JP4049106B2 - Melting method of nickel-containing stainless steel - Google Patents

Melting method of nickel-containing stainless steel Download PDF

Info

Publication number
JP4049106B2
JP4049106B2 JP2004053699A JP2004053699A JP4049106B2 JP 4049106 B2 JP4049106 B2 JP 4049106B2 JP 2004053699 A JP2004053699 A JP 2004053699A JP 2004053699 A JP2004053699 A JP 2004053699A JP 4049106 B2 JP4049106 B2 JP 4049106B2
Authority
JP
Japan
Prior art keywords
furnace
melting
stainless steel
melting furnace
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004053699A
Other languages
Japanese (ja)
Other versions
JP2005240141A (en
Inventor
孝幸 柏
祐樹 鍋島
嘉久 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004053699A priority Critical patent/JP4049106B2/en
Publication of JP2005240141A publication Critical patent/JP2005240141A/en
Application granted granted Critical
Publication of JP4049106B2 publication Critical patent/JP4049106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、含ニッケル・ステンレス鋼の溶製方法に係わり、特に、溶製工程で安価なNi、Cr源を最大限に利用すると共に、得られた含ニッケル・ステンレス鋼を所謂「連々鋳」を行う連続鋳造機へ途切れることなく供給する技術に関する。   The present invention relates to a method for melting nickel-containing stainless steel, and in particular, to make the best use of inexpensive Ni and Cr sources in the melting process and to obtain the obtained nickel-containing stainless steel so-called “continuous casting”. The present invention relates to a technology for supplying a continuous casting machine without interruption.

通常、ステンレス鋼は、ニッケル(記号:Ni)を含まないクロム(記号:Cr)系ステンレス鋼と、ニッケルを含有する含ニッケル・ステンレス鋼の二種類に大別される。従来、含ニッケル・ステンレス鋼は、ステンレス鋼スクラップ、フェロクロム、フェロニッケル等の冷材を大量に使用しなければならないので、その溶解にはアーク炉が使用されてきた。一方、クロム系ステンレス鋼に関しては、転炉を用い、鉄源として溶銑を使用してフェロニッケルを溶解し、溶製する方法が確立されており、アーク炉の使用に比較して遥かに低いエネルギー・コストで溶製が可能であった。   Usually, stainless steel is roughly classified into two types: chromium (symbol: Cr) -based stainless steel not containing nickel (symbol: Ni) and nickel-containing / stainless steel containing nickel. Conventionally, since nickel-containing stainless steel has to use a large amount of cold material such as stainless steel scrap, ferrochrome, ferronickel, etc., an arc furnace has been used for melting. On the other hand, with regard to chromium-based stainless steel, a method has been established in which a converter is used and ferronickel is melted and melted using hot metal as the iron source. -Melting was possible at cost.

このように、ステンレス鋼の溶製は、クロム系ステンレス鋼か、含ニッケルステンレス鋼かによって製造工程が分化していたが、ステンレス鋼は、その製造ロットが小さいために、製造が分化していると、歩留まりや生産効率が著しく低いという問題があった。   As described above, the production process of stainless steel is differentiated depending on whether it is chromium-based stainless steel or nickel-containing stainless steel, but the production of stainless steel is differentiated because the production lot is small. There was a problem that the yield and production efficiency were extremely low.

また、ステンレス鋼の鋳造工程では、歩留まりと生産効率の向上の目的で、連続鋳造が採用されているが、連続鋳造の効率を最大限に発揮するには、連続連鋳操業が望まれるところ、アーク炉でのスクラップ等の冷鉄源の溶解や、転炉でのフェロクロムの溶解には長時間を要するため、連続鋳造において必要とされる溶鋼の供給タイミングと、転炉やアーク炉からの出鋼タイミングとがマッチしないという問題もあった。   Also, in the casting process of stainless steel, continuous casting is adopted for the purpose of improving the yield and production efficiency, but in order to maximize the efficiency of continuous casting, continuous continuous casting operation is desired, Since it takes a long time to dissolve a cold iron source such as scrap in an arc furnace and ferrochrome in a converter, the supply timing of the molten steel required for continuous casting and the discharge from the converter or arc furnace There was also a problem that the steel timing did not match.

このような事情に鑑みて、第一の溶製炉である転炉状反応容器により、酸化性雰囲気で高炭素フェロクロムを含む固体原料を溶融して得られた中炭素高クロム溶湯を電気式加熱保持炉に移し、この溶湯を加熱しつつスクラップやフェロニッケル等の固体金属原料を溶かし込み、そのようにして得られた溶湯を仕上げ脱炭機能を有する第二の精錬炉にて精錬することによって、上記問題を解決するステンレス鋼の溶製方法が提案された(例えば、特許文献1参照)。   In view of such circumstances, a medium-carbon high-chromium molten metal obtained by melting a solid raw material containing high-carbon ferrochrome in an oxidizing atmosphere is electrically heated by a converter-like reaction vessel that is a first melting furnace. By moving to a holding furnace, melting the solid metal raw material such as scrap and ferronickel while heating this molten metal, and refining the molten metal thus obtained in a second smelting furnace having a finishing decarburization function A method for melting stainless steel that solves the above problem has been proposed (see, for example, Patent Document 1).

しかしながら、この特許文献1に記載された技術は、第1の溶製炉を酸化性雰囲気としてFeCr及びスクラップを溶解するものである。このような酸化性雰囲気の下では、Crの酸化ロスが大きくなるので、スクラップよりもさらに安価なCr源であるCr鉱石を始め、Crを含有するスラグ、ダスト、スラジ等を溶解することは難しくなる。また、第1の溶製炉を還元性雰囲気として、前記Cr鉱石やCrを含有するスラグ、ダスト、スラジの他、同時にスクラップも多量に溶解することはできるが、その場合にも、昇熱時問が長くなり、還元温度への到達時間も長くなって、前記連続鋳造のピッチに間合う含Cr溶鉄の溶製が出来ない。   However, the technique described in Patent Document 1 melts FeCr and scrap using the first melting furnace as an oxidizing atmosphere. In such an oxidizing atmosphere, the oxidation loss of Cr becomes large, so it is difficult to dissolve Cr ore, which is a Cr source that is even cheaper than scrap, and slag, dust, sludge, etc. containing Cr. Become. In addition, the first melting furnace can be used as a reducing atmosphere, and in addition to the Cr ore and Cr-containing slag, dust, sludge, scrap can also be dissolved in large quantities at the same time. The problem becomes longer and the time to reach the reduction temperature also becomes longer, so that it is impossible to produce molten iron containing Cr in time for the pitch of the continuous casting.

また、前記の相反する問題点を解決するため、特許文献1記載の技術とは別の方法も提案されている。それは、図6に示すように、主としてCr鉱石、Crを含有するスラグ、ダスト、スラジをCr源として第1の溶製炉を還元性雰囲気としてCr溶鉄を溶製し、得られた含Cr溶鉄を加熱機能を備えた溶湯保持炉に保持すると共に、該溶湯保持炉でスクラップを溶解し、次工程の脱炭精錬装置へ、その精錬スケジュールに合わせて含Cr溶鉄を供給する方法である(特許文献2参照)。なお、図6に示した例は、第1の溶製炉として転炉型溶融還元炉及び塊コークスを充填した竪型炉式溶融還元炉を併用し、脱炭精錬炉として通常の転炉の他に二次脱炭炉である真空脱炭装置(VOD)を併用している。この特許文献2記載の方法によれば、高Cr溶鉄の溶製に関して、安価なCr源を最大限に利用すると共に、所謂「連々鋳」を行う連続鋳造機へ溶鋼を途切れることなく供給することができる。なお、この場合、含ニッケル・ステンレス鋼を溶製するには、Ni源の金属ニッケル、スクラップ等を、溶湯保持炉及び第2の溶製炉である転炉で投入している。これは、溶湯保持炉以前のプロセスでNi源を溶解すると、溶湯保持炉内のNi濃度が上昇し、以降のCr系ステンレス鋼の溶製に支障を来たすためである。   In order to solve the above-mentioned conflicting problems, a method different from the technique described in Patent Document 1 has been proposed. As shown in FIG. 6, the Cr-containing molten iron obtained by melting Cr molten iron mainly using Cr ore, Cr-containing slag, dust, and sludge as the Cr source and the first melting furnace as the reducing atmosphere. Is held in a molten metal holding furnace having a heating function, and scrap is melted in the molten metal holding furnace, and Cr-containing molten iron is supplied to a decarburizing and refining apparatus in the next process according to the refining schedule (patent) Reference 2). In the example shown in FIG. 6, a converter-type smelting reduction furnace and a vertical furnace-type smelting reduction furnace filled with lump coke are used together as the first melting furnace, and a normal converter is used as a decarburization refining furnace. In addition, a vacuum decarburizer (VOD), which is a secondary decarburization furnace, is also used. According to the method described in Patent Document 2, the molten steel is supplied to a continuous casting machine that performs so-called “continuous casting” without interruption while making the most of an inexpensive Cr source for melting high Cr molten iron. Can do. In this case, in order to melt nickel-containing stainless steel, Ni source metal nickel, scrap, and the like are charged in the molten metal holding furnace and the second melting furnace. This is because if the Ni source is melted in the process before the molten metal holding furnace, the Ni concentration in the molten metal holding furnace increases, which hinders the subsequent melting of Cr-based stainless steel.

一方、高価なNi源として代表的な金属ニッケルは、高価なCr源であるFeCrよりも数倍以上高価であるのが一般的であり、コスト面から考えると、特にニッケル含有量の多いステンレス鋼の溶製には、安価なNi源(例えば、Ni含有ステンレス・スクラップ、ニッケル・スラッジ等)の大量使用が非常に重要である。しかしながら、特許文献1の技術では、安価なCr源であるCr鉱石、Cr含有スラグ等の溶解は困難であり、一方、特許文献2の技術では、安価なCr源の大量使用に重点をおいているので、Ni含有量が大きくばらつく、前記安価なNi源の大量使用はできない。そのため、高ニッケル含有のステンレス鋼について、安価なNi源、Cr源を同時に大量使用する溶製方法は存在しないのが現状である。
昭57−161020号公報 特開2003−155515号公報
On the other hand, typical nickel metal as an expensive Ni source is generally several times more expensive than FeCr, which is an expensive Cr source, and in terms of cost, stainless steel with a particularly high nickel content. In order to melt, it is very important to use a large amount of inexpensive Ni source (for example, Ni-containing stainless steel scrap, nickel sludge, etc.). However, in the technique of Patent Document 1, it is difficult to dissolve Cr ore, Cr-containing slag, etc., which are inexpensive Cr sources. On the other hand, in the technique of Patent Document 2, emphasis is placed on mass use of inexpensive Cr sources. Therefore, the Ni content varies greatly, and the inexpensive Ni source cannot be used in large quantities. Therefore, the present situation is that there is no melting method using a large amount of inexpensive Ni source and Cr source at the same time for high nickel-containing stainless steel.
Sho 57-161020 JP 2003-155515 A

本発明は、かかる事情に鑑み、安価なCr源及びNi源を従来より多量に利用しても、得られた含ニッケル・ステンレス溶鋼を所謂「連々鋳」を行う連続鋳造機へ途切れることなく供給可能な含ニッケル・ステンレス鋼の溶製方法を提供することを目的としている。   In view of such circumstances, the present invention supplies the obtained nickel-containing / stainless steel molten steel to a continuous casting machine that performs so-called “continuous casting” without interruption even if inexpensive Cr sources and Ni sources are used in a larger amount than before. The object is to provide a method for melting possible nickel-containing stainless steel.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.

すなわち、本発明は、第一の溶製炉で鉄源、Cr鉱石、Crを含有するスラグ、ダスト、スラジの一種以上をCr源として還元性雰囲気下で含Cr溶鉄を溶製し、得られた含Cr溶鉄を加熱機能を有する溶湯保持炉に保持してから、次工程の第二の溶製炉での精錬スケジュールに合わせて該含Cr溶鉄を該第二の溶製炉へ供給して脱炭、成分調整を行うに際して、前記溶湯保持炉内に保持した含Cr溶鉄を、前記第二の溶製炉の精錬スケジュールに合わせて別の溶製炉へ移行し、安価なNi源を投入、溶解して前記含Cr溶鉄にNiを含有させてから前記第二の溶製炉へ供給して、脱炭及び成分調整することを特徴とする含ニッケル・ステンレス鋼の溶製方法である。   That is, the present invention is obtained by melting Cr-containing molten iron in a reducing atmosphere using one or more of an iron source, Cr ore, Cr-containing slag, dust, and sludge in a first melting furnace in a reducing atmosphere. The molten iron containing Cr is held in a molten metal holding furnace having a heating function, and then the molten iron containing Cr is supplied to the second melting furnace in accordance with the refining schedule in the second melting furnace in the next step. When performing decarburization and component adjustment, the Cr-containing molten iron held in the molten metal holding furnace is transferred to another melting furnace in accordance with the refining schedule of the second melting furnace, and an inexpensive Ni source is input. In this method, the nickel-containing stainless steel is melted by melting and adding Ni to the Cr-containing molten iron and then supplying it to the second melting furnace to decarburize and adjust the components.

この場合、前記別の溶製炉が前記第一の溶製炉であっても良い。また、前記第二の溶製炉が、転炉及び/又は真空脱炭装置であることが好ましい。   In this case, the another melting furnace may be the first melting furnace. The second melting furnace is preferably a converter and / or a vacuum decarburizer.

本発明によれば、安価なCr源及びNi源を従来より多量に利用し、得られた含ニッケル・ステンレス溶鋼を所謂「連々鋳」を行う連続鋳造機へ途切れることなく供給できるようになる。また、ニッケルを含有しないステンレス鋼についても、連続鋳造機へ同様に途切れることなく連続供給ができる。   According to the present invention, it is possible to supply the obtained nickel-containing / stainless steel molten steel without interruption to a continuous casting machine that performs so-called “continuous casting” by using a large amount of inexpensive Cr source and Ni source. Similarly, stainless steel not containing nickel can be continuously supplied to the continuous casting machine without interruption.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described based on the background of the invention.

含Cr溶鉄に安価なNi源を大量に溶解するには、従来のように、脱炭精錬装置でNi源を投入するのでは、「連々鋳」を行う連続鋳造機の要望に応じられない。安価なNi源は、Ni含有量がばらつくばかりでなく、少ないものも多いので、溶解に時間がかかるので、「連々鋳」を行うには投入量に上限規制を設ける必要がある。   In order to dissolve a large amount of inexpensive Ni source in Cr-containing molten iron, as in the prior art, if Ni source is input by a decarburization refining apparatus, it cannot meet the demand for a continuous casting machine that performs “continuous casting”. Inexpensive Ni sources not only vary in Ni content, but also many are low, so it takes time to melt. Therefore, in order to perform “continuous casting”, it is necessary to set an upper limit on the input amount.

そこで、発明者は、ステンレス溶鋼の製造工程の見直しを行い、安価なNi源をもっと大量に溶解するには、Ni源を溶解する作用を有する別の溶製炉を利用すれば良いと考えた。つまり、溶湯保持炉に貯留してある含Cr溶鉄を、該溶湯保持炉から脱炭精錬装置へ直接供給するのではなく、従来の精錬スケジュールより早めのタイミングで別の溶製炉へ移行し、予め含Cr溶鉄に所望量のNiを溶解させるのである。そのようにすれば、Niを含有した含Cr溶鉄を、脱炭精錬装置を経て連続鋳造機での「連々鋳」に遅れないように供給できるようになるからである。   Therefore, the inventor reviewed the manufacturing process of the molten stainless steel and thought that it would be sufficient to use another melting furnace having an action of melting the Ni source in order to melt the cheap Ni source in a larger amount. . That is, instead of supplying the Cr-containing molten iron stored in the molten metal holding furnace directly from the molten metal holding furnace to the decarburization refining apparatus, it is transferred to another melting furnace at a timing earlier than the conventional refining schedule, A desired amount of Ni is dissolved in advance in the Cr-containing molten iron. This is because the Cr-containing molten iron containing Ni can be supplied through the decarburizing and refining device without delaying the “continuous casting” in the continuous casting machine.

本発明でいう別の溶製炉としては、溶鉄中のCr及びNiを酸化しないように、還元雰囲気下で含Cr溶鉄にNiを溶解できるものならば如何なる炉を利用しても良い。具体的には、Cr鉱石等の溶融還元を行う既存の転炉型溶融還元炉を、本発明でいう別の溶製炉にするのが好ましい。設備費が不要で経済的だからである。その場合の本発明に係る工程は図1の通りである。つまり、実線矢印で示す従来のステンレス鋼の製造ラインにおいて、別の溶製炉として転炉型溶融還元炉を利用し、点線矢印で示すように、溶湯保持炉から含Cr溶鉄を該転炉型溶融還元炉へ移行し、安価なNi源を投入してNiの溶解を行い、得られたNiを含有する含Cr溶鉄を直ちに脱炭精錬装置へ供給し、脱炭及び成分調整を行うのである。なお、本発明では、このような別の溶製炉でNi源を溶解する際に、該溶製炉にNi源の他にCr源を同時に投入して,Crのさらなる溶解を行なっても良い。CrがNiの溶解に好ましくない影響を与えることはないからである。   As another melting furnace in the present invention, any furnace may be used as long as it can dissolve Ni into Cr-containing molten iron under a reducing atmosphere so as not to oxidize Cr and Ni in molten iron. Specifically, it is preferable to replace the existing converter type smelting reduction furnace that performs smelting reduction of Cr ore or the like with another melting furnace referred to in the present invention. This is because the equipment cost is unnecessary and it is economical. The process according to the present invention in that case is as shown in FIG. That is, in a conventional stainless steel production line indicated by a solid arrow, a converter-type smelting reduction furnace is used as another melting furnace, and Cr-containing molten iron is transferred from the molten metal holding furnace as indicated by a dotted arrow. It moves to a smelting reduction furnace, throws in an inexpensive Ni source, dissolves Ni, and immediately supplies the obtained Cr-containing molten iron containing Ni to the decarburization refining apparatus to perform decarburization and component adjustment. . In the present invention, when the Ni source is melted in such another melting furnace, the Cr source may be simultaneously added to the melting furnace in addition to the Ni source to further melt Cr. . This is because Cr does not adversely affect the dissolution of Ni.

また、本発明の実施に際しては、前記脱炭精錬装置として転炉、つまり上吹き転炉、あるいは上底吹き転炉を利用すれば良い。ただし、低炭素、極低炭素等のステンレス鋼が要望される場合には、上記転炉から出鋼した溶鋼をさらに真空脱炭装置(例えば、VOD,RH等)を用いて脱炭するのが好ましい。   In carrying out the present invention, a converter, that is, a top blowing converter or a top bottom blowing converter may be used as the decarburization refining apparatus. However, when stainless steel such as low carbon and extremely low carbon is desired, the molten steel discharged from the converter may be further decarburized using a vacuum decarburizer (eg, VOD, RH, etc.). preferable.

さらに、本発明では、第1の溶製炉としては、転炉型溶融還元炉及び塊コークスを充填した方式の竪型溶融還元炉を併用するのが好ましい。転炉型溶融還元炉は、FeCr、Cr鉱石をCr源とし、竪型溶融還元炉は、Crを含有するスラグ、ダスト、スラジ等のCr源として、それぞれ含Cr溶鋼を溶製するのに優れているからである。   Furthermore, in the present invention, it is preferable to use a converter type smelting reduction furnace and a vertical smelting reduction furnace filled with lump coke as the first melting furnace. The converter-type smelting reduction furnace uses FeCr and Cr ore as the Cr source, and the vertical smelting reduction furnace uses Cr-containing slag, dust, sludge, and other Cr sources as excellent sources for melting Cr-containing molten steel. Because.

加えて、本発明では、溶湯保持炉に加熱機能を持たせ、スクラップの溶解を行うのが好ましい。第1の溶製炉へのスクラップ投入量が減少でき、第1の溶製炉でのスクラップ溶解のための熱供給量が減り、昇熱に要する時間が短縮し、前記したCr鉱石、スラグ、ダスト、スラッジ等、安価なCr源の投入量が増大できるからである。   In addition, in the present invention, it is preferable that the molten metal holding furnace has a heating function to melt the scrap. The amount of scrap input to the first melting furnace can be reduced, the amount of heat supplied for scrap melting in the first melting furnace is reduced, the time required for heating is shortened, and the aforementioned Cr ore, slag, This is because the input amount of inexpensive Cr sources such as dust and sludge can be increased.

本発明を、図1に示した工程に前記竪型溶融還元炉を併用した形態で実施した。溶製転炉型溶融還元炉は、炉容量180トンで、酸素ガスを上吹きするランスと、酸素ガスを底吹きする羽口を備えた所謂「上底吹き転炉」方式の炉である。これにより、溶銑、Cr鉱石、炭材を主原料として溶融還元を行い、含Cr溶鉄を製造した。なお、この炉は、溶湯保持路炉から精錬スケジュールに合わせて移行させた含Cr溶鉄にNiを溶解するため、本発明でいう「別の溶製炉」としての役割も持たせた。竪型溶融還元炉は、塊コークスを充填した周知の所謂「シャフト炉」で、炉容量140m3のものである。これにより、安価なクロム源であるスラグ、ダスト、スラッジの溶融還元を行い、含Cr溶鉄を溶製した。溶湯保持炉は、転炉型溶融還元炉及び竪型溶融還元炉で予め溶製した含Cr溶鉄を1000トン保持できるものとした。また、脱炭精錬装置としては、炉容量180トンの前記上底吹き方式の転炉とし、所謂「二次精錬」で脱炭を行うため、容量180トンの取鍋を収容可能な真空脱ガス装置(例えば、VOD)も利用した。得られたNi:8質量%、Cr18質量%、C:0.05質量%を含有するステンレス溶鋼は、通常の垂直・湾曲型連続鋳造機で厚み200mm×幅1200mmの鋼鋳片(スラブ)とされた。 The present invention was implemented in a form in which the vertical smelting reduction furnace was used in combination with the process shown in FIG. The melting converter-type smelting reduction furnace is a so-called “top bottom blowing converter” furnace having a furnace capacity of 180 tons and provided with a lance for blowing oxygen gas upward and tuyere for blowing oxygen gas to the bottom. As a result, molten iron, Cr ore, and charcoal were used as the main raw materials to perform smelting reduction to produce Cr-containing molten iron. In addition, since this furnace melt | dissolves Ni in the Cr-containing molten iron transferred according to the refining schedule from the molten metal holding path furnace, it also gave the role as "another melting furnace" as used in the present invention. The vertical smelting reduction furnace is a known so-called “shaft furnace” filled with lump coke and having a furnace capacity of 140 m 3 . As a result, slag, dust, and sludge, which are inexpensive chromium sources, were melted and reduced to produce molten iron containing Cr. The molten metal holding furnace was capable of holding 1000 tons of Cr-containing molten iron previously melted in a converter-type smelting reduction furnace and a vertical smelting reduction furnace. Moreover, as the decarburization refining apparatus, the above bottom bottom blowing type converter having a furnace capacity of 180 tons and decarburization by so-called "secondary refining", vacuum degassing capable of accommodating a ladle with a capacity of 180 tons. A device (eg, VOD) was also utilized. The obtained molten stainless steel containing 8% by mass of Ni, 18% by mass of Cr and 0.05% by mass of C is obtained by a steel vertical slab (slab) having a thickness of 200 mm and a width of 1200 mm using a normal vertical / curved type continuous casting machine. It was done.

Cr源の溶融還元及び含Cr溶鉄(Niを含む場合も)の脱炭、成分調整を行う操業内容及び条件については、周知の方法で実施したので、説明を省略するが、Cr源及びNi源については、高価なもの(FeCr,金属Ni)と安価なものの使用比率を、従来の操業(例えば、図6に示す工程で実施した場合)の使用比率と比較し、図3及び図4に示しておく。本発明によれば、図4に示したように、安価なNi源の使用比率が向上したことが明らかである。なお、Ni源の投入位置は、本発明の実施では別の溶製炉(転炉型溶融還元炉)であり、従来の操業では、溶湯保持炉及び脱炭精錬装置の上底吹き転炉である。   The operation contents and conditions for performing the smelting reduction of the Cr source, the decarburization of the Cr-containing molten iron (in the case of including Ni), and the component adjustment were carried out by a well-known method. 3 is compared with the usage ratio of the expensive one (FeCr, metal Ni) and the cheap one (for example, when implemented in the process shown in FIG. 6) and shown in FIG. 3 and FIG. Keep it. According to the present invention, as shown in FIG. 4, it is apparent that the usage ratio of the inexpensive Ni source has been improved. In addition, the Ni source input position is another melting furnace (converter-type smelting reduction furnace) in the practice of the present invention, and in the conventional operation, the molten metal holding furnace and the decarburization refining apparatus are the top bottom blowing converter. is there.

また、図2に、本発明の実施時の溶鉄、溶鋼の流れを示すが、Niを含む含Cr溶鉄を連続的に脱炭精錬装置へ供給でき、ニッケルを含まない場合と同様に含ニッケル・ステンレス溶鋼の「連々鋳」が可能になったことが明らかである。さらに、従来法のNi及びCrのコストを100として求めたコスト指数によれば、図5に示すように、本発明により従来よりステンレス鋼の製造コストの低下が確認された。   In addition, FIG. 2 shows the flow of molten iron and molten steel at the time of carrying out the present invention, and Cr-containing molten iron containing Ni can be continuously supplied to the decarburizing and refining apparatus, as in the case where nickel is not contained. It is clear that “continuous casting” of molten stainless steel has become possible. Further, according to the cost index obtained by setting the costs of Ni and Cr of the conventional method as 100, as shown in FIG.

本発明に係る含ニッケル・ステンレス鋼の溶製方法を説明する工程図である。It is process drawing explaining the melting method of the nickel containing stainless steel which concerns on this invention. 本発明の実施時の溶鉄、溶鋼の流れを示すである。It is a flow of molten iron and molten steel during the implementation of the present invention. 高価及び安価なCr源の使用比率を示す図である。It is a figure which shows the use ratio of an expensive and cheap Cr source. 高価及び安価なNi源の使用比率を示す図である。It is a figure which shows the usage-ratio of an expensive and cheap Ni source. 含ニッケル・ステンレス鋼の製造コストを本発明の実施と従来操業の実施の場合で比較した図である。It is the figure which compared the manufacturing cost of nickel-containing stainless steel in the case of implementation of this invention, and implementation of conventional operation. 含クロム溶鉄を製造する従来の工程を示す図である。It is a figure which shows the conventional process which manufactures chromium-containing molten iron.

Claims (3)

第一の溶製炉で鉄源、Cr鉱石、Crを含有するスラグ、ダスト、スラジの一種以上をCr源として還元性雰囲気下で含Cr溶鉄を溶製し、得られた含Cr溶鉄を加熱機能を有する溶湯保持炉に保持してから、次工程の第二の溶製炉での精錬スケジュールに合わせて該含Cr溶鉄を該第二の溶製炉へ供給して脱炭、成分調整を行うに際して
前記溶湯保持炉内に保持した含Cr溶鉄を、前記第二の溶製炉の精錬スケジュールに合わせて別の溶製炉へ移行し、安価なNi源を投入、溶解して前記含Cr溶鉄にNiを含有させてから前記第二の溶製炉へ供給して、脱炭及び成分調整することを特徴とする含ニッケル・ステンレス鋼の溶製方法。
In the first melting furnace, melt iron containing Cr in a reducing atmosphere using one or more of iron source, Cr ore, Cr-containing slag, dust, and sludge as the Cr source, and heat the resulting Cr-containing molten iron After holding in the molten metal holding furnace having the function, the Cr-containing molten iron is supplied to the second melting furnace in accordance with the refining schedule in the second melting furnace in the next step to decarburize and adjust the components. When performing, the Cr-containing molten iron held in the molten metal holding furnace is transferred to another melting furnace in accordance with the refining schedule of the second melting furnace, and an inexpensive Ni source is charged and melted to dissolve the Cr-containing molten iron. A method for melting nickel-containing stainless steel, wherein Ni is contained in molten iron and then supplied to the second melting furnace to decarburize and adjust components.
前記別の溶製炉が前記第一の溶製炉であることを特徴とする請求項1記載の含ニッケル・ステンレス鋼の溶製方法。 The method for melting nickel-containing stainless steel according to claim 1, wherein the another melting furnace is the first melting furnace. 前記第二の溶製炉が、転炉及び/又は真空脱炭装置であることを特徴とする請求項1又は2記載の含ニッケル・ステンレス鋼の溶製方法。 The method for melting nickel-containing stainless steel according to claim 1 or 2, wherein the second melting furnace is a converter and / or a vacuum decarburization apparatus.
JP2004053699A 2004-02-27 2004-02-27 Melting method of nickel-containing stainless steel Expired - Fee Related JP4049106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053699A JP4049106B2 (en) 2004-02-27 2004-02-27 Melting method of nickel-containing stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053699A JP4049106B2 (en) 2004-02-27 2004-02-27 Melting method of nickel-containing stainless steel

Publications (2)

Publication Number Publication Date
JP2005240141A JP2005240141A (en) 2005-09-08
JP4049106B2 true JP4049106B2 (en) 2008-02-20

Family

ID=35022177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053699A Expired - Fee Related JP4049106B2 (en) 2004-02-27 2004-02-27 Melting method of nickel-containing stainless steel

Country Status (1)

Country Link
JP (1) JP4049106B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762488B (en) * 2015-04-30 2016-09-07 安徽工业大学 A kind of method of direct vanadium alloying in esr process
CN114317866B (en) * 2022-01-19 2023-05-12 首钢京唐钢铁联合有限责任公司 Method for recycling stainless steel scrap steel to replace alloy by converter

Also Published As

Publication number Publication date
JP2005240141A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
KR101152676B1 (en) Production of stainless steel of aisi 4xx grade ferritic steel in an aod converter
JP4736466B2 (en) Method for producing high chromium molten steel
CN101671763A (en) Method for increasing nitrogen for smelting high nitrogen stainless steel in argon oxygen decarburizing furnace
CN110628985A (en) Method for smelting special steel by bottom-blowing electric arc furnace returning oxygen blowing method
CN102719726A (en) Method for producing stainless steel master liquid
CN102321783A (en) Steel-making method of experimental induction furnace
CN1954086A (en) Method for reducing cr in metallurgical slags containing cr
JP5589688B2 (en) Hot metal production method
US3323907A (en) Production of chromium steels
JP4049106B2 (en) Melting method of nickel-containing stainless steel
CN116179794A (en) Technological method for continuously recycling hot casting residue into LF ladle furnace
CN109554515B (en) Method for smelting stainless steel by top-blown converter
CN113278871B (en) Smelting method of super duplex stainless steel
WO2001086006A2 (en) Improved process for the production of stainless steels and high chromium steels and stainless steelproduced thereby
JP4114346B2 (en) Manufacturing method of high Cr molten steel
Patil et al. Refining of stainless steels
JP3788392B2 (en) Method for producing high Cr molten steel
KR100411288B1 (en) Method for recovering chromium from electric furnace slag
JPS6354045B2 (en)
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP3988614B2 (en) Method for producing chromium-containing molten steel
JP2002371313A (en) Method for smelting molten stainless steel
JPH0776752A (en) Method for melting chromium-containing steel
CN113957197A (en) Converter tapping metallurgy process for reducing large-size inclusions in bearing steel
JP3804143B2 (en) Atmosphere control method during ladle stirring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees