JP2002371313A - Method for smelting molten stainless steel - Google Patents

Method for smelting molten stainless steel

Info

Publication number
JP2002371313A
JP2002371313A JP2001178983A JP2001178983A JP2002371313A JP 2002371313 A JP2002371313 A JP 2002371313A JP 2001178983 A JP2001178983 A JP 2001178983A JP 2001178983 A JP2001178983 A JP 2001178983A JP 2002371313 A JP2002371313 A JP 2002371313A
Authority
JP
Japan
Prior art keywords
slag
stainless steel
molten
steel
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001178983A
Other languages
Japanese (ja)
Other versions
JP4364456B2 (en
Inventor
Kenichiro Miyamoto
健一郎 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001178983A priority Critical patent/JP4364456B2/en
Publication of JP2002371313A publication Critical patent/JP2002371313A/en
Application granted granted Critical
Publication of JP4364456B2 publication Critical patent/JP4364456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for smelting molten stainless steel, which reduces Al concentration in the molten stainless steel, accelerates desulfurization, facilitates smelting the molten stainless steel into an extreme low Al and low S content, reduces Cr2 O3 concentration in slag, and enables resource recovery of the generated slag. SOLUTION: The method for smelting the molten stainless steel, which smelts a crude molten steel through primary decarbonization, by blowing oxygen into a molten pig iron and a ferrochrome alloy charged in a converter type vessel 10, taps the crude molten steel out into a ladle 21, refines the crude molten steel through the secondary decarbonization and deoxidation treatment with the use of a secondary refining furnace 30, is characterized by reducing the slag through adding a silicon-containing alloy to the slag, which is generated after the primary decarbonization refinement by oxygen-blowing, then adding Al so that Al concentration in the crude molten steel may become 0.05-0.2 wt.%, desulfurizing it, tapping it out into the ladle 21, and adding no Al during heating up and deoxidation treatment in sequential secondary decarbonization refinement with the use of the secondary refining furnace 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、転炉型精錬容器を
用いて一次脱炭精錬で生成したスラグ中のCrをSi含
有合金で還元を行った後、Alを添加して脱硫し、次い
で行う二次脱炭精錬で、Alを添加しないことにより、
極低Al、低Sのステンレス溶鋼を溶製するステンレス
溶鋼の溶製方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for reducing Cr in slag produced by primary decarburization refining with a Si-containing alloy using a converter type refining vessel, adding Al, desulfurizing, In the secondary decarburization refining performed, by not adding Al,
TECHNICAL FIELD The present invention relates to a method for producing a molten stainless steel for producing a very low Al and low S molten stainless steel.

【0002】[0002]

【従来の技術】従来、溶鉄にクロムやニッケルを含有さ
せたステンレス溶鋼を連続鋳造等を用いて鋳片にし、こ
の鋳片に圧延加工を施して製造されたステンレス鋼板
は、耐腐食や光沢性に優れているため、油井管や建材等
に多く使用されている。このステンレス鋼板の耐腐食、
靱性等の特性は、精錬炉を用いてステンレス溶鋼を溶製
する際、ステンレス溶鋼中に含まれるアルミニウム(A
l)に起因した粗大酸化物系介在物が生成し、硫黄は、
硫化物を形成するため、ステンレス鋼板の耐腐食が悪く
なったり、ステンレス鋼板の靱性が低下する等の問題が
ある。この対策として、特開昭10−195605号公
報に記載されているように、炭素を0.005〜0.1
重量%で、クロム(Cr)を12〜16重量%、Alを
0.005〜0.2重量%、硫黄(S)を0.015重
量%を含むステンレス鋼板が提案されており、この鋼板
を用いることにより、Al脱酸の生成物である粗大介在
物を抑制し、しかも、硫化物による腐食及び腐食割れ等
の発生を防止する方法が行われている。
2. Description of the Related Art Conventionally, a stainless steel sheet produced by casting a molten stainless steel containing chromium or nickel into molten iron by continuous casting or the like and subjecting the slab to rolling processing has a problem of corrosion resistance and glossiness. It is widely used for oil country tubular goods and building materials. Corrosion resistance of this stainless steel plate,
The characteristics of toughness and the like are as follows: when smelting stainless steel using a refining furnace, the aluminum (A
1) coarse oxide-based inclusions resulting from
Since sulfides are formed, there are problems that the corrosion resistance of the stainless steel plate is deteriorated and the toughness of the stainless steel plate is reduced. As a countermeasure against this, as described in JP-A-10-195605, carbon is added in an amount of 0.005 to 0.1%.
A stainless steel sheet containing 12 to 16% by weight of chromium (Cr), 0.005 to 0.2% by weight of Al, and 0.015% by weight of sulfur (S) has been proposed. A method of suppressing coarse inclusions, which are products of Al deoxidation, and preventing corrosion and corrosion cracking due to sulfides by using the method has been performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開昭
10−195605号公報に記載されたステンレス鋼板
は、ステンレス鋼板の組成について記載されているが、
その組成のステンレス溶鋼を溶製する際、精錬過程で、
ステンレス溶鋼のAl濃度の低減と、脱硫の促進を同じ
転炉型精錬炉を用いて極低Al、低S濃度のステンレス
溶鋼を容易に溶製することができず、更に、精錬時に発
生するスラグ中のクロム酸化物(Cr23)の還元回
収効率が低くなり、発生スラグの資源化を図ることがで
きない等の問題がある。
However, the stainless steel sheet disclosed in Japanese Patent Application Laid-Open No. 10-195605 describes the composition of the stainless steel sheet.
When smelting stainless steel of that composition, during the refining process,
Ultra-low Al and low S concentration stainless steel molten steel cannot be easily melted using the same converter type refining furnace to reduce the Al concentration of molten stainless steel and promote desulfurization. There is a problem that the efficiency of reduction and recovery of chromium oxide (Cr 2 O 3 ) therein is low, and the generated slag cannot be used as a resource.

【0004】本発明はかかる事情に鑑みてなされたもの
で、ステンレス溶鋼のAl濃度の低減と脱硫の促進を図
り極低Al、低Sのステンレス溶鋼の溶製を容易にし、
スラグ中のCr23 濃度を低減して発生スラグの資源
化を可能にするステンレス溶鋼の溶製方法を提供するこ
とを目的とする。
The present invention has been made in view of such circumstances, and aims to reduce the Al concentration in molten stainless steel and promote desulfurization to facilitate the production of extremely low Al and low S molten stainless steel.
It is an object of the present invention to provide a method for smelting stainless steel that reduces the concentration of Cr 2 O 3 in slag and enables the generated slag to be recycled.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う本発明に
係るステンレス溶鋼の溶製方法は、転炉型容器に溶銑と
フェロクロム合金を装入し、前記溶銑とフェロクロム合
金に上吹きランスを用いて吹酸し、前記溶銑とフェロク
ロム合金の溶解と一次脱炭精錬を行って粗溶鋼を溶製し
た後、取鍋に前記粗溶鋼を出鋼し、次いで、前記粗溶鋼
を二次精錬炉を用いて二次脱炭精錬と脱酸処理を行うス
テンレス溶鋼の溶製方法において、前記吹酸による前記
一次脱炭精錬を行った後に生成したスラグに、シリコン
を含有する合金を添加して前記スラグを還元処理した
後、前記粗溶鋼中のAl濃度が0.05〜0.2重量%
になるようにAlを添加して脱硫処理を行ってから前記
取鍋に出鋼し、引き続き行う前記二次精錬炉を用いた二
次脱炭精錬における昇熱及び脱酸処理時にAlを添加し
ないで処理を行う。この方法により、転炉型容器による
一次脱炭精錬時に生成したスラグ中に含まれるCr2
3 をシリコンを含む還元剤で還元し、Crを粗溶鋼中に
回収でき、更に、粗溶鋼中のAl濃度を0.05〜0.
2重量%にして脱硫処理を行なうので、酸素ポテンシャ
ルを低くして脱硫を促進することができる。更に、二次
脱炭精錬の昇熱期に、Al昇熱を行うと、スラグ中のA
23 の濃度が上昇し、わずかにスラグ中のAl2
3 が、例えばSi合金等の他の脱酸剤により、還元され
て溶鋼中のAl濃度が高くなり、極低Alにすることが
できない。従って、二次精錬炉による二次脱炭精錬で行
う昇熱工程及び二次脱炭精錬を行った後に行う脱酸処理
でAlを添加しないことにより、最終のステンレス溶鋼
のAl含有量を極低Alにし、低Sにすることができ
る。Al濃度が0.05重量%より少ないと、スラグ中
の酸素ポテンシャルが高くなり、脱硫反応が悪くなって
到達S濃度が高くなる。一方、Al濃度が0.2重量%
を超えると、脱硫の効果が飽和状態になり、これ以上A
lを添加しても合金コストが上昇するだけであり、更
に、二次脱炭精錬によりスラグ中のAl23 濃度が高
くなり、極低Al濃度の溶鋼の溶製が困難になる。
According to the present invention, there is provided a method for producing molten stainless steel according to the present invention, which comprises charging a hot metal and a ferrochrome alloy into a converter type vessel and using an upper blowing lance for the hot metal and the ferrochrome alloy. After blowing the molten iron and performing melting and primary decarburization refining of the molten iron and the ferrochrome alloy to produce the crude molten steel, the crude molten steel is discharged into a ladle, and then the secondary molten metal is subjected to a secondary refining furnace. In the method for producing molten stainless steel in which secondary decarburization refining and deoxidation treatment are performed by using the above-mentioned slag, a silicon-containing alloy is added to slag generated after performing the primary decarburization refining with the blowing acid. After the reduction treatment, the Al concentration in the crude molten steel is 0.05 to 0.2% by weight.
Al is added so as to obtain a desulfurization treatment, and then the steel is output to the ladle, and Al is not added at the time of heating and deoxidizing treatment in the subsequent secondary decarburization refining using the secondary refining furnace. Perform processing. By this method, Cr 2 O contained in the slag generated during the primary decarburization refining by the converter type vessel
3 can be reduced with a reducing agent containing silicon, Cr can be recovered in the crude molten steel, and the Al concentration in the crude molten steel is reduced to 0.05 to 0.1.
Since desulfurization treatment is performed at 2% by weight, desulfurization can be promoted by lowering the oxygen potential. Further, during the heating period of the secondary decarburization refining, if the heating of Al is performed, A in the slag is increased.
l 2 O 3 concentration increased, and Al 2 O
3 is reduced by another deoxidizing agent such as a Si alloy to increase the Al concentration in the molten steel, so that it cannot be reduced to an extremely low Al. Therefore, by not adding Al in the heating step performed in the secondary decarburization refining by the secondary refining furnace and in the deoxidizing treatment performed after the secondary decarburization refining, the Al content in the final molten stainless steel is extremely low. Al and low S. If the Al concentration is less than 0.05% by weight, the oxygen potential in the slag increases, the desulfurization reaction deteriorates, and the ultimate S concentration increases. On the other hand, when the Al concentration is 0.2% by weight.
Is exceeded, the desulfurization effect becomes saturated, and A
The addition of l only increases the alloy cost, and further increases the Al 2 O 3 concentration in the slag due to the secondary decarburization refining, making it difficult to produce molten steel with an extremely low Al concentration.

【0006】ここで、前記転炉型容器を用いた前記脱硫
処理時のスラグの組成は、塩基度を1.3〜1.8、A
23 を10重量%以下にすると良い。これにより、
スラグの脱硫能を高め、しかも、遊離CaOの生成を抑
制してスラグの膨張を防止し、スラグの資源化を図るこ
とができる。スラグの塩基度が1.3より小さいと、ス
ラグの脱硫能が低下し、脱硫反応が悪くなる。一方、ス
ラグの塩基度が1.8を超えると、高塩基度化に伴い遊
離CaOが発生し、スラグの膨張が大きく、滓化不良が
生じ易くなる。また、スラグ中のAl23 濃度が10
重量%を超えると、スラグの脱硫能が低下し、脱硫反応
が悪くなる。なお、スラグ中のAl23 濃度の下限
は、スラグの滓化を促進し、脱硫反応を良好にするた
め、3重量%が好ましい。
Here, the composition of the slag in the desulfurization treatment using the converter type container has a basicity of 1.3 to 1.8, A
The l 2 O 3 may be 10 wt% or less. This allows
The desulfurization ability of the slag can be enhanced, and the generation of free CaO can be suppressed to prevent the slag from expanding, thereby making it possible to use the slag as a resource. When the basicity of the slag is less than 1.3, the desulfurization ability of the slag decreases, and the desulfurization reaction deteriorates. On the other hand, when the basicity of the slag exceeds 1.8, free CaO is generated as the basicity increases, the slag expands greatly, and poor slagging is likely to occur. Further, the concentration of Al 2 O 3 in the slag is 10
If the content is more than 10% by weight, the desulfurization ability of the slag decreases, and the desulfurization reaction deteriorates. The lower limit of the concentration of Al 2 O 3 in the slag is preferably 3% by weight in order to promote slag slag and improve desulfurization reaction.

【0007】更に、前記還元処理を終了した前記スラグ
中のCr23 濃度を5重量%以下にすることこともで
きる。これにより、スラグ中に含まれる高価なCrを還
元して粗溶鋼中に回収でき、合金鉄コストを低減するこ
とができる。スラグ中のCr23 濃度が5重量%を超
えると、脱硫処理で添加したAlがCr23 の還元に
消費され、スラグ中の酸素ポテンシャルの低下が不十分
になり、脱硫反応が低下する。
Furthermore, the Cr 2 O 3 concentration in the slag exit the reduction treatment may be be 5 wt% or less. As a result, expensive Cr contained in the slag can be reduced and recovered in the crude molten steel, and the cost of ferroalloys can be reduced. When the concentration of Cr 2 O 3 in the slag exceeds 5% by weight, Al added in the desulfurization treatment is consumed for the reduction of Cr 2 O 3 , and the oxygen potential in the slag is insufficiently reduced, and the desulfurization reaction is reduced. I do.

【0008】また、前記還元処理及び前記脱硫処理時の
前記溶鋼の温度を1550℃以上、1700℃未満とす
ることが好ましい。これにより、スラグの滓化を促進
し、脱硫反応を促進し、低Sのステンレス粗溶鋼を容易
に溶製することができる。還元処理及び脱硫処理時の溶
鋼の温度が1550℃より低くなると、スラグの滓化に
多大の時間を要し、脱硫反応が不利になる。一方、溶鋼
の温度が1700℃以上になると、高温度に成り過ぎて
精錬炉の耐火物の溶損が増大し、耐火物コストが高くな
る。
It is preferable that the temperature of the molten steel at the time of the reduction treatment and the desulfurization treatment is 1550 ° C. or more and less than 1700 ° C. Thereby, slagification of slag is promoted, desulfurization reaction is promoted, and low-melting stainless steel with low S can be easily produced. If the temperature of the molten steel at the time of the reduction treatment and the desulfurization treatment is lower than 1550 ° C., it takes a long time to make the slag slag, and the desulfurization reaction is disadvantageous. On the other hand, when the temperature of the molten steel is 1700 ° C. or higher, the temperature becomes too high, the erosion of the refractory in the refining furnace increases, and the refractory cost increases.

【0009】[0009]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の一実施の形態に係る
ステンレス溶鋼の溶製方法による処理の流れを示す説明
図である。図1に示すように、本発明の一実施の形態に
係るステンレス溶鋼の溶製方法によるステンレス溶鋼の
脱炭精錬処理は、一次脱炭精錬に用いる転炉型容器の一
例である上底吹き転炉10と、二次脱炭精錬に用いる二
次精錬炉の一例である減圧取鍋精錬炉30を使用してい
る。上底吹き転炉10は、溶鉄とフェロクロム合金を入
れる炉体11と、炉口12の上方に昇降可能に配置して
溶鉄とフェロクロム合金に酸素を吹き付ける吹酸ランス
13と、炉体11の底部から不活性ガスの一例であるア
ルゴンガスを吹き込んでスラグ14a及び粗溶鋼(ステ
ンレス粗溶鋼ともいう)15aを攪拌する底吹きノズル
16と、炉体11の側上部に出鋼口17を有している。
更に、炉口12の上方に副原料の一例であるCaOやフ
ェロシリコン(Fe−Si)、Al等を貯蔵するホッパ
18と、ホッパ18の下方に配置したシュート19と、
脱硫処理を行ったスラグ14bを炉内に残留させて溶製
したステンレス粗溶鋼15bを受鋼し、底部に不活性ガ
スの吹き込みを行うポーラスプラグ20を有する取鍋2
1を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is an explanatory diagram showing a flow of processing by a method for producing molten stainless steel according to one embodiment of the present invention. As shown in FIG. 1, the decarburizing and refining process of molten stainless steel according to the method for producing molten stainless steel according to one embodiment of the present invention is performed using an upper-bottom blow-roller, which is an example of a converter-type vessel used for primary decarburization refining. A furnace 10 and a vacuum ladle refining furnace 30 which is an example of a secondary refining furnace used for secondary decarburization refining are used. The top-bottom blowing converter 10 includes a furnace body 11 for containing molten iron and a ferrochrome alloy, a blowing acid lance 13 disposed above a furnace port 12 so as to be movable up and down to blow oxygen to the molten iron and ferrochrome alloy, and a bottom part of the furnace body 11. And a bottom blow nozzle 16 for injecting an argon gas, which is an example of an inert gas, to agitate the slag 14a and the crude molten steel (also referred to as crude stainless steel) 15a, and a steel tapping port 17 at the upper side of the furnace body 11. I have.
Further, a hopper 18 for storing CaO, ferrosilicon (Fe—Si), Al, etc., which are examples of auxiliary materials, above the furnace port 12 and a chute 19 disposed below the hopper 18,
A ladle 2 having a porous plug 20 for receiving a slag 14b subjected to desulfurization treatment in a furnace and receiving a smelted stainless steel melt 15b and blowing an inert gas into a bottom thereof.
1 is provided.

【0010】減圧取鍋精錬炉30は、上底吹き転炉10
で溶製したステンレス粗溶鋼15bを受鋼した取鍋21
をそのまま用い、この取鍋21の上に被さる減圧フード
36と、減圧フード36を貫通して内部とそれぞれ連通
する吹酸ランス31と、図示しないエゼクターに連通し
た減圧ダクト32と、途中に遮断弁34を有するCaO
や合金鉄等の貯蔵ホッパ35と接続されたシュート33
を有している。
[0010] The vacuum ladle refining furnace 30 is an upper-bottom blow converter 10
Ladle 21 receiving stainless steel molten steel 15b smelted in
And a pressure reducing hood 36 covering the ladle 21, a blowing acid lance 31 penetrating through the pressure reducing hood 36 and communicating with the inside, a pressure reducing duct 32 communicating with an ejector (not shown), and a shutoff valve in the middle. CaO with 34
33 connected to a storage hopper 35 of steel or alloy iron
have.

【0011】次に、本発明に係るステンレス溶鋼の溶製
方法について上底吹き転炉10と減圧取鍋精錬炉30を
用いて説明する。溶鉄とフェロクロム合金を上底吹き転
炉10の炉口12から炉内に装入し、吹酸ランス(上吹
きランス)13を炉口12から炉内に下降させ、150
00〜25000Nm3 /(時間)の酸素の吹き付けを
行い、同時に、ホッパ18からCaOを添加し、吹酸ラ
ンス13からの吹酸による一次脱炭精錬を行う。この一
次脱炭精錬では、吹酸による昇熱によって、フェロクロ
ム合金が速やかに溶解し、更に、酸素と炭素が反応する
いわゆる脱炭反応が促進され、炭素濃度が0.3〜0.
8重量%、温度が1550℃以上、1700℃未満のス
テンレス粗溶鋼15aが溶製される。この一次脱炭精錬
の際、添加したCaOや溶銑やフェロクロム合金に含ま
れる珪素(Si)、Al等が酸化され、スラグ14aを
形成する。このスラグ14aは、一次脱炭精錬の吹酸時
に、フェロクロム合金中のCrが酸化されたCr23
を多量に含むため、シリコンを含有する合金の一例であ
るFe−Si合金をホッパ18から添加し、底吹きノズ
ル16からステンレス粗溶鋼15a中にアルゴンガスを
吹き込んでスラグ14aとステンレス粗溶鋼15aを攪
拌してCr23 の還元処理を行う。この還元処理は、
スラグ14a中のCr23 濃度が5重量%以下になる
まで行う。そして、還元処理を終了した後、底吹きノズ
ル16からアルゴンガスの吹き込みを継続した状態で、
Alの一例である金属Alをホッパ18からシュート1
9を介してAl濃度が0.05〜0.2重量%となるよ
うに添加し、スラグ14aとステンレス粗溶鋼15aを
攪拌して脱硫処理を行う。この脱硫処理直前に、予めス
ラグ14aをサンプリングして分析し、スラグ14aの
塩基度(CaO/SiO2 )が1.3〜1.8、Al2
3 が10重量%以下になるように、シュート19を介
して炉内へ添加するCaO量や金属Al量の調整を行
う。
Next, the method for smelting stainless steel according to the present invention will be described using an upper-bottom blow converter 10 and a vacuum ladle refining furnace 30. The molten iron and the ferrochrome alloy are charged into the furnace from the furnace port 12 of the top and bottom blown converter 10, and the blowing acid lance (top blowing lance) 13 is lowered from the furnace port 12 into the furnace.
Oxygen of 00 to 25000 Nm 3 / (hour) is sprayed, and at the same time, CaO is added from the hopper 18 and primary decarburization refining is performed by blowing acid from the blowing acid lance 13. In this primary decarburization refining, the ferrochrome alloy is rapidly melted by the increase in heat by the blowing acid, and the so-called decarburization reaction in which oxygen and carbon react is promoted, and the carbon concentration becomes 0.3 to 0.1.
A stainless steel molten steel 15a having a temperature of 1550 ° C. or more and less than 1700 ° C. is melted at 8% by weight. During this primary decarburization refining, added CaO, hot metal and silicon (Si) and Al contained in the ferrochrome alloy are oxidized to form slag 14a. The slag 14a is formed of Cr 2 O 3 in which Cr in the ferrochrome alloy is oxidized during the blowing acid of the primary decarburization refining.
, A Fe-Si alloy, which is an example of an alloy containing silicon, is added from a hopper 18, and argon gas is blown into the stainless steel molten steel 15a from the bottom blow nozzle 16 to remove the slag 14a and the stainless steel molten steel 15a. Stirring is performed to reduce Cr 2 O 3 . This reduction process
Performed until the Cr 2 O 3 concentration in the slag 14a becomes 5 wt% or less. Then, after the reduction process is completed, while blowing the argon gas from the bottom blowing nozzle 16 is continued,
A metal Al, which is an example of Al, is shot from the hopper 18 into the chute 1
9 to add the Al concentration to be 0.05 to 0.2% by weight, and agitate the slag 14a and the molten stainless steel 15a to perform desulfurization treatment. This desulfurization treatment immediately before, and analyzed by sampling in advance slug 14a, the slag basicity 14a (CaO / SiO 2) is 1.3 to 1.8, Al 2
The amount of CaO and the amount of metal Al added into the furnace via the chute 19 are adjusted so that O 3 becomes 10% by weight or less.

【0012】上底吹き転炉10を用いた還元処理は、ス
テンレス粗溶鋼15a及びスラグ14aの温度を155
0℃以上、1700℃未満にして底吹きノズル16から
アルゴンガスを吹き込んで攪拌し、しかも、Fe−Si
合金を添加しているので、スラグ14aの滓化が良好に
なり、スラグ14a中のCr23 の還元反応が促進さ
れる。還元されたCrは、ステンレス粗溶鋼15a中に
回収され、スラグ14a中に残留するCr23 濃度と
して5重量%(Cr換算で重量%)以下にすることがで
きる。還元処理の後に行う脱硫処理は、ステンレス粗溶
鋼15aに、金属Alを添加しその濃度を0.05〜
0.2重量%にするので、スラグ14a中の酸素ポテン
シャルを十分に低減し、温度を1550℃以上、170
0℃未満にし、しかも、底吹きノズル16からアルゴン
ガスを吹き込んで攪拌するので、脱硫反応が促進されて
到達S濃度を低くすることができる。更に、スラグ14
a中のCr23 の濃度を5重量%以下にしているの
で、添加した金属Alが、Cr23 との酸化反応によ
る消耗を少なくし、しかも、スラグ14a中のAl2
3 の増加を抑制して、スラグ14a中の酸素ポテンシャ
ルを効率良く低減でき、脱硫反応を安定して促進するこ
とができる。この還元処理と脱硫処理を行ったステンレ
ス粗溶鋼15bは、脱硫処理によってS濃度が0.00
05 〜0.001重量%の低S濃度になり、炉体11
の傾転によって出鋼口17から取鍋21に出鋼し、図示
しない搬送手段により減圧取鍋精錬炉30による処理場
所まで移動する。また、スラグ14bは、残留するCr
23 の濃度が5重量%以下、CaO/SiO2 が1.
3〜1.8、Al23 が3〜10重量%となり、膨張
の無い良質スラグとして、図示しない排滓鍋に炉口12
から排滓され、冷却、破砕等の処理後、路盤材や土木埋
め立て材等の資源として有効利用される。
In the reduction treatment using the upper and lower blown converters 10, the temperature of the molten stainless steel 15a and the slag 14a is reduced to 155.
0 ° C. or more and less than 1700 ° C., argon gas was blown in from the bottom blowing nozzle 16 and stirred, and moreover, Fe—Si
Since the alloy is added, slag of the slag 14a becomes good, and the reduction reaction of Cr 2 O 3 in the slag 14a is promoted. The reduced Cr is recovered in the molten stainless steel 15a, and the concentration of Cr 2 O 3 remaining in the slag 14a can be reduced to 5% by weight (weight% in terms of Cr) or less. In the desulfurization treatment performed after the reduction treatment, metal Al is added to the crude molten steel 15a and the concentration thereof is set to 0.05 to
Since it is 0.2% by weight, the oxygen potential in the slag 14a is sufficiently reduced, and the temperature is 1550 ° C.
Since the temperature is set to less than 0 ° C. and the gas is stirred by blowing argon gas from the bottom blowing nozzle 16, the desulfurization reaction is promoted and the ultimate S concentration can be reduced. Furthermore, slag 14
Since the concentration of Cr 2 O 3 in a have a 5 wt% or less, the added metallic Al to reduce the depletion due to oxidation reaction of the Cr 2 O 3, moreover, Al 2 O in the slag 14a
3 , the oxygen potential in the slag 14a can be efficiently reduced, and the desulfurization reaction can be stably promoted. The stainless steel crude molten steel 15b that has been subjected to the reduction treatment and the desulfurization treatment has an S concentration of 0.00 by the desulfurization treatment.
05 to 0.001% by weight, the furnace body 11
By the tilting of the tapping, the steel is tapped from the tapping port 17 to the ladle 21, and is moved to a treatment place by the vacuum ladle refining furnace 30 by a transport means (not shown). Further, the slag 14b is formed of the residual Cr.
The concentration of 2 O 3 is 5% by weight or less, and the content of CaO / SiO 2 is 1.
3 to 1.8, Al 2 O 3 becomes 3 to 10% by weight, and as a high quality slag without expansion, a furnace port 12
After cooling and crushing, it is effectively used as resources such as roadbed materials and civil engineering landfill materials.

【0013】次に、減圧取鍋精錬炉30では、ステンレ
ス粗溶鋼15bを入れた取鍋21の上を覆って、減圧フ
ード36を載置し、シュート33の遮断弁34を開いて
貯蔵ホッパ35からCaO等の副原料を取鍋21内に投
入し、吹酸ランス31を下降して吹酸を開始し、同時
に、エゼクターを作動して減圧ダクト32から取鍋21
の内部を100〜0.2torrに減圧して昇熱し、炭
素濃度が0.01〜0.05重量%となるまで二次脱炭
精錬を行った。二次脱炭精錬の終了後、Alの添加を行
わないで、ステンレス粗溶鋼15bを脱酸処理した。
Next, in the vacuum ladle refining furnace 30, a vacuum hood 36 is placed over the ladle 21 containing the stainless steel molten steel 15b, the shutoff valve 34 of the chute 33 is opened, and the storage hopper 35 is opened. , An auxiliary material such as CaO is charged into the ladle 21, the blowing acid lance 31 is lowered to start blowing acid, and at the same time, the ejector is operated to move the ladle 21 from the vacuum duct 32.
Was heated to a reduced pressure of 100 to 0.2 torr, and secondary decarburization refining was performed until the carbon concentration became 0.01 to 0.05% by weight. After the end of the secondary decarburization refining, the stainless steel molten steel 15b was deoxidized without adding Al.

【0014】この吹酸ランス31からの酸素の吹き付け
によって、前記脱硫処理で金属Alを添加した際、溶鋼
ステンレス粗溶鋼15b中に付加されたAlを確実に酸
化し、二次脱炭精錬で生成したスラグ14cにAl2
3 として吸収させ、更に、脱酸処理でAlを使用しない
ので、ステンレス溶鋼15cへのAlの付加が防止でき
る。更に、ステンレス粗溶鋼15b中に残留したAl
は、減圧取鍋精錬炉30を用いた二次脱炭精錬時に酸化
されてAl23 となり、そのAl23 生成量は、極
めて僅少であるため、スラグ14cの組成中のAl2
3 濃度は、差ほどの変化が無く、脱酸処理時にスラグ1
4c中のAl23 が還元されない利点があり、相乗し
た作用によって、Al濃度が0.001〜0.002重
量%の極低Alのステンレス溶鋼15cを溶製すること
ができた。そして、炭素濃度が0.01〜0.05重量
%、極低Al、低S濃度のステンレス溶鋼15cは、連
続鋳造等を用いて鋳片にし、所定のサイズに切断され、
圧延等の加工が施されて鋼板や型鋼等が製造される。
[0014] By blowing oxygen from the blowing acid lance 31, when metal Al is added in the desulfurization treatment, the Al added to the molten steel 15b is reliably oxidized and formed by secondary decarburization refining. Al 2 O on the slag 14c
Since it is absorbed as 3 , and Al is not used in the deoxidation treatment, addition of Al to the stainless steel molten steel 15c can be prevented. Further, Al remaining in the stainless steel molten steel 15b
Is oxidized during the secondary decarburization refining using a vacuum ladle refining furnace 30 Al 2 O 3, and the Part Al 2 O 3 generation amount are the very slight, Al 2 O in the composition of the slag 14c
3 The concentration does not change as much as the difference.
There is an advantage that Al 2 O 3 in 4c is not reduced, and by synergistic action, extremely low Al stainless steel molten steel 15c having an Al concentration of 0.001 to 0.002% by weight could be produced. Then, the molten stainless steel 15c having a carbon concentration of 0.01 to 0.05% by weight, an extremely low Al content and a low S content is formed into a slab using continuous casting or the like, and cut into a predetermined size.
Processing such as rolling is performed to produce a steel plate, a mold steel, and the like.

【0015】[0015]

【実施例】次に、本発明に係るステンレス溶鋼の溶製方
法の実施例について説明する。上底吹き転炉(転炉型容
器)に溶銑とFe−Crを装入し、吹酸ランスを炉内に
下降させて酸素を吹き付けて昇熱処理を行ない、炭素濃
度が0.3〜0.8重量%になるまで一次脱炭精錬を行
ってステンレス粗溶鋼を溶製した。更に、ステンレス粗
溶鋼を溶製する際、脱硫処理時のAl濃度、及びスラグ
組成(CaO/SiO2 、Al23 濃度)、還元処理
終了時のCr23 濃度、還元脱硫処理時の温度を変化
させて還元処理及び脱硫処理を行った。そして、脱硫時
S分配((%S)/〔%S〕)、二次精錬時極低Al化
のコントロール性、転炉耐火物溶損状況、脱硫後スラグ
の資源化、総合評価について調査した。その結果を表1
に示す。実施例1及び実施例2は、転炉脱硫時のAl濃
度、転炉脱硫時スラグ組成、還元処理終了時Cr23
濃度、還元脱硫処理時の温度のいずれもが、本発明の範
囲を満たす場合であり、脱硫時S分配をそれぞれ55
0、670に高くでき、二次精錬時極低Al化のコント
ロール性も良く、転炉耐火物溶損を小さくでき、脱硫後
スラグの資源化が可能となり、総合評価として良い
(○)結果が得られた。実施例3は、転炉脱硫時のAl
濃度が下限値である0.05重量%、実施例4は、転炉
脱硫時のAl濃度が上限値である0.20重量%にした
場合であり、脱硫時S分配を、それぞれ420、570
に高くでき、二次精錬時極低Al化のコントロール性も
良く、転炉耐火物溶損を小さくでき、脱硫後スラグの資
源化が可能となり、総合評価として良い(○)結果が得
られた。実施例5は、転炉脱硫時スラグ組成(CaO/
SiO2 )を下限値である1.3、実施例6は、転炉脱
硫時スラグ組成(CaO/SiO2 )を上限値である
1.8にした場合であり、脱硫時S分配を、それぞれ3
20、750にでき、二次精錬時極低Al化のコントロ
ール性も良く、転炉耐火物溶損を小さくでき、脱硫後ス
ラグの資源化が可能となり、総合評価として良い(○)
結果が得られた。実施例7は、転炉脱硫時スラグ組成
(Al23 濃度)を上限値である10重量%、実施例
8は、転炉脱硫時スラグ組成(Al23 濃度)を4.
9量%にした場合であり、脱硫時S分配を、それぞれ4
30、410にでき、二次精錬時極低Al化のコントロ
ール性も良く、転炉耐火物溶損を小さくでき、脱硫後ス
ラグの資源化が可能となり、総合評価として良い(○)
結果が得られた。実施例9は、還元脱硫処理時の温度を
1550℃に、実施例10は、還元脱硫処理時の温度を
1699℃にした場合であり、脱硫時S分配を、それぞ
れ330、640にでき、二次精錬時極低Al化のコン
トロール性も良く、転炉耐火物溶損を小さくでき、脱硫
後スラグの資源化が可能となり、総合評価として良い
(○)結果が得られた。
Next, an embodiment of a method for producing molten stainless steel according to the present invention will be described. Hot metal and Fe-Cr are charged into an upper and lower blown converter (converter type vessel), a blowing acid lance is lowered into the furnace, and oxygen is blown to carry out a heat treatment to raise the carbon concentration to 0.3 to 0. Primary decarburization refining was carried out until the content reached 8% by weight, and a crude stainless steel was melted. Furthermore, when smelting stainless steel crude molten steel, the Al concentration and slag composition (CaO / SiO 2 , Al 2 O 3 concentration) at the time of desulfurization treatment, the Cr 2 O 3 concentration at the end of reduction treatment, The reduction treatment and the desulfurization treatment were performed while changing the temperature. Then, S distribution during desulfurization ((% S) / [% S]), controllability of extremely low Al reduction during secondary refining, converter refractory erosion, resource utilization of slag after desulfurization, and comprehensive evaluation were investigated. . Table 1 shows the results.
Shown in In Examples 1 and 2, the Al concentration during converter desulfurization, the slag composition during converter desulfurization, and the Cr 2 O 3
Both the concentration and the temperature at the time of the reductive desulfurization treatment satisfy the range of the present invention.
0, 670, good controllability of ultra-low Al reduction during secondary refining, reduction of converter refractory erosion, recycling of slag after desulfurization, good overall evaluation (○) Obtained. Example 3 shows the case where Al during converter desulfurization was used.
In Example 4, the Al concentration at the time of converter desulfurization was set to the upper limit of 0.20% by weight, and the S distribution at the time of desulfurization was 420 and 570, respectively.
And the controllability of extremely low Al during secondary refining was good, the refractory erosion of the converter could be reduced, the slag could be recycled after desulfurization, and a good overall evaluation (○) was obtained. . In Example 5, the slag composition (CaO /
SiO 2 ) is the lower limit of 1.3, and Example 6 is the case where the slag composition (CaO / SiO 2 ) at the converter desulfurization is 1.8 at the upper limit. 3
20 and 750, good controllability of ultra-low Al reduction during secondary refining, reduction of converter refractory erosion, recycling of slag after desulfurization, good overall evaluation (○)
The result was obtained. Example 7 10 wt% BOF desulfurization during slag composition of (Al 2 O 3 concentration) which is the upper limit, the embodiment 8, BOF desulfurization during slag composition of (Al 2 O 3 concentration) 4.
In this case, the S distribution during desulfurization was 4% each.
30, 410, good controllability of ultra-low Al reduction during secondary refining, reduction of converter refractory erosion, resource recycling of slag after desulfurization, good overall evaluation (○)
The result was obtained. Example 9 is the case where the temperature during the reductive desulfurization treatment is 1550 ° C., and Example 10 is the case where the temperature during the reductive desulfurization treatment is 1699 ° C., and the S distribution during the desulfurization can be 330 and 640, respectively. The controllability of ultra-low Al reduction in the secondary refining was good, the refractory erosion of the converter could be reduced, the slag could be recycled after desulfurization, and good (、) results were obtained as a comprehensive evaluation.

【0016】[0016]

【表1】 [Table 1]

【0017】これに対し、比較例1は、転炉脱硫時のA
l濃度が0.02重量%と低くなった場合であり、脱硫
時S分配が30と極めて悪くなり、低S化を図るため二
次脱炭精錬の負荷が増し、総合評価として悪い(×)結
果となった。比較例2は、転炉脱硫時のAl濃度が0.
32重量%と高くなった場合であり、二次精錬時極低A
l化のコントロール性が悪く、ステンレス溶鋼中のAl
濃度を極低Al濃度にすることができず、総合評価とし
て悪い(×)結果となった。
On the other hand, in Comparative Example 1, A
This is the case where the l concentration is as low as 0.02% by weight, the S distribution during desulfurization is extremely bad at 30, and the load of secondary decarburization refining is increased in order to reduce the S, and the overall evaluation is bad (x) The result was. In Comparative Example 2, the Al concentration during converter desulfurization was 0.1.
32% by weight, which is very low during secondary refining.
poor controllability of Al in stainless steel molten steel
The concentration could not be reduced to an extremely low Al concentration, and the result was poor (x) as the overall evaluation.

【0018】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、脱硫処理の際に添加するAlは、金属Al
の他に、Fe−Al、アルミドロス等のAl合金を用い
ることができる。更に、二次脱炭精錬炉としては、一般
的に減圧精錬装置として用いられているDH、RH、V
OD等を用いることができる。
The embodiment of the present invention has been described above.
The present invention is not limited to the above-described embodiment, and all changes in conditions that do not depart from the gist are within the scope of the present invention. For example, Al added during desulfurization treatment is metal Al
In addition, Al alloys such as Fe-Al and aluminum dross can be used. Furthermore, DH, RH and V which are generally used as a decompression refining apparatus are used as secondary decarburization refining furnaces.
OD or the like can be used.

【0019】[0019]

【発明の効果】請求項1〜4記載のステンレス溶鋼の溶
製方法においては、転炉型容器に溶銑とフェロクロム合
金を装入し、溶銑とフェロクロム合金に上吹きランスを
用いて吹酸し、溶銑とフェロクロム合金の溶解と一次脱
炭精錬を行って粗溶鋼を溶製した後、取鍋に粗溶鋼を出
鋼し、次いで、粗溶鋼を二次精錬炉を用いて二次脱炭精
錬と脱酸処理を行うステンレス溶鋼の溶製方法におい
て、吹酸による一次脱炭精錬を行った後に生成したスラ
グに、シリコンを含有する合金を添加してスラグを還元
処理した後、粗溶鋼中のAl濃度が0.05〜0.2重
量%になるようにAlを添加して脱硫処理を行ってから
取鍋に出鋼し、引き続き行う二次精錬炉を用いた二次脱
炭精錬における昇熱及び脱酸処理時にAlを添加しない
で処理を行うので、ステンレス溶鋼のAl濃度を低減
し、脱硫を促進して、極低Al、低Sのステンレス溶鋼
の溶製を低コストで工業的に安定して生産可能にする。
しかも、脱炭精錬で発生したスラグ路盤材や土木埋め立
て材等の資源として活用することができる。
According to the present invention, the molten iron and the ferrochrome alloy are charged into a converter type vessel, and the molten iron and the ferrochrome alloy are acid-blended using an upper blowing lance. After melting the hot metal and the ferrochrome alloy and performing the primary decarburization refining to produce the crude molten steel, the crude molten steel is tapped into a ladle, and then the crude molten steel is subjected to secondary decarburization refining using a secondary refining furnace. In the smelting method of stainless steel molten steel for performing deoxidation treatment, an alloy containing silicon is added to slag generated after primary decarburization refining by blowing acid to reduce the slag by reducing the slag. Heat is added in a secondary decarburization refining using a secondary refining furnace, in which Al is added so that the concentration becomes 0.05 to 0.2% by weight, desulfurization treatment is performed, and then steel is output to a ladle. Since the treatment is performed without adding Al during the deoxidation treatment, Reducing the Al concentration in the stainless molten steel, to promote desulfurization, very low Al, to industrially stably can produce ingot of low S stainless molten steel at low cost.
Moreover, it can be used as resources such as slag roadbed materials and civil engineering landfill materials generated by decarburization refining.

【0020】特に、請求項2記載のステンレス溶鋼の溶
製方法においては、転炉型容器を用いた脱硫処理時のス
ラグの組成は、塩基度を1.3〜1.8、Al23
10重量%以下にするので、極低Al、低Sのステンレ
ス溶鋼を安定して溶製でき、しかも、遊離CaOに起因
する膨張を安定して抑制し、スラグの資源化を促進する
ことができる。
In particular, in the smelting method for molten stainless steel according to the second aspect, the slag composition at the time of desulfurization treatment using a converter type vessel has a basicity of 1.3 to 1.8, and Al 2 O 3. To 10% by weight or less, it is possible to stably produce extremely low Al and low S stainless steel molten steel, stably suppress expansion caused by free CaO, and promote slag resource recycling. it can.

【0021】請求項3記載のステンレス溶鋼の溶製方法
においては、還元処理を終了したスラグ中のCr23
濃度を5重量%以下にするので、高価なCrを還元して
粗溶鋼中に回収でき、合金鉄コストを低減することがで
きる。
[0021] In the melting method of claim 3 stainless molten steel according, Cr 2 O 3 in the slag finishing the reduction treatment
Since the concentration is 5% by weight or less, expensive Cr can be reduced and recovered in the crude molten steel, and the cost of ferroalloys can be reduced.

【0022】請求項4記載のステンレス溶鋼の溶製方法
においては、還元処理及び脱硫処理時の溶鋼の温度を1
550℃以上、1700℃未満とするので、スラグの滓
化を促進し、脱硫反応を促進し、低Sのステンレス粗溶
鋼を容易に溶製することができ、滓化が促進されてスラ
グ中の遊離CaOを抑制してスラグを安定して資源とし
て活用することができる。
In the method for producing molten stainless steel according to claim 4, the temperature of the molten steel at the time of the reduction treatment and the desulfurization treatment is set to one.
Since the temperature is set to 550 ° C. or higher and lower than 1700 ° C., slag formation is promoted, a desulfurization reaction is promoted, and low-melting stainless steel with a low S can be easily produced, and slag formation is promoted. Slag can be stably utilized as a resource by suppressing free CaO.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係るステンレス溶鋼の
溶製方法による処理の流れを示す説明図である。
FIG. 1 is an explanatory diagram showing a flow of processing by a method for producing molten stainless steel according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10:上底吹き転炉(転炉型容器)、11:炉体、1
2:炉口、13:吹酸ランス、14a:スラグ、14
b:スラグ、14c:スラグ、15a:ステンレス粗溶
鋼、15b:ステンレス粗溶鋼、15c:ステンレス溶
鋼、16:底吹きノズル、17:出鋼口、18:ホッ
パ、19:シュート、20:ポーラスプラグ、21:取
鍋、30:減圧取鍋精錬炉(二次精錬炉)、31:吹酸
ランス、32:減圧ダクト、33:シュート、34:遮
断弁、35:貯蔵ホッパ、36:減圧フード
10: top and bottom blown converter (converter type vessel), 11: furnace body, 1
2: furnace port, 13: blowing acid lance, 14a: slag, 14
b: slag, 14c: slag, 15a: stainless steel molten steel, 15b: stainless steel molten steel, 15c: stainless steel molten steel, 16: bottom blow nozzle, 17: tapping outlet, 18: hopper, 19: chute, 20: porous plug, 21: Ladle, 30: Vacuum ladle refining furnace (secondary refining furnace), 31: Blow acid lance, 32: Vacuum duct, 33: Chute, 34: Shutoff valve, 35: Storage hopper, 36: Vacuum hood

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 転炉型容器に溶銑とフェロクロム合金を
装入し、前記溶銑とフェロクロム合金に上吹きランスを
用いて吹酸し、前記溶銑とフェロクロム合金の溶解と一
次脱炭精錬を行って粗溶鋼を溶製した後、取鍋に前記粗
溶鋼を出鋼し、次いで、前記粗溶鋼を二次精錬炉を用い
て二次脱炭精錬と脱酸処理を行うステンレス溶鋼の溶製
方法において、前記吹酸による前記一次脱炭精錬を行っ
た後に生成したスラグに、シリコンを含有する合金を添
加して前記スラグを還元処理した後、前記粗溶鋼中のA
l濃度が0.05〜0.2重量%になるようにAlを添
加して脱硫処理を行ってから前記取鍋に出鋼し、引き続
き行う前記二次精錬炉を用いた二次脱炭精錬における昇
熱及び脱酸処理時にAlを添加しないことを特徴とする
ステンレス溶鋼の溶製方法。
Claims 1. A converter type vessel is charged with hot metal and a ferrochrome alloy, and the hot metal and the ferrochrome alloy are subjected to blowing acid using an upper blowing lance to perform melting and primary decarburization refining of the hot metal and the ferrochrome alloy. After smelting the crude molten steel, the crude molten steel is tapped in a ladle, and then the secondary molten metal is subjected to secondary decarburization refining and deoxidation using a secondary smelting furnace. After reducing the slag by adding an alloy containing silicon to the slag generated after performing the primary decarburization refining with the blowing acid, the A in the crude molten steel is reduced.
Secondary decarburization refining using the secondary refining furnace is performed after Al is added so that the l concentration becomes 0.05 to 0.2% by weight and desulfurization treatment is performed, and then steel is output to the ladle. A method for producing molten stainless steel, wherein Al is not added at the time of heat-up and deoxidation treatment.
【請求項2】 請求項1記載のステンレス溶鋼の溶製方
法において、前記転炉型容器を用いた前記脱硫処理時の
スラグの組成は、塩基度を1.3〜1.8、Al 23
を10重量%以下にすることを特徴とするステンレス溶
鋼の溶製方法。
2. The method for producing molten stainless steel according to claim 1.
In the method, during the desulfurization treatment using the converter type container
The slag composition has a basicity of 1.3 to 1.8, Al Two OThree 
Stainless steel, characterized in that the
Steel melting method.
【請求項3】 請求項1又は2記載のステンレス溶鋼の
溶製方法において、前記還元処理を終了した前記スラグ
中のCr23 濃度を5重量%以下にすることを特徴と
するステンレス溶鋼の溶製方法。
3. The method for producing molten stainless steel according to claim 1, wherein the concentration of Cr 2 O 3 in the slag after the reduction treatment is reduced to 5% by weight or less. Melting method.
【請求項4】 請求項1〜3のいずれか1項に記載のス
テンレス溶鋼の溶製方法において、前記還元処理及び前
記脱硫処理時の前記溶鋼の温度を1550℃以上170
0℃未満とすることを特徴とするステンレス溶鋼の溶製
方法。
4. The method for producing molten stainless steel according to claim 1, wherein the temperature of the molten steel during the reduction treatment and the desulfurization treatment is 1550 ° C. or more and 170 ° C.
A method for producing molten stainless steel, which is performed at a temperature lower than 0 ° C.
JP2001178983A 2001-06-13 2001-06-13 Method for melting stainless steel Expired - Fee Related JP4364456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178983A JP4364456B2 (en) 2001-06-13 2001-06-13 Method for melting stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001178983A JP4364456B2 (en) 2001-06-13 2001-06-13 Method for melting stainless steel

Publications (2)

Publication Number Publication Date
JP2002371313A true JP2002371313A (en) 2002-12-26
JP4364456B2 JP4364456B2 (en) 2009-11-18

Family

ID=19019607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178983A Expired - Fee Related JP4364456B2 (en) 2001-06-13 2001-06-13 Method for melting stainless steel

Country Status (1)

Country Link
JP (1) JP4364456B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140823A1 (en) * 2010-05-11 2011-11-17 Song Weizhao Smelting method for medium carbon steel j55
CN102851594A (en) * 2012-08-31 2013-01-02 舞阳钢铁有限责任公司 Low-cost smelting silicon-controlling method for hydro-chrome-molybdenum steel
KR101356876B1 (en) 2012-06-26 2014-01-28 주식회사 포스코 Hot metal decarburization method for stainless steel
CN109022665A (en) * 2018-08-21 2018-12-18 宝钢德盛不锈钢有限公司 Wrap application of the low nickel chromium triangle residual iron in bottom in straight carbon steel smelting process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140823A1 (en) * 2010-05-11 2011-11-17 Song Weizhao Smelting method for medium carbon steel j55
KR101356876B1 (en) 2012-06-26 2014-01-28 주식회사 포스코 Hot metal decarburization method for stainless steel
CN102851594A (en) * 2012-08-31 2013-01-02 舞阳钢铁有限责任公司 Low-cost smelting silicon-controlling method for hydro-chrome-molybdenum steel
CN109022665A (en) * 2018-08-21 2018-12-18 宝钢德盛不锈钢有限公司 Wrap application of the low nickel chromium triangle residual iron in bottom in straight carbon steel smelting process
CN109022665B (en) * 2018-08-21 2020-05-01 宝钢德盛不锈钢有限公司 Application of ladle bottom low-nickel-chromium residual iron in common carbon steel smelting process

Also Published As

Publication number Publication date
JP4364456B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
CN108330245B (en) High-purity smelting method for stainless steel
CN101768656B (en) Method for refining ultra-low carbon ferritic stainless steel under vacuum
JP4736466B2 (en) Method for producing high chromium molten steel
JP2002256323A (en) Method for reforming roughly decarburized slag in molten stainless steel
JP2020180322A (en) Production method of molten steel using converter
JP2002339014A (en) Method for producing extra low sulfur steel
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP2002371313A (en) Method for smelting molten stainless steel
JP2947063B2 (en) Stainless steel manufacturing method
Mishra Steelmaking practices and their influence on properties
KR101615014B1 (en) Methods for manufacturing high clean steel
KR100382311B1 (en) Recovery of Valuable Metals in Stainless Steel Slag by Powder Carbon Injection
JP2001234226A (en) Method for treating refining slag for molten stainless steel
JP3063537B2 (en) Stainless steel manufacturing method
KR101119022B1 (en) Electric steel sheet and refining method for electric steel sheet
KR102171769B1 (en) Method for processing molten material and stainless steel manufactured using the same
JPH0967608A (en) Production of stainless steel
JPH08176638A (en) Refining of stainless steel
Aydemir Use of aluminium dross for slag treatment in secondary steelmaking to decrease amount of reducible oxides in ladle furnace
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP3994988B2 (en) Method of recovering and using metal components contained in slag slag containing chromium
JP3788392B2 (en) Method for producing high Cr molten steel
JP2002069520A (en) Method for recovering chromium in slag
JP2001181725A (en) Method for modifying slag in refining of molten stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees