ粉体を連続または分割し
て溶湯表面に溶射することを特徴とするステンレス鋼の
製造方法である。
According to a preferred embodiment of the present invention, when the temperature of the molten metal and the slag by the plasma arc is raised, the chromium oxide-containing slag generated when decarburizing the crude molten steel of stainless steel by using an inert gas as a carrier gas. Is a method for producing stainless steel, characterized in that the slag powder obtained by crushing and pulverizing the slag is continuously or divided and sprayed onto the surface of the molten metal.

【0017】[0017]

【作用】次に、本発明による作用をさらに具体的に説明
する。図1は本発明にかかるステンレス鋼の製造方法の
1例を示す工程図である。図中、別途準備された溶銑、
好ましくは脱P溶銑には、前チャージの仕上げ脱炭精錬
期に回収されたCr2O3 含有スラグがリサイクル投入され
る。必要により分割投入されても連続投入されてもよ
い。また、この場合、前チャージの脱炭炉 (例: 転炉)
の前記Cr2O3 含有スラグを残留させておいて、それに前
述の脱P溶銑を投入してもよい。なお、溶銑は場合によ
って電気炉溶製法において排出されたものであってもよ
い。
Next, the operation of the present invention will be described more specifically. FIG. 1 is a process diagram showing an example of a method for producing stainless steel according to the present invention. In the figure, hot metal prepared separately,
Preferably, the deoxidized P hot metal is recycled with the Cr 2 O 3 -containing slag recovered during the precharge finish decarburization refining period. If necessary, they may be dividedly charged or continuously charged. Also, in this case, a pre-charging decarburization furnace (example: converter)
It is also possible to leave the Cr 2 O 3 -containing slag of No. 1 and leave the above-mentioned de-P hot metal in it. The hot metal may be discharged in the electric furnace melting method depending on the case.

【0018】本発明によれば、このようにして、リサイ
クルされた酸化クロム含有スラグは溶銑である溶湯との
接触下におかれ、粗脱炭昇温吹錬中にCによるクロムの
還元が行われるが、それに先立ってあるいはその期間
中、さらにその終了後に、プラズマアークによる加熱を
行う。このときの様子は図2(a) に模式的に示す。適宜
本数(図示例では3本) のプラズマトーチ10が設けられ
ており、溶湯12の加熱を行う。酸化クロム含有スラグを
投入するときにほぼ1200〜1300℃であった溶湯はこれに
よりほぼ5〜10分間という短時間にほぼ1450〜1550℃に
まで加熱される。プラズマトーチ10による加熱期間中は
溶湯底部の羽口14からO2+Arガスの攪拌ガスの流入を続
けるのが好ましい。符号16はスラグを表わす。
According to the present invention, the recycled chromium oxide-containing slag is placed in contact with the molten metal which is hot metal in this manner, and the reduction of chromium by C is performed during the coarse decarburizing temperature-rising blowing. However, prior to that, during that period, and after that, heating by the plasma arc is performed. The state at this time is schematically shown in FIG. An appropriate number (three in the illustrated example) of plasma torches 10 are provided to heat the molten metal 12. The molten metal, which was approximately 1200 to 1300 ° C. when the chromium oxide-containing slag was charged, is thereby heated to approximately 1450 to 1550 ° C. in a short time of approximately 5 to 10 minutes. During the heating period by the plasma torch 10, it is preferable to continue the inflow of the stirring gas of O 2 + Ar gas from the tuyere 14 at the bottom of the molten metal. Reference numeral 16 represents a slug.

【0019】本発明において、粗脱炭昇温吹錬に際して
プラズマトーチ10による加熱を採用する理由は次の通り
である。すなわち、脱炭末期スラグ中のCr2O3 を溶湯中
のCで還元するには、スラグ16が滓化する還元温度 (15
00〜1600℃) にまで吹錬開始後早急に昇熱する必要があ
る。しかし、前述したように注銑時の溶銑温度は高々13
00℃程度であり、吹錬開始前あるいは吹錬開始直後に酸
化クロム含有スラグを添加する場合、スラグ添加による
抜熱により還元温度 (1500〜1600℃) までの昇熱時間が
長くなってしまう。
In the present invention, the reason why the heating by the plasma torch 10 is employed in the coarse decarburizing temperature rising blowing is as follows. That is, in order to reduce Cr 2 O 3 in the final decarburization slag with C in the molten metal, the reduction temperature (15
It is necessary to raise the temperature as soon as possible after the start of blowing up to 00-1600 ℃. However, as mentioned above, the hot metal temperature during pouring is at most 13
The temperature is about 00 ° C, and when the chromium oxide-containing slag is added before or immediately after the start of blowing, the heat removal due to the addition of slag increases the heating time to the reduction temperature (1500 to 1600 ° C).

【0020】しかし、プラズマトーチ10により加熱する
と、スラグ16の加熱ができるために溶鉄が従来の還元温
度 (1500〜1600℃) 以下であっても、スラグの温度は従
来法よりも高めることができるため、還元時間の短縮が
可能である。加熱完了後は、プラズマトーチ10を引上
げ、通常の酸素上吹きランスを装入して粗脱炭昇温吹錬
を行う。
However, since the slag 16 can be heated by heating with the plasma torch 10, the temperature of the slag can be increased as compared with the conventional method even if the molten iron is below the conventional reduction temperature (1500 to 1600 ° C.). Therefore, the reduction time can be shortened. After the heating is completed, the plasma torch 10 is pulled up, a normal oxygen top-blowing lance is charged, and coarse decarburizing temperature rising blowing is performed.

【0021】また、従来法では還元末期になると溶鉄中
の炭素濃度が低下するため、酸素供給火点において溶湯
中の[Cr]が酸化してしまうため還元速度が著しく低下し
てしまう。そのため、還元末期には送酸速度を低下ある
いはゼロにして溶湯中[Cr]の酸化を抑制する方法がとら
れている。しかし、その場合には溶鉄温度が低下してし
まうため、送酸速度を低下あるいはゼロにする処理の時
間は制限をうける。したがって、還元率の向上にも限界
が生じてしまう。
Further, in the conventional method, the carbon concentration in the molten iron decreases at the final stage of reduction, so that [Cr] in the molten metal is oxidized at the oxygen supply fire point, resulting in a marked reduction in the reduction rate. Therefore, in the final stage of reduction, a method of reducing or eliminating the rate of oxygen transfer to suppress the oxidation of [Cr] in the molten metal is taken. However, in that case, the temperature of the molten iron is lowered, so that the time for the treatment for lowering or zeroing the acid transfer rate is limited. Therefore, there is a limit to the improvement of the reduction rate.

【0022】そこで、この還元末期に送酸速度を低下あ
るいはゼロにする場合にプラズマトーチ10による加熱を
行えば、溶鉄温度の低下を防止しつつ還元速度も維持す
ることができ、したがって還元率を大幅に向上させるこ
とができるのである。
Therefore, if the plasma torch 10 is used for heating to reduce or reduce the acid transfer rate at the final stage of the reduction, the reduction rate can be maintained while preventing the decrease in molten iron temperature. It can be greatly improved.

【0023】図2(b) は、このときの粗脱炭昇温吹錬を
行う様子を模式的に示すもので、上吹きランス20による
吹錬期間中は炉底部の羽口14からの攪拌用ガス(O2+A
r) の吹き込みが続けられている。粗脱炭昇温吹錬は、
通常の転炉におけるステンレス鋼の吹錬と同様に行えば
よく、本発明においても特に制限はない。したがって、
上吹きガスはO2、O2+N2、またはO2+Ar等いずれか慣用
のものであればよい。
FIG. 2 (b) schematically shows how the coarse decarburizing temperature rising blowing at this time is carried out. During the blowing by the upper blowing lance 20, stirring from the tuyere 14 at the bottom of the furnace is performed. Gas (O 2 + A
r) is still being blown in. Coarse decarburization temperature rising blowing is
It may be carried out in the same manner as the blowing of stainless steel in a normal converter, and there is no particular limitation in the present invention. Therefore,
The top blowing gas may be any conventional one such as O 2 , O 2 + N 2 or O 2 + Ar.

【0024】このとき還元剤として利用されるCは溶湯
中に含まれている[C] であっても、あるいは脱炭時に投
入するコークス、チャーまたは無煙炭等の含炭素材中の
炭素(C) であってもよい。粗脱炭昇温吹錬終了後は、一
般にはスラグ中の酸化クロム濃度4〜15%、溶湯組成は
C:0.1〜1%、S: 0.01〜0.07%となる。
At this time, C used as a reducing agent is [C] contained in the molten metal, or carbon (C) contained in carbon-containing materials such as coke, char or anthracite to be introduced at the time of decarburization. May be After the completion of the coarse decarburization temperature-rising blowing, the chromium oxide concentration in the slag is generally 4 to 15%, the melt composition is C: 0.1 to 1%, and S: 0.01 to 0.07%.

【0025】このようにして得られた[Cr]を数%含有す
る粗溶鋼は、図1に示すように、次いで仕上げ還元処理
が行われ、次いで仕上げ脱炭が行われるときに溶鋼中の
クロムが1部酸化してスラグ中に入る。
The crude molten steel containing a few% of [Cr] thus obtained is subjected to finish reduction treatment and then to finish decarburization, as shown in FIG. Partially oxidizes into the slag.

【0026】仕上げ還元後のCr2O3 濃度は、好ましくは
2〜10%とする。Cr2O3 酸化物の還元をより完全に行な
おうとすると金属Siの投入量を多くしなければならず、
Si投入量を多くするとそれに伴ってCaO を多く添加する
必要が生じ、また溶鋼温度上昇による耐火物溶損も避け
られなくなる。
The Cr 2 O 3 concentration after finish reduction is preferably 2 to 10%. In order to perform the reduction of Cr 2 O 3 oxide more completely, the amount of metallic Si input must be increased,
If the amount of Si added is increased, it becomes necessary to add more CaO accordingly, and the melting loss of refractory due to the rise in molten steel temperature cannot be avoided.

【0027】前述のように、本発明によれば、酸化クロ
ム含有スラグを次チャージの粗脱炭昇温吹錬工程にリサ
イクル使用するのであり、またその際に脱炭開始に先立
って急速加熱を行うためにプラズマ加熱を併用するので
ある。仕上げ脱炭を行ってからは、従来のように、出鋼
し、ステンレス鋼が製造される。必要により、適宜炉外
精錬を行ってもよい。
As described above, according to the present invention, the chromium oxide-containing slag is recycled for use in the next charge crude decarburizing temperature rising blowing step, and at that time, rapid heating is performed prior to the start of decarburization. Plasma heating is also used for this purpose. After finishing decarburization, the steel is tapped and stainless steel is produced as in the conventional case. If necessary, you may perform refining outside a furnace suitably.

【0028】ステンレス鋼の粗溶鋼を脱炭するときに生
じた酸化クロムを含有するスラグを、次チャージ以降の
脱炭時にリサイクル使用することは、溶湯中の炭素、ま
たはコークス等の含炭素材により酸化クロムを還元し、
金属Siを省略または使用量の節減のためには好ましい。
It is necessary to recycle the slag containing chromium oxide generated when decarburizing the crude molten steel of the stainless steel at the time of decarburization after the next charge, depending on the carbon in the molten metal or the carbon-containing material such as coke. Reduces chromium oxide,
It is preferable for omitting the metal Si or reducing the usage amount.

【0029】このように、本発明により、プラズマアー
クによって溶湯およびスラグを昇熱しつつ、酸化クロム
含有スラグを一括あるいは連続あるいは分割して添加す
るのは、昇温中での還元反応を促進し、還元温度までの
昇温速度を高めて脱炭昇熱中に占めるクロム酸化物の溶
融還元時間を長くし、高融点のCr2O3 含有スラグを容易
に溶融させ、さらに還元温度到達後もその温度を保持
し、還元速度および還元率を向上させ、C原単位を低減
して脱炭時間を短縮するためである。
As described above, according to the present invention, adding the chromium oxide-containing slag all at once or continuously or in a divided manner while heating the molten metal and the slag by the plasma arc promotes the reduction reaction during the temperature rise. By increasing the rate of temperature increase to the reduction temperature to lengthen the melting and reduction time of chromium oxide during decarburization heating, the high melting point Cr 2 O 3 -containing slag can be easily melted, and even after that temperature is reached To reduce the C basic unit and shorten the decarburization time by maintaining the above value, improving the reduction rate and the reduction rate.

【0030】また、昇降可能なプラズマトーチを用いる
のは、本発明方法によれば大量のスラグを用いてかつ多
量のCOまたはCO2 ガスが発生するためにスラグフォーミ
ングあるいはスロッピング現象が生じてプラズマトーチ
を痛める恐れがあるためである。したがって、本発明で
は、処理初期の温度が低い範囲ではプラズマトーチを下
げて利用し、温度が上昇し還元が十分に進行する範囲で
はプラズマトーチを上昇させて溶損を防ぐ必要があるの
である。
The plasma torch which can be raised and lowered is used in accordance with the method of the present invention because a large amount of slag is used and a large amount of CO or CO 2 gas is generated, so that a slag forming or sloping phenomenon occurs. This is because it may damage the torch. Therefore, in the present invention, it is necessary to lower the plasma torch in the range where the temperature at the beginning of the process is low and to use it, and to raise the plasma torch in the range where the temperature rises and the reduction proceeds sufficiently to prevent melting loss.

【0031】また、還元期の後半では、スラグ中Cr2O3
の還元も進み温度も十分に高まっているので、送酸速度
を低下あるいはゼロにすることができる。通常、この時
期ではスラグフォーミングは低位に推移するため、プラ
ズマトーチを下げてもトーチを痛めることなく加熱を行
うことができる。
In the latter half of the reduction period, Cr 2 O 3 in the slag is also used.
Since the reduction of OH and the temperature have risen sufficiently, the rate of acid transfer can be reduced or even reduced to zero. Normally, at this time, the slag foaming transitions to a low level, so even if the plasma torch is lowered, heating can be performed without damaging the torch.

【0032】また、本発明はその好適態様においてさら
に精錬炉に設置したプラズマトーチから発生するプラズ
マジェットに同伴させ不活性ガスをキャリアーガスとし
て、ステンレス鋼の粗溶鋼を脱炭するときに生じる酸化
クロム含有スラグを回収・粉砕し、粉砕によって得たス
ラグ粉体を、連続または分割して溶湯表面に溶射するこ
とにより、スラグへの着熱効率を向上させ、前述のプラ
ズマトーチによる加熱の効果をさらに高めることができ
る。次に、実施例によって本発明の作用および効果をさ
らに具体的に説明する。
Further, in a preferred embodiment of the present invention, the chromium oxide produced when decarburizing the crude molten steel of stainless steel by using the inert gas as a carrier gas while being entrained in the plasma jet generated from the plasma torch installed in the refining furnace The contained slag is collected and crushed, and the slag powder obtained by crushing is continuously or divided and sprayed onto the surface of the molten metal to improve the heat adhering efficiency to the slag and further enhance the heating effect by the plasma torch. be able to. Next, the operation and effect of the present invention will be described more specifically by way of examples.

【0033】[0033]

【実施例】【Example】

(比較例)脱りん銑65Tを上底吹き転炉に装入し、ステン
レス鋼の仕上げ脱炭期終了時に回収したスラグ (組成:
T.Cr=20%、T.Fe=3%、CaO/SiO2=1.4 、MgO =5
%、Al2O3 <10%) を6000kg、コークスを4000kg、生石
灰を574 kg炉内に添加後、底吹きArガスを17 Nm3/min、
上吹きランスからの酸素を146Nm3/minで吹き込みつつ、
41分間の吹錬を行った。
(Comparative example) Desulfurized pig iron 65T was charged into an upper-bottom blowing converter and recovered at the end of the finish decarburization period of stainless steel (composition:
T.Cr = 20%, T.Fe = 3%, CaO / SiO 2 = 1.4, MgO = 5
%, Al 2 O 3 <10%), 6000 kg, coke 4000 kg, lime 574 kg, and bottom-blown Ar gas 17 Nm 3 / min,
While blowing oxygen from the top blowing lance at 146 Nm 3 / min,
Blown for 41 minutes.

【0034】所定の炭素濃度[C] =1.0 %程度まで脱炭
後、送酸を止めたところ溶鉄中クロム濃度は[%Cr] =1.
3 %となり還元率70%を得た。この後、Fe−Si (組成:
Si=75%、残部Fe) を400 kg添加した。Fe−Si添加後の
温度は1614℃、スラグ塩基度は1.5 、[%Cr] =1.71%で
あった。
After decarburization to a predetermined carbon concentration [C] = about 1.0% and stopping the feeding of acid, the chromium concentration in the molten iron is [% Cr] = 1.
It became 3% and the reduction rate was 70%. After this, Fe-Si (composition:
400 kg of Si = 75% and the balance Fe) were added. The temperature after the addition of Fe-Si was 1614 ° C, the slag basicity was 1.5, and [% Cr] = 1.71%.

【0035】その後スラグを排出し、フェロクロム (組
成: Cr=60%、Si=2.7 %、C=6%、残部Fe) を21T
、生石灰を1.8T添加して、脱炭処理を行った。脱炭処
理後の温度は1700℃、スラグ塩基度は1.5 、[%Cr] =13
%であった。
Thereafter, the slag was discharged, and 21 T of ferrochrome (composition: Cr = 60%, Si = 2.7%, C = 6%, balance Fe) was discharged.
, 1.8T of quicklime was added for decarburization. Temperature after decarburization is 1700 ℃, slag basicity is 1.5, [% Cr] = 13
%Met.

【0036】(実施例1)脱りん銑65T を上底吹き転炉に
装入し、ステンレス鋼の仕上げ脱炭期終了時に回収した
スラグ (組成:T.Cr=20%、T.Fe=3%、CaO/SiO2=1.
4 、MgO =5%、Al2O3 <10%) を6000kg、コークスを
2000kg、生石灰を360 kg炉内に添加後、底吹き羽口から
Arガス (流量17 Nm3/min) で攪拌しつつ、34分間の吹錬
を行った。
(Example 1) The slag (composition: T.Cr = 20%, T.Fe = 3) collected at the end of the finish decarburization period of stainless steel by charging dephosphorized iron 65T into an upper-bottom blowing converter. %, CaO / SiO 2 = 1.
4, MgO = 5%, Al 2 O 3 <10%) 6000 kg, coke
After adding 2000kg and quick lime to the 360kg furnace, from the bottom tuyeres
Blowing was carried out for 34 minutes while stirring with Ar gas (flow rate 17 Nm 3 / min).

【0037】その際に、図2(a) に示すように、吹錬に
先立ち上吹き吹酸を停止した状態で、非移行型プラズマ
トーチを3本 (各1MW出力) を昇降装置により下降さ
せ、プラズマを着火させプラズマ加熱を8分間行った。
その後、プラズマトーチを上昇させてプラズマを切り、
その代わりに図2(b) に示すように吹錬ランスを下降さ
せ送酸を開始し、脱炭処理を行った。
At that time, as shown in FIG. 2 (a), three non-transfer type plasma torches (each having 1 MW output) were lowered by an elevating device in a state in which the upper blowing acid was stopped prior to the blowing. The plasma was ignited and the plasma was heated for 8 minutes.
After that, raise the plasma torch to turn off the plasma,
Instead, as shown in Fig. 2 (b), the blowing lance was lowered to start the acid feeding to perform the decarburization treatment.

【0038】所定の炭素濃度[C] =1.0 %程度まで脱炭
後、送酸を止めたところ溶鉄中クロム濃度は[%Cr] =1.
68%となり還元率91%を得た。この後、Fe−Si (組成:
Si=75%、残部Fe) を200 kg添加した。Fe−Si添加後の
温度は1635℃、スラグ塩基度は1.5 、[%Cr] =1.75%で
あった。
After decarburization to a predetermined carbon concentration [C] = 1.0% and then stopping the feeding of acid, the chromium concentration in the molten iron is [% Cr] = 1.
It was 68% and the reduction rate was 91%. After this, Fe-Si (composition:
200 kg of Si = 75% and the balance Fe) were added. The temperature after the addition of Fe-Si was 1635 ° C, the slag basicity was 1.5, and [% Cr] = 1.75%.

【0039】その後スラグを排出し、フェロクロムを21
T 、生石灰を1.8T添加して、仕上げ脱炭処理を行った。
脱炭処理後の温度は1700℃、スラグ塩基度は1.5 、[%C
r] =13.1%であった。
Then, the slag is discharged and the ferrochrome is added to 21
Finishing decarburization was performed by adding 1.8 T of T 2 and quicklime.
After decarburization, the temperature is 1700 ℃, slag basicity is 1.5, [% C
r] = 13.1%.

【0040】(実施例2)脱りん銑65T を上底吹き転炉に
装入し、予めステンレス鋼の仕上げ脱炭期終了時に回収
した酸化クロム含有スラグ (組成:T.Cr=20%、T.Fe=
3%、CaO/SiO2=1.4 、MgO =5%、Al2O3 <10%) を
6000kg、コークスを2000kg、生石灰を360 kg炉内に添加
後、底吹き羽口からArガス (流量17 Nm3/min) で攪拌し
つつ、34分間の粗脱炭昇温吹錬を行った。
(Example 2) Chromium oxide-containing slag (composition: T.Cr = 20%, T), which was prepared by charging dephosphorized pig iron 65T into an upper-bottom blowing converter and previously recovered at the end of the finish decarburization period of stainless steel .Fe =
3%, CaO / SiO 2 = 1.4, MgO = 5%, Al 2 O 3 <10%)
After adding 6000 kg, 2000 kg of coke, and 360 kg of quick lime into the furnace, rough decarburization temperature rising blowing was performed for 34 minutes while stirring with Ar gas (flow rate 17 Nm 3 / min) from the bottom blowing tuyere.

【0041】その後、図2(a) に示すように上吹き吹酸
を停止し上吹きランスを上昇させて、非移行型プラズマ
トーチを3本 (各1MW出力) を昇降装置により下降し
て、プラズマを着火させプラズマ加熱を8分間行った。
After that, as shown in FIG. 2 (a), the top blowing acid is stopped and the top blowing lance is raised, and three non-transfer type plasma torches (each 1 MW output) are lowered by the lifting device, The plasma was ignited and the plasma was heated for 8 minutes.

【0042】以上の処理後の炭素濃度は [C]=1.0 %で
あり、溶鉄中クロム濃度は[Cr]=1.67%となり還元率90
%まで進んだ。この後、Fe−Siを200 kg添加した。Fe−
Si添加後の温度は1635℃、スラグ塩基度は1.5 、[%Cr]
=1.76%であった。
After the above treatment, the carbon concentration was [C] = 1.0%, the chromium concentration in the molten iron was [Cr] = 1.67%, and the reduction rate was 90%.
% Advanced. After this, 200 kg of Fe-Si was added. Fe-
Temperature after addition of Si is 1635 ℃, slag basicity is 1.5, [% Cr]
= 1.76%.

【0043】その後スラグを排出し、前記と同様のフェ
ロクロムを21T 、生石灰を1.8T添加して、仕上げ脱炭処
理を行った。脱炭処理後の温度は1700℃、スラグ塩基度
は1.5 、[%Cr] =13.1%であった。
After that, the slag was discharged, and 21 T of ferrochrome and 1.8 T of quicklime were added to the same as above to perform a final decarburization treatment. The temperature after decarburization was 1700 ° C, the slag basicity was 1.5, and [% Cr] = 13.1%.

【0044】(実施例3)脱りん銑65T を上底吹き転炉に
装入し、ステンレス鋼の仕上げ脱炭期終了時に回収した
スラグ (組成:T.Cr=20%、T.Fe=3%、CaO/SiO2=1.
4 、MgO =5%、Al2O3 <10%) を5350kg、コークスを
2000kg、生石灰を360 kg炉内に添加後、底吹き羽口から
Arガス (流量17 Nm3/min) で攪拌しつつ、34分間の吹錬
を行った。
Example 3 The slag (composition: T.Cr = 20%, T.Fe = 3) collected at the end of the finish decarburization period of stainless steel was prepared by charging dephosphorized pig iron 65T into an upper-bottom blowing converter. %, CaO / SiO 2 = 1.
4, MgO = 5%, Al 2 O 3 <10%) 5350 kg, coke
After adding 2000kg and quick lime to the 360kg furnace, from the bottom tuyeres
Blowing was carried out for 34 minutes while stirring with Ar gas (flow rate 17 Nm 3 / min).

【0045】その後、図2(a) に示すように上吹き吹酸
を停止し上吹きランスを上昇させて、非移行型プラズマ
トーチを3本 (各1MW出力) を昇降装置により下降し
て、プラズマを着火させプラズマ加熱を8分間行った。
その際、プラズマジェット中で加熱された上記スラグを
合計650 kg溶鋼表面へ噴射した。
Thereafter, as shown in FIG. 2 (a), the top blowing acid is stopped, the top blowing lance is raised, and three non-transfer type plasma torches (each 1 MW output) are lowered by the lifting device, The plasma was ignited and the plasma was heated for 8 minutes.
At that time, a total of 650 kg of the molten slag heated in the plasma jet was sprayed onto the surface of the molten steel.

【0046】以上の処理後の炭素濃度は [C]=1.0 %で
あり、溶鉄中クロム濃度は[Cr]=1.72%となり還元率93
%までが進んだ。この後、Fe−Siを100 kg添加した。Fe
−Si添加後の温度は1635℃、スラグ塩基度は1.5 、[%C
r] =1.78%であった。
The carbon concentration after the above treatment was [C] = 1.0%, the chromium concentration in the molten iron was [Cr] = 1.72%, and the reduction rate was 93%.
% Has advanced. After this, 100 kg of Fe-Si was added. Fe
-Si addition temperature is 1635 ℃, slag basicity is 1.5, [% C
r] = 1.78%.

【0047】その後スラグを排出し、同じくフェロクロ
ムを21T 、生石灰を1.8T添加して、仕上げ脱炭処理を行
った。脱炭処理後の温度は1700℃、スラグ塩基度は1.5
、[%Cr] =13.1%であった。
After that, the slag was discharged, and 21 T of ferrochrome and 1.8 T of quick lime were similarly added to carry out a final decarburization treatment. The temperature after decarburization is 1700 ℃, and the slag basicity is 1.5.
, [% Cr] = 13.1%.

【0048】(実施例4)脱りん銑65T を上底吹き転炉に
装入し、ステンレス鋼の仕上げ脱炭期終了時に回収した
スラグ (組成:T.Cr=20%、T.Fe=3%、CaO/SiO2=1.
4 、MgO =5%、Al2O3 <10%) を5350kg、コークスを
2000kg、生石灰を360 kg炉内に添加後、底吹き羽口から
Arガス (流量17 Nm3/min) で攪拌しつつ、34分間の吹錬
を行った。
(Example 4) The slag (composition: T.Cr = 20%, T.Fe = 3) collected at the end of the finish decarburization period of stainless steel was prepared by charging dephosphorized pig iron 65T into a top-bottom blowing converter. %, CaO / SiO 2 = 1.
4, MgO = 5%, Al 2 O 3 <10%) 5350 kg, coke
After adding 2000kg and quick lime to the 360kg furnace, from the bottom tuyeres
Blowing was carried out for 34 minutes while stirring with Ar gas (flow rate 17 Nm 3 / min).

【0049】その後、図2(a) に示すように上吹き吹酸
を停止し上吹きランスを上昇させて、非移行型プラズマ
トーチを3本 (各1MW出力) を昇降装置により下降さ
せ、プラズマを着火させプラズマ加熱を8分間行った。
その際、プラズマジェット中で加熱された上記スラグを
合計650 kg溶鋼表面へ噴射した。
After that, as shown in FIG. 2 (a), the top-blown acid was stopped and the top-blown lance was raised, and three non-transfer type plasma torches (each 1 MW output) were lowered by an elevating device to generate plasma. Was ignited and plasma heating was performed for 8 minutes.
At that time, a total of 650 kg of the molten slag heated in the plasma jet was sprayed onto the surface of the molten steel.

【0050】以上の処理後の炭素濃度は [C]=1.0 %で
あり、溶鉄中クロム濃度は[Cr]=1.75%となり還元率95
%までが進んだ。還元率が非常に高まったため、この後
のFe−Si添加は省略した。
After the above treatment, the carbon concentration was [C] = 1.0%, the chromium concentration in the molten iron was [Cr] = 1.75%, and the reduction rate was 95%.
% Has advanced. Since the reduction rate was greatly increased, the subsequent addition of Fe-Si was omitted.

【0051】その後スラグを排出し、同じくフェロクロ
ムを21T 、生石灰を1.8T添加して、仕上げ脱炭処理を行
った。脱炭処理後の温度は1700℃、スラグ塩基度は1.5
、[%Cr] =13.1%であった。
Thereafter, the slag was discharged, and 21 T of ferrochrome and 1.8 T of quick lime were similarly added to perform a final decarburization treatment. The temperature after decarburization is 1700 ℃, and the slag basicity is 1.5.
, [% Cr] = 13.1%.

【0052】(実施例5)脱りん銑65T をAODに装入
し、ステンレス鋼の仕上げ脱炭期終了時に回収したスラ
グ (組成:T.Cr=20%、T.Fe=3%、CaO/SiO2=1.4 、
MgO =5%、Al2O3 <10%) を6000kg、コークスを1000
kg、生石灰を360 kg炉内に添加後、AOD炉体側壁の浸
漬羽口からO2−Arガスを吹込みつつ、34分間の吹錬を行
った。
(Embodiment 5) A slag (composition: T.Cr = 20%, T.Fe = 3%, CaO /) which was charged at the end of the finishing decarburization period of stainless steel by charging deoxidized pig iron 65T into AOD SiO 2 = 1.4,
MgO = 5%, Al 2 O 3 <10%) 6000 kg, coke 1000
After adding 360 kg of quick lime and 360 kg of quick lime into the furnace, blowing was performed for 34 minutes while blowing O 2 -Ar gas from the dipping tuyere on the side wall of the AOD furnace body.

【0053】その際に吹錬初期から20分まで、図2(a)
に示すように非移行型プラズマトーチを3本 (各1MW出
力) より発生させたプラズマジェット中を溶鋼表面に噴
射し加熱した。
At that time, from the beginning of blowing to 20 minutes, FIG. 2 (a)
As shown in Fig. 3, a plasma jet generated from three non-transfer type plasma torches (1 MW output each) was jetted onto the molten steel surface and heated.

【0054】その結果、プラズマ加熱を使用しない場合
に比較して、吹錬初期からスラグ中Cr2O3 の還元率が高
く、送酸終了後には炭素濃度[%C]=1.0 で溶鉄中クロム
濃度[%Cr] =1.66となり還元率90%が得られた。
As a result, the reduction rate of Cr 2 O 3 in the slag was higher from the beginning of blowing compared with the case where plasma heating was not used, and after the end of acid transfer, the carbon concentration [% C] = 1.0 and the chromium in molten iron was reduced. The concentration [% Cr] was 1.66, and a reduction rate of 90% was obtained.

【0055】この後、Fe−Si200 kg添加した。Fe−Si添
加後の温度は1635℃、スラグ塩基度は1.5 、[%Cr] =1.
76%であった。その後スラグを排出し、同じくフェロク
ロムを21T 、生石灰を1.8T添加して、仕上げ脱炭処理を
行った。脱炭処理後の温度は1700℃、スラグ塩基度は1.
5 、[%Cr] =13.1%であった。
After that, 200 kg of Fe-Si was added. The temperature after adding Fe-Si is 1635 ° C, the slag basicity is 1.5, and [% Cr] = 1.
It was 76%. After that, the slag was discharged, and 21 T of ferrochrome and 1.8 T of quick lime were also added to finish decarburization. The temperature after decarburization is 1700 ° C and the slag basicity is 1.
5, [% Cr] = 13.1%.

【0056】(実施例6)脱りん銑65T をAOD炉に装入
し、ステンレス鋼の仕上げ脱炭期終了時に回収したスラ
グ (組成:T.Cr=20%、T.Fe=3%、CaO/SiO2=1.4 、
MgO =5%、Al2O3 <10%) を5350kg、コークスを1000
kg、生石灰を360 kg炉内に添加後、AOD炉体側壁の浸
漬羽口からO2−Arガスを吹込みつつ、34分間の吹錬を行
った。
(Example 6) Dephosphorized pig iron 65T was charged into an AOD furnace, and slag recovered at the end of the finish decarburization period of stainless steel (composition: T.Cr = 20%, T.Fe = 3%, CaO / SiO 2 = 1.4,
MgO = 5%, Al 2 O 3 <10%) 5350 kg, coke 1000
After adding 360 kg of quick lime and 360 kg of quick lime into the furnace, blowing was performed for 34 minutes while blowing O 2 -Ar gas from the dipping tuyere on the side wall of the AOD furnace body.

【0057】その際に吹錬初期から20分まで、非移行型
プラズマトーチを3本 (各1MW出力) より発生させたプ
ラズマジェット中で加熱された上記スラグを合計で650
kg溶鋼表面へ噴射する。
At that time, from the beginning of blowing to 20 minutes, the total amount of the above-mentioned slag heated in the plasma jet generated from three non-transfer type plasma torches (output of 1 MW each) was 650.
Injection into the surface of molten steel.

【0058】その結果、プラズマ加熱を使用しない場合
に比較して、吹錬初期からスラグ中Cr2O3 の還元率がか
なり高く、送酸終了後には炭素濃度[%C]=1.0 で溶鉄中
クロム濃度[%Cr] =1.75となり還元率95%が得られた。
還元率が非常に高まったため、Fe−Si添加は省略した。
As a result, the reduction rate of Cr 2 O 3 in the slag was considerably higher from the beginning of blowing compared to the case where plasma heating was not used, and after the end of the acid transfer, the carbon concentration [% C] = 1.0 Chromium concentration [% Cr] = 1.75 and reduction rate of 95% was obtained.
The Fe-Si addition was omitted because the reduction rate was very high.

【0059】その後スラグを排出し、同じくフェロクロ
ムを21T 、生石灰を1.8T添加して、仕上げ脱炭処理を行
った。脱炭処理後の温度は1700℃、スラグ塩基度は1.5
、[%Cr] =13.1%であった。比較例および実施例1な
いし6の結果を下掲表1にまとめて示す。
Thereafter, the slag was discharged, and 21 T of ferrochrome and 1.8 T of quick lime were similarly added to perform a final decarburization treatment. The temperature after decarburization is 1700 ℃, and the slag basicity is 1.5.
, [% Cr] = 13.1%. The results of Comparative Examples and Examples 1 to 6 are summarized in Table 1 below.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【発明の効果】本発明により脱炭中に酸化クロムを還元
する際、溶鋼温度を高めることにより、還元速度を高い
値に維持することが可能となり、還元率の向上およびC
原単位の低減による脱炭時間の短縮が可能となる。
According to the present invention, when chromium oxide is reduced during decarburization, it is possible to maintain the reduction rate at a high value by increasing the molten steel temperature, thereby improving the reduction rate and C
The decarburization time can be shortened by reducing the basic unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる方法の1例の工程図である。FIG. 1 is a process chart of an example of a method according to the present invention.

【図2】図2(a) 、(b) は、本発明におけるプラズマア
ーク加熱、上吹きランス吹錬の様子のそれぞれ模式的な
説明図である。
2 (a) and 2 (b) are schematic explanatory views of the states of plasma arc heating and top blowing lance blowing in the present invention, respectively.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼の粗溶鋼の仕上げ脱炭精錬
期に得られた酸化クロム含有スラグを用意すること、該
スラグと粗脱炭昇温吹錬前もしくは吹錬中の溶湯との接
触下に、該溶湯中の炭素または含炭素材中の炭素により
前記スラグ中の酸化クロムを還元して溶湯中に回収する
こと、その際、プラズマアークにより溶湯およびスラグ
を昇熱して還元効率を向上させること、前記粗脱炭昇温
吹錬により得られたステンレス溶鋼の粗溶鋼からスラグ
を排滓し、Cr含有合金を所定量添加して仕上げ脱炭精錬
を行うことを特徴とするステンレス鋼の製造方法。
1. A chrome-containing slag obtained during the finishing decarburization refining stage of crude molten steel of stainless steel is prepared, and the slag is brought into contact with the molten metal before or during the coarse decarburization temperature rising blowing. In addition, the chromium oxide in the slag is reduced by the carbon in the molten metal or the carbon in the carbon-containing material to be recovered in the molten metal, in which case the plasma and the slag are heated to improve the reduction efficiency. That is, the production of stainless steel, characterized in that the slag is discharged from the crude molten steel of the molten stainless steel obtained by the crude decarburizing temperature-rising blowing, and a predetermined amount of Cr-containing alloy is added to perform final decarburizing refining. Method.
【請求項2】 ステンレス鋼の粗溶鋼の仕上げ脱炭精錬
期に得られた酸化クロム含有スラグを用意すること、該
スラグと粗脱炭昇温吹錬前もしくは吹錬中の溶湯との接
触下に、該溶湯中の炭素または含炭素材中の炭素により
前記スラグ中の酸化クロムを還元して溶湯中に回収する
こと、その際、プラズマアークにより溶湯およびスラグ
を昇熱して還元効率を向上させること、次いで粗脱炭昇
温吹錬により得られたステンレス溶鋼の粗溶鋼にSi含有
合金を添加して仕上げ還元および脱硫を行い、その後、
スラグを排滓し、Cr含有合金を所定量添加して仕上げ脱
炭精錬を行うことを特徴とするステンレス鋼の製造方
法。
2. A chromium oxide-containing slag obtained during a finish decarburization refining stage of a crude molten steel of stainless steel is prepared, and the slag is brought into contact with a molten metal before or during the coarse decarburization temperature raising blowing or during the blowing. In addition, the chromium oxide in the slag is reduced by the carbon in the molten metal or the carbon in the carbon-containing material to be recovered in the molten metal, in which case the plasma and the slag are heated to improve the reduction efficiency. Then, the Si-containing alloy is added to the crude molten steel of the stainless molten steel obtained by the crude decarburizing temperature-rising blowing to perform finish reduction and desulfurization, and thereafter,
A method for producing stainless steel, characterized in that slag is discharged and a predetermined amount of Cr-containing alloy is added to carry out finish decarburization refining.
【請求項3】 前記プラズマアークにより溶湯およびス
ラグを昇温する際に、不活性ガスをキャリアーガスとし
て、ステンレス鋼の粗溶鋼を脱炭するときに生じる酸化
クロム含有スラグを回収・粉砕し、粉砕によって得たス
ラグ粉体を連続または分割して溶湯表面に溶射すること
を特徴とする請求項1または2記載のステンレス鋼の製
造方法。
3. When the temperature of the molten metal and slag is raised by the plasma arc, the chromium oxide-containing slag produced when decarburizing the crude molten steel of stainless steel is recovered and pulverized by using an inert gas as a carrier gas and pulverized. The method for producing stainless steel according to claim 1 or 2, wherein the slag powder obtained by the method is sprayed continuously or dividedly onto the surface of the molten metal.
JP9862294A 1994-05-12 1994-05-12 Production of stainless steel Withdrawn JPH07310109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9862294A JPH07310109A (en) 1994-05-12 1994-05-12 Production of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9862294A JPH07310109A (en) 1994-05-12 1994-05-12 Production of stainless steel

Publications (1)

Publication Number Publication Date
JPH07310109A true JPH07310109A (en) 1995-11-28

Family

ID=14224651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9862294A Withdrawn JPH07310109A (en) 1994-05-12 1994-05-12 Production of stainless steel

Country Status (1)

Country Link
JP (1) JPH07310109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261062A (en) * 2009-04-30 2010-11-18 Nisshin Steel Co Ltd Method for producing stainless steel
CN103540769A (en) * 2013-09-27 2014-01-29 泰州永兴合金材料科技有限公司 Method for preparing refining stainless steel from laterite-nickel ore and prepared product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261062A (en) * 2009-04-30 2010-11-18 Nisshin Steel Co Ltd Method for producing stainless steel
CN103540769A (en) * 2013-09-27 2014-01-29 泰州永兴合金材料科技有限公司 Method for preparing refining stainless steel from laterite-nickel ore and prepared product

Similar Documents

Publication Publication Date Title
JP2006233264A (en) Method for smelting high-chromium molten steel
JP2947063B2 (en) Stainless steel manufacturing method
JPS6250545B2 (en)
JPH07310109A (en) Production of stainless steel
JPH0437136B2 (en)
JP2964861B2 (en) Stainless steel manufacturing method
JP3063537B2 (en) Stainless steel manufacturing method
JP3580096B2 (en) Melting method of low Mn steel
JP3158912B2 (en) Stainless steel refining method
JPH0987722A (en) Method for refining molten crude stainless steel
JPH0967608A (en) Production of stainless steel
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JPH0435529B2 (en)
JP7447878B2 (en) Method for decarburizing molten Cr and method for producing Cr-containing steel
JP3173325B2 (en) How to make stainless steel
JP3788392B2 (en) Method for producing high Cr molten steel
JPH0673424A (en) Method for efficiently refining stainless steel using decarburized slag
JP3560637B2 (en) Converter furnace blowing method for stainless steel
JPH07216429A (en) Production of stainless crude molten steel using decarburized slag
JPH0437137B2 (en)
JP3765092B2 (en) Ladle stirring method for electric arc furnace hot metal
JPH08325620A (en) Production of stainless steel
JPS61139614A (en) Manufacture of steel
JPS609814A (en) Production of high chromium alloy unsaturated with carbon by melt reduction
JPH0438806B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731