JPH0892627A - Production of stainless steel - Google Patents

Production of stainless steel

Info

Publication number
JPH0892627A
JPH0892627A JP22833894A JP22833894A JPH0892627A JP H0892627 A JPH0892627 A JP H0892627A JP 22833894 A JP22833894 A JP 22833894A JP 22833894 A JP22833894 A JP 22833894A JP H0892627 A JPH0892627 A JP H0892627A
Authority
JP
Japan
Prior art keywords
slag
chromium oxide
added
decarburization
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22833894A
Other languages
Japanese (ja)
Other versions
JP3063537B2 (en
Inventor
Yoshihiko Higuchi
善彦 樋口
Masaki Miyata
政樹 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6228338A priority Critical patent/JP3063537B2/en
Publication of JPH0892627A publication Critical patent/JPH0892627A/en
Application granted granted Critical
Publication of JP3063537B2 publication Critical patent/JP3063537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To dissolve problem that two furnaces of a smelting reduction furnace and a decarburizing furnace are not required and the reducing rate of chromium only by the reduction of C under an atmospheric pressure is low. CONSTITUTION: At the time of subjecting the rough molten steel of stainless steel to rough carburizing, chromium oxide-contg. slag generated in the final stage of the rough carburizing is added to the molten metal in the rough carburizing or finish decarburizing stage at least partially in the shape of powder, and by carbon in the molten metal or carbon in a carbon material to be added, chromium oxide in the chromium oxide-contg. slag is reduced and is recovered into the molten metal. The chromium oxide-contg. slag is added by an upper blowing method or an injection method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルゴン酸素脱炭炉(A
OD炉) 、転炉等の製鋼炉において、溶銑、スクラップ、
合金鉄等を用いて粗脱炭工程→仕上げ脱炭工程→還元工
程を経てステンレス鋼を製造する方法に関する。
This invention relates to an argon oxygen decarburization furnace (A
(OD furnace), steelmaking furnaces such as converters, hot metal, scrap,
The present invention relates to a method for producing stainless steel through a rough decarburizing process → finishing decarburizing process → reducing process using ferroalloy or the like.

【0002】[0002]

【従来の技術】従来より、ステンレス鋼の溶製方法とし
て最も典型的なプロセスは、スクラップやFe−Cr、Fe−
Ni等の合金鉄を主原料として、これらを電気炉で溶解
し、酸素吹込みにより粗脱炭を行い、その後、AOD 炉ま
たはVOD 炉等で仕上げ脱炭と還元精錬を行い、出鋼後、
受鋼鍋でAr吹き込みを行って溶鋼の清浄化および温度コ
ントロールを行い、しかる後連続鋳造機にかけるもので
ある。
2. Description of the Related Art Conventionally, the most typical process for melting stainless steel is scrap, Fe--Cr, Fe--
Using ferroalloys such as Ni as the main raw material, melting them in an electric furnace and performing crude decarburization by blowing oxygen, then performing final decarburization and reduction refining in an AOD furnace or VOD furnace, etc.
The molten steel is cleaned and the temperature is controlled by blowing Ar in a steel receiving pot, and then it is put into a continuous casting machine.

【0003】また文献 (鉄と鋼、1985, vol.71, 180)に
あるように、電気炉を用いずに底吹き転炉内に溶銑を装
入し、ステンレス鋼の成分となるように脱炭吹錬中また
は吹錬前にスクラップや合金鉄を添加して所定の成分と
し、粗脱炭および仕上げ脱炭工程終了後、Fe−Si等の合
金鉄を投入して還元工程に移行し、しかる後、出鋼して
連続鋳造するプロセスもある。
Further, as described in the literature (Iron and Steel, 1985, vol.71, 180), the hot metal was charged into the bottom-blown converter without using an electric furnace, and the molten iron was removed so that it became a component of stainless steel. Scrap or ferroalloy is added as a predetermined component during or before charcoal blowing, and after the coarse decarburizing and finish decarburizing steps are finished, ferroalloy such as Fe-Si is added to shift to the reducing step. After that, there is also a process of tapping and continuously casting.

【0004】その他に、クロム鉱石を用いたステンレス
鋼溶製プロセスも存在し、例えば文献 (鉄と鋼、1985,
vol.71, 1072) にも記載されているように、AOD 炉に溶
銑を装入し、しかる後クロム鉱石とコークスを投入し
て、いわゆる溶融還元を行い、その後スラグを除去して
から、AOD炉によって通常の粗脱炭および仕上げ脱炭
さらに還元から成る脱炭精錬を行うものである。しかし
ながら、これらの従来法では、以下のような問題点があ
る。
In addition, there is also a stainless steel melting process using chromium ore, for example, in the literature (Iron and Steel, 1985,
(Vol.71, 1072), the hot metal was charged into the AOD furnace, and then chromium ore and coke were charged to carry out so-called smelting reduction, after which slag was removed, and then AOD The furnace performs decarburization refining consisting of ordinary rough decarburization, finish decarburization and reduction. However, these conventional methods have the following problems.

【0005】(1) 大量のSi (多くの場合Fe−Si) を添加
するためコストが高くなる。 (2) 反応生成物としてSiO2が発生するため、それを中和
するためのCaO を大量に必要とする。またその結果、大
量のスラグが発生する。 (3) 酸化クロムのシリコンによる還元反応は発熱反応の
ため、温度が上昇することおよび上記スラグは流動性に
富むことにより、耐火物を侵食する。
(1) Since a large amount of Si (in many cases Fe-Si) is added, the cost becomes high. (2) Since SiO 2 is generated as a reaction product, a large amount of CaO is needed to neutralize it. As a result, a large amount of slag is generated. (3) Since the reduction reaction of chromium oxide with silicon is an exothermic reaction, the temperature rises and the slag has a high fluidity, so that it erodes refractory materials.

【0006】そこで特公平4−38806 号公報では、かか
る問題点を解消すべく、溶融還元炉と脱炭炉とを用意
し、ステンレス粗溶鋼の脱炭末期に回収された酸化クロ
ム含有スラグを溶融還元炉に戻して、クロム分を還元回
収するプロセスを提案している。
Therefore, in Japanese Examined Patent Publication No. 38806/1992, in order to solve such a problem, a smelting reduction furnace and a decarburization furnace are prepared, and the chromium oxide-containing slag recovered at the final decarburization stage of the crude stainless steel melt is melted. It proposes a process of returning to the reduction furnace and reducing and recovering the chromium content.

【0007】この方法によれば、Fe−Siを用いた還元期
を省略できるため、上記の問題点は解決されるとしてい
る。また脱炭炉に残留した酸化クロム含有スラグを次チ
ャージのステンレス溶鋼中のCで還元回収する場合につ
いては、溶湯中のCが5%、1500℃以上であれば可能と
している。
According to this method, the reduction period using Fe-Si can be omitted, so that the above problems are solved. Further, when the chromium oxide-containing slag remaining in the decarburizing furnace is reduced and recovered by C in the next charge of molten stainless steel, it is possible if the C in the molten metal is 5% and 1500 ° C or higher.

【0008】[0008]

【発明が解決しようとする課題】しかし、特公平4−38
806 号公報開示の方法では、溶融還元炉と脱炭炉の2炉
を持たなければ実現できないという問題点がある。また
脱炭炉に残留した含クロムスラグを次チャージの溶銑中
のCで還元回収する場合には、溶湯中のCによるCr2O3
還元率が十分でないという問題点がある。
[Problems to be Solved by the Invention] However, Japanese Patent Publication No. 4-38
The method disclosed in Japanese Patent No. 806 has a problem that it cannot be realized without having two furnaces, a smelting reduction furnace and a decarburization furnace. When the chromium-containing slag remaining in the decarburization furnace is reduced and recovered by C in the next hot metal, Cr 2 O 3
There is a problem that the reduction rate is not sufficient.

【0009】一方、本件出願人の出願にかかる特願平5
−146167号では、脱炭末期スラグを同一炉にリサイクル
して次チャージの粗溶湯の脱炭昇温時にスラグ中酸化ク
ロムを[C] で還元回収し、還元末期にSi含有合金を添加
してクロム回収率を向上させるプロセスを提案してい
る。
[0009] On the other hand, Japanese Patent Application No.
In −146167, the slag at the end of decarburization was recycled to the same furnace to recover and recover the chromium oxide in the slag with [C] when the decarburization temperature of the next charge crude molten metal was increased, and the Si-containing alloy was added at the end of the reduction. A process to improve chromium recovery is proposed.

【0010】しかし、この方法でも、スラグ中のCr2O3
をCにより還元するとしているが、単に脱炭末期スラグ
を炉内に添加してCにより還元するだけでは、C還元速
度が遅くCr2O3 還元率が十分でないという問題点があ
る。
However, even with this method, Cr 2 O 3 in the slag is
Although C is reduced by C, there is a problem that the C reduction rate is slow and the Cr 2 O 3 reduction rate is not sufficient by simply adding the decarburization end-stage slag into the furnace and reducing it by C.

【0011】すなわち、スラグが滓化する還元温度 (15
00〜1600℃) にまで吹錬開始後早急に昇熱する必要があ
るにもかかわらず、注銑時の溶銑温度は高々1300℃程度
であり、吹錬開始前あるいは吹錬開始直後に酸化クロム
含有スラグを添加する場合、スラグ添加による抜熱によ
り還元温度 (1500〜1600℃) までの昇熱時間が長くなっ
てしまうからである。
That is, the reduction temperature (15
Even if it is necessary to raise the temperature immediately after the start of blowing, the hot metal temperature at the time of pouring is at most about 1300 ° C, and chromium oxide can be added before or immediately after the start of blowing. This is because, when the contained slag is added, the heating time to the reduction temperature (1500 to 1600 ° C) becomes long due to the heat removal by adding the slag.

【0012】また、通常のステンレス粗溶鋼脱炭は大気
圧下で処理されるため炭素の還元力が弱く酸化クロムの
還元には問題がある。したがって、炭素により還元しな
かったクロム酸化物をSi含有合金で還元する必要があ
り、還元用Si合金の削減という当初の目的を十分に達し
ない可能性がある。
[0012] Further, since ordinary stainless crude molten steel decarburization is processed under atmospheric pressure, the reducing power of carbon is weak and there is a problem in reducing chromium oxide. Therefore, it is necessary to reduce the chromium oxide that has not been reduced by carbon with the Si-containing alloy, and the initial purpose of reducing the Si alloy for reduction may not be sufficiently achieved.

【0013】ここに、本発明の目的は、(1) 溶融還元炉
と脱炭炉の2炉を持つ必要もなく、(2) 大気圧下でのC
還元のみによるクロム還元率が低いという問題を解消す
ることができるステンレス鋼の製造方法を提供すること
である。
Here, the object of the present invention is (1) it is not necessary to have two furnaces, a smelting reduction furnace and a decarburization furnace, and (2) C at atmospheric pressure.
An object of the present invention is to provide a method for producing stainless steel, which can solve the problem that the chromium reduction rate due to only reduction is low.

【0014】[0014]

【課題を解決するための手段】かくして、本発明者ら
は、かかる技術課題を達成すべく、種々検討を重ね次の
ような知見を得た。 酸化クロム含有スラグのリサイクル再利用に際して、
バルクとしての添加は、溶湯の過度の温度低下をもたら
してしまい、温度上昇に時間を要する。
The inventors of the present invention have made various studies in order to achieve the technical problems and have obtained the following findings. When recycling and reusing slag containing chromium oxide,
The addition as a bulk causes an excessive decrease in temperature of the molten metal, and it takes time for the temperature to rise.

【0015】粉体として添加することにより、バルク
として添加する場合と比較して反応速度が著しく改善さ
れる。 粉体とすることにより真空脱ガス処理炉においても添
加が可能となる。 還元用のFe−Siの配合量を大幅に減少させることが可
能となる。
The addition as a powder significantly improves the reaction rate as compared with the case where it is added as a bulk. The powder can be added in a vacuum degassing furnace. It is possible to significantly reduce the compounding amount of Fe-Si for reduction.

【0016】よって、本発明の要旨とするところは、粗
脱炭工程、仕上げ脱炭工程、および還元工程を経て製造
されるステンレス鋼の製造方法において、ステンレス鋼
の粗溶鋼を粗脱炭するとき、粗脱炭末期または仕上げ脱
炭末期に生じた酸化クロム含有スラグを、少なくとも一
部粉体の形態で粗脱炭または仕上げ脱炭工程における溶
湯に添加し、溶湯中の炭素または添加された炭素材中の
炭素により酸化クロム含有スラグ中の酸化クロムを還元
して溶湯中に回収することを特徴とするステンレス鋼の
製造方法である。
Therefore, the gist of the present invention resides in that in the method for producing stainless steel produced through the rough decarburizing step, the final decarburizing step, and the reducing step, when the crude molten steel of the stainless steel is roughly decarburized. Chromium oxide-containing slag produced at the final stage of rough decarburization or final decarburization is added to the molten metal in the rough decarburization or final decarburization step in the form of at least a part of powder, and the carbon in the molten metal or the added carbon is added. A method for producing a stainless steel, characterized in that chromium in a chromium oxide-containing slag is reduced by carbon in a raw material and recovered in a molten metal.

【0017】本発明の好適態様によれば、粉体の形態の
前記酸化クロム含有スラグは、上吹法またはインジェク
ション法により添加すればよい。また、別の好適態様に
よれば、 粉体の形態の前記酸化クロム含有スラグは、
仕上げ脱炭工程における真空脱ガス精錬炉中の溶湯に、
上吹法またはインジェクション法により添加すればよ
い。
According to a preferred embodiment of the present invention, the chromium oxide-containing slag in the form of powder may be added by a top blowing method or an injection method. According to another preferred embodiment, the chromium oxide-containing slag in the form of powder is
For the molten metal in the vacuum degassing refining furnace in the finishing decarburization process,
It may be added by the top blowing method or the injection method.

【0018】[0018]

【作用】次に、本発明の作用についてさらに具体的に説
明する。ステンレス鋼の粗溶鋼を脱炭するときに生じた
酸化クロムを含有するスラグを、次チャージ以降の脱炭
時にリサイクル再使用することは、溶湯中の炭素、また
はコークス等の炭素材により酸化クロムを還元し、金属
Siの添加を省略または使用量の節減のため必要である。
Next, the operation of the present invention will be described more specifically. Reusing the slag containing chromium oxide generated when decarburizing the crude molten steel of stainless steel during decarburization after the next charge is to remove chromium oxide by the carbon in the molten metal or carbon material such as coke. Reduce and metal
It is necessary to omit the addition of Si or reduce the amount used.

【0019】その場合、脱炭末期スラグ中のCr2O3 をメ
タル中のCで還元するには、スラグが滓化する還元温度
(1500〜1600℃) にまで吹錬開始後早急に昇熱する必要
がある。しかし、前述したように注銑時の溶銑温度は高
々1300℃程度であり、吹錬開始前あるいは吹錬開始直後
に酸化クロム含有スラグを添加すると、スラグ添加によ
る抜熱により還元温度 (1500〜1600℃) までの昇熱時間
が長くなってしまう。
In this case, in order to reduce Cr 2 O 3 in the final decarburizing slag with C in the metal, the reduction temperature at which the slag becomes slag is reduced.
(1500 to 1600 ℃) It is necessary to raise the temperature immediately after the start of blowing. However, as mentioned above, the hot metal temperature at the time of pouring is at most about 1300 ° C, and if chromium oxide-containing slag is added before or immediately after the start of blowing, the reduction temperature (1500 to 1600 It takes a long time to heat up to (℃).

【0020】この昇温時には還元はあまり進行しないた
め、酸化クロム含有スラグが炉内に大量にある必要はな
い。また、還元温度まで昇温した後に、大量の酸化クロ
ム含有スラグを添加すると、スラグが冷却剤の役目を果
たすために急激に温度が低下してしまい、還元温度を保
持できない。
Since the reduction does not proceed so much at this temperature rise, it is not necessary that a large amount of chromium oxide-containing slag is present in the furnace. Further, if a large amount of chromium oxide-containing slag is added after the temperature has been raised to the reduction temperature, the slag serves as a cooling agent and the temperature is rapidly lowered, so that the reduction temperature cannot be maintained.

【0021】ところが、転炉あるいはAOD 炉等でステン
レス溶鋼を粗脱炭した後の溶鋼温度は通常1500℃以上あ
るので、粗脱炭後の真空脱ガス炉で酸化クロム含有スラ
グを添加すれば直ちに溶鋼中の炭素によってスラグ中の
酸化クロムを還元することが可能となるのである。ま
た、真空脱ガス炉では真空下で脱炭するために大気圧下
よりも溶鋼中炭素の還元力が強く、スラグ中に含有され
るクロム酸化物の還元に有利となる。
However, since the molten steel temperature after roughly decarburizing stainless molten steel in a converter or an AOD furnace is usually 1500 ° C. or higher, immediately after adding chromium oxide-containing slag in a vacuum degassing furnace after rough decarburizing, The carbon in the molten steel makes it possible to reduce the chromium oxide in the slag. Further, in a vacuum degassing furnace, since decarburization is carried out under vacuum, the reducing power of carbon in molten steel is stronger than under atmospheric pressure, which is advantageous for reduction of chromium oxide contained in slag.

【0022】したがって、還元温度までの昇温速度を高
め、さらに還元温度到達後もその温度を保持するために
は、酸化クロム含有スラグを連続または分割して添加す
る必要がある。好ましくは少なくとも一部粉体の形態で
溶湯に添加する。
Therefore, in order to increase the temperature rising rate up to the reduction temperature and maintain the temperature even after the reduction temperature is reached, it is necessary to add the chromium oxide-containing slag continuously or in a divided manner. It is preferably added to the melt in the form of at least a part of powder.

【0023】ここで、脱炭炉への添加方法としては以下
の3つの方法を採用することができる。 (1) 酸化クロム含有スラグを脱炭炉上部に設置したスラ
グ供給装置から連続的にあるいは分割して溶湯に供給す
る。この方法は、設備的に最も簡単である。
Here, the following three methods can be adopted as the method of addition to the decarburizing furnace. (1) Chromium oxide-containing slag is continuously or dividedly supplied to the molten metal from a slag supply device installed at the upper part of the decarburization furnace. This method is the simplest in terms of equipment.

【0024】(2) 酸化クロム含有スラグを回収・粉砕
し、粉砕によって得たスラグ粉体を上吹きランスから、
酸素ガスあるいは不活性ガスをキャリアとして用いて溶
湯に供給する。
(2) The chromium oxide-containing slag is recovered and crushed, and the slag powder obtained by crushing is slag powder from the top blowing lance.
Oxygen gas or inert gas is used as a carrier to supply the molten metal.

【0025】この方法では、上吹きランスからの吹き込
みにより、スラグ粉体が溶鋼中に侵入するため、脱炭炉
上部から添加する方法よりも効率が高い。またキャリア
ガスとして酸素ガスあるいは不活性ガスの混合ガスを用
いれば、酸素ガスと溶湯中の炭素とが反応して一酸化炭
素を生成する高温の反応火点領域が生じ、そこにスラグ
粉体を供給することによりスラグの滓化・溶融化を促進
し、したがって還元速度が向上する。
In this method, since the slag powder penetrates into the molten steel by the blowing from the upper blowing lance, the efficiency is higher than the method of adding from the upper part of the decarburizing furnace. If a mixed gas of oxygen gas or an inert gas is used as the carrier gas, a high-temperature reaction hot spot region where oxygen gas reacts with carbon in the molten metal to generate carbon monoxide is generated, and slag powder is generated there. Supplying promotes slag slagging / melting, thus improving the reduction rate.

【0026】(3) 酸化クロム含有スラグを回収・粉砕
し、粉砕によって得たスラグ粉体を脱炭炉の側壁・底面
に設置した羽口から、酸素ガスあるいは不活性ガスをキ
ャリアガスとして溶湯に上吹きあるいはインジェクショ
ンする。
(3) Chromium oxide-containing slag is recovered and crushed, and the slag powder obtained by crushing is used as a carrier gas using oxygen gas or inert gas as carrier gas from tuyeres installed on the side and bottom of the decarburizing furnace. Top blowing or injection.

【0027】この方法は上記(2) とほぼ同様の効果をあ
げることができる。また、酸素ガスをキャリアガスとし
てインジェクションする場合には、羽口近傍ではこのス
ラグ粉体が冷却効果をもたらすため、羽口寿命の向上も
同時に可能となる。すなわち、通常の酸素インジェクシ
ョン羽口では吹き込み酸素が溶湯中の炭素あるいは鉄あ
るいはクロムと発熱反応を引き起こすのに対し、この方
法では粉体自身が冷却剤として働き、さらにクロム酸化
物還元が吸熱反応であることから、羽口冷却効果が2重
に大きくなるためである。また、そのように回収された
酸化クロム含有スラグを添加するのは上述のいずれの脱
炭期間中でもよく、いわゆる脱炭開始時あるいは真空脱
ガス処理中の仕上げ脱炭時である。
This method can bring about the same effect as the above (2). Further, when the oxygen gas is injected as the carrier gas, the slag powder has a cooling effect in the vicinity of the tuyere, so that the life of the tuyere can be improved at the same time. That is, in the usual oxygen injection tuyere, the blown oxygen causes an exothermic reaction with carbon, iron or chromium in the molten metal, whereas in this method the powder itself acts as a cooling agent and the chromium oxide reduction is an endothermic reaction. This is because the tuyere cooling effect doubles. The chromium oxide-containing slag thus recovered may be added during any of the above-mentioned decarburization periods, that is, at the time of so-called decarburization start or finish decarburization during vacuum degassing.

【0028】ここに、本発明において、酸化クロム含有
スラグを回収する時点は、スラグ中に酸化Crを含有する
時期である限り特に制限ないが、一般には脱炭末期、つ
まり仕上げ脱炭末期であり、真空脱炭処理を行う場合に
は、例えば転炉での粗脱炭末期である。次に、本発明の
作用効果を、比較例を参照しながら実施例に基づいてさ
らに具体的に説明する。
Here, in the present invention, the time for recovering the chromium oxide-containing slag is not particularly limited as long as it is the time for containing Cr oxide in the slag, but it is generally the decarburization end stage, that is, the final decarburization end stage. When performing vacuum decarburization treatment, for example, the final stage of rough decarburization in a converter. Next, the effects of the present invention will be described more specifically based on examples with reference to comparative examples.

【0029】(比較例)本例にあっては、脱りん銑65トン
を上底吹き転炉に装入し、粗脱炭、仕上げ脱炭を行い、
さらに還元を行ってから、取鍋に出鋼し、次いで連続鋳
造によってステンレス鋼を製造した。
(Comparative Example) In this example, 65 tons of dephosphorized pig iron was charged into an upper-bottom blowing converter, and rough decarburization and finish decarburization were performed.
After further reduction, the steel was tapped into a ladle, and then stainless steel was produced by continuous casting.

【0030】このとき、別途、ステンレス鋼の粗脱炭期
終了時に回収したスラグ (粗成:T.Cr=20%、T.Fe=3
%、CaO/SiO2=1.4 、MgO =5%、Al2O3 <10%) を用
意し、この酸化クロム含有スラグ6000kg、コークス4000
kg、生石灰574 kgを上記製造工程の粗脱炭工程の開始時
に炉内に一括添加後、底吹きArガスを17 Nm3/min、上吹
きランスからの酸素を146 Nm3/minで吹き込みつつ、41
分間の吹錬を行い、粗脱炭および仕上げ脱炭を行った。
その後、Fe−Si (組成:Si=75%、残部Fe) を243 kg添
加し、還元処理を行った。
At this time, separately, the slag (crude: T.Cr = 20%, T.Fe = 3) recovered at the end of the rough decarburization period of stainless steel.
%, CaO / SiO 2 = 1.4, MgO = 5%, Al 2 O 3 <10%), and the chromium oxide-containing slag 6000 kg, coke 4000
kg and quick lime 574 kg were added all at once in the furnace at the start of the rough decarburization process in the above manufacturing process, while bottom-blown Ar gas was blown at 17 Nm 3 / min and oxygen from the top-blown lance at 146 Nm 3 / min. , 41
Blowing for 1 minute was performed to perform rough decarburization and finish decarburization.
After that, 243 kg of Fe-Si (composition: Si = 75%, balance Fe) was added, and reduction treatment was performed.

【0031】粗脱炭溶湯のFe−Si添加後の温度は1632
℃、スラグ塩基度は1.5 、[%Cr] =1.65%であった。ま
た脱炭終了時のメタル中[%C]は1%であった。その後ス
ラグを排出し、フェロクロム (組成:Cr=60%、Si=2.
7 %、C=6%、残部Fe) を21トン、生石灰1.8 トン添
加して、仕上げ脱炭処理を行った。この仕上げ脱炭処理
後の温度は1700℃、スラグ塩基度は1.5 、[%Cr] =13%
であった。
The temperature of the crude decarburized molten metal after the addition of Fe-Si is 1632.
C, the slag basicity was 1.5, and [% Cr] = 1.65%. At the end of decarburization, the metal [% C] was 1%. After that, the slag is discharged and ferrochrome (composition: Cr = 60%, Si = 2.
21% of 7%, C = 6%, the balance of Fe) and 1.8 ton of quick lime were added for finish decarburization treatment. After this decarburization treatment, the temperature is 1700 ℃, the slag basicity is 1.5, and [% Cr] = 13%.
Met.

【0032】(実施例1)本例にあっても比較例と同様に
して脱りん銑65トンを上底吹き転炉に装入し、粗脱炭、
仕上げ脱炭を行い、還元を行ってから、取鍋に出鋼し、
次いで連続鋳造によってステンレス鋼を製造した。
(Embodiment 1) In this embodiment as well, in the same manner as in the comparative example, 65 tons of dephosphorized iron was charged into an upper-bottom blowing converter to perform rough decarburization,
After finishing decarburization and reduction, tap steel in a ladle,
Stainless steel was then produced by continuous casting.

【0033】本例にあっては、別途に、ステンレス鋼の
粗脱炭期終了時に回収したスラグ (粗成:T.Cr=20%、
T.Fe=3%、CaO/SiO2=1.4 、MgO =5%、Al2O3 <10
%)を用意し、この酸化クロム含有スラグ3000kg、コー
クス4000kg、生石灰570 kgを炉内に添加後、底吹き羽口
から吹き込むArガス (流量17Nm3/min)で攪拌した。一
方、上吹きランスからも酸素 (流量146 Nm3/min)を吹き
付けて溶湯を攪拌しつつ、この上吹きランスからの酸素
をキャリアガスとして、上記酸化クロム含有スラグを粉
砕した脱炭終了時スラグを供給しながら (66.7kg/min)
、45分間の吹錬を行った。その後、Fe−Siを200 kg添
加した。
In this example, separately, the slag collected at the end of the rough decarburization period of stainless steel (crude: T.Cr = 20%,
T.Fe = 3%, CaO / SiO 2 = 1.4, MgO = 5%, Al 2 O 3 <10
%), 3000 kg of the chromium oxide-containing slag, 4000 kg of coke, and 570 kg of quick lime were added into the furnace, and the mixture was stirred with Ar gas (flow rate 17 Nm 3 / min) blown from the bottom blowing tuyere. On the other hand, oxygen (flow rate 146 Nm 3 / min) was also blown from the top blowing lance to stir the molten metal, and the oxygen from the top blowing lance was used as the carrier gas to crush the chromium oxide-containing slag and to decarburize the slag at the end. While supplying (66.7kg / min)
, Blowing for 45 minutes. Then, 200 kg of Fe-Si was added.

【0034】粗脱炭した溶鋼へのFe−Si添加後の温度は
1635℃、スラグ塩基度は1.5 、[%Cr] =1.67%であっ
た。また脱炭終了時のメタル中[%C]は1%であった。そ
の後スラグを排出し、フェロクロムを21トン、生石灰を
1.8 トン添加して、仕上げ脱炭処理を行った。この仕上
げ脱炭処理後の温度は1705℃、スラグ塩基度は1.5 、[%
Cr] =13%であった。表1に精錬諸元を示す。
The temperature after the addition of Fe-Si to the molten steel that has been roughly decarburized is
At 1635 ° C, the slag basicity was 1.5, and [% Cr] = 1.67%. At the end of decarburization, the metal [% C] was 1%. After that, the slag is discharged and 21 tons of ferrochrome and quicklime are added.
A final decarburization treatment was performed by adding 1.8 tons. The temperature after this finishing decarburization treatment is 1705 ℃, the slag basicity is 1.5, and [%
Cr] was 13%. Table 1 shows the refining specifications.

【0035】[0035]

【表1】 [Table 1]

【0036】(実施例2)本例では、転炉でステンレス
鋼の粗脱炭を終了した粗溶鋼80トンを取鍋に出鋼し、
真空脱ガス炉 (この実施例ではVOD 炉を使用した) によ
って真空下で仕上げ脱炭処理を行ない、ステンレス鋼を
製造した。
(Embodiment 2) In this embodiment, 80 tons of crude molten steel that has undergone rough decarburization of stainless steel in a converter is tapped into a ladle,
A stainless steel was manufactured by performing a final decarburization treatment under vacuum in a vacuum degassing furnace (a VOD furnace was used in this example).

【0037】このとき、別途用意したステンレス鋼粗脱
炭終了時に回収したスラグ (組成:T.Cr=20%、T.Fe=
3%、CaO/SiO2=1.4 、MgO =5%、Al2O3 <10%) 60
00kgを上記真空脱ガス炉に添加後、真空下で脱炭処理し
た。
At this time, separately prepared slag (composition: T.Cr = 20%, T.Fe = T.Fe =
3%, CaO / SiO 2 = 1.4, MgO = 5%, Al 2 O 3 <10%) 60
After adding 00 kg to the above vacuum degassing furnace, it was decarburized under vacuum.

【0038】VOD 炉到着時は溶鋼温度1620℃、溶鋼中ク
ロム濃度11.6%であったが、VOD 炉での真空脱炭処理中
(酸素流量20 Nm3/min、送酸時間30分) のクロム酸化物
の還元により、真空脱炭後は12.7%まで上昇した。
When the VOD furnace arrived, the molten steel temperature was 1620 ° C and the chromium concentration in the molten steel was 11.6%, but during the vacuum decarburization treatment in the VOD furnace
Reduction of chromium oxide (oxygen flow rate 20 Nm 3 / min, acid transfer time 30 minutes) increased to 12.7% after vacuum decarburization.

【0039】その後、スラグ中にFe−Siを添加しスラグ
中のクロム酸化物をほぼ全部還元したところ、クロム濃
度は13.1%まで増加し、その後通常処理を行って連続鋳
造した。この際、VOD 炉でのFe−Si添加量は従来法と同
じだが、転炉では未脱酸出鋼となるため転炉でのFe−Si
添加量をゼロに減らすことができた。
Thereafter, when Fe-Si was added to the slag to reduce almost all the chromium oxide in the slag, the chromium concentration increased to 13.1%, and then the normal treatment was performed to continuously cast the slag. At this time, the amount of Fe-Si added in the VOD furnace is the same as in the conventional method, but Fe-Si in the converter becomes undeoxidized steel.
The amount added could be reduced to zero.

【0040】(実施例3)本例でも実施例2と同様に、転
炉でステンレス鋼の粗脱炭を終了した粗溶鋼80トンを取
鍋に出鋼し、真空下で仕上げ脱炭処理した。VOD炉到着
時は溶鋼温度1620℃、溶鋼中クロム濃度11.6%であった
が、VOD 炉での真空脱炭中 (酸素流量20 Nm3/min、送酸
時間30分) に転炉でのステンレス鋼粗脱炭終了時に回収
したスラグ (組成:T.Cr=20%、T.Fe=3%、CaO/SiO2
=1.4、MgO =5%、Al2O3 <10%) 6000kgを粉砕した
ものを酸素ランスとは別の上吹きランスからアルゴンガ
スをキャリアガスとして上吹きした。
(Embodiment 3) Also in this embodiment, as in Embodiment 2, 80 tons of crude molten steel after rough decarburization of stainless steel in the converter was tapped into a ladle and subjected to finish decarburization treatment under vacuum. . When the VOD furnace arrived, the molten steel temperature was 1620 ° C and the chromium concentration in the molten steel was 11.6%, but during vacuum decarburization in the VOD furnace (oxygen flow rate 20 Nm 3 / min, acid transfer time 30 minutes), the stainless steel in the converter was Slag recovered at the end of crude steel decarburization (composition: T.Cr = 20%, T.Fe = 3%, CaO / SiO 2
= 1.4, MgO = 5%, Al 2 O 3 <10%) 6000 kg of pulverized material was blasted with argon gas as a carrier gas from an upper lance different from the oxygen lance.

【0041】真空脱ガス処理中のクロム酸化物の還元に
より、真空脱炭後は12.9%まで上昇した。その後、溶鋼
中にFe−Siを添加しスラグ中のクロム酸化物をほぼ全部
還元したところ、クロム濃度は13.1%まで増加し、その
後通常処理を行って連続鋳造した。この際、VOD 炉での
Fe−Si添加量は従来法と同じだが、転炉では未脱酸出鋼
となるため転炉でのFe−Si添加量をゼロに減らすことが
できた。
Due to the reduction of chromium oxide during the vacuum degassing process, it increased to 12.9% after vacuum decarburization. After that, when Fe-Si was added to the molten steel to reduce almost all the chromium oxide in the slag, the chromium concentration increased to 13.1%, after which normal treatment was performed and continuous casting was performed. At this time, in the VOD furnace
Although the amount of Fe-Si added was the same as that of the conventional method, the amount of Fe-Si added in the converter could be reduced to zero because undeoxidized steel was produced in the converter.

【0042】(実施例4)本例にあっても比較例と同様に
して脱りん銑65トンを上底吹き転炉に装入し、粗脱炭、
仕上げ脱炭を行い、還元を行ってから、取鍋に出鋼し、
次いで連続鋳造によってステンレス鋼を製造した。
(Embodiment 4) In this embodiment as well, in the same manner as in the comparative example, 65 tons of dephosphorized iron was charged into the upper-bottom blowing converter, and rough decarburization,
After finishing decarburization and reduction, tap steel in a ladle,
Stainless steel was then produced by continuous casting.

【0043】本例にあっては、別途に、ステンレス鋼の
粗脱炭期終了時に回収したスラグ (粗成:T.Cr=20%、
T.Fe=3%、CaO/SiO2=1.4 、MgO =5%、Al2O3 <10
%)を用意し、底吹き羽口から吹き込むArガス (流量17N
m3/min)で溶湯を攪拌しつつ、この上吹きランスからも
酸素 (流量146Nm3/min) を吹き付けて45分間の吹錬を行
った。その後、Fe−Siを200 kg添加した。
In this example, separately, the slag (crude: T.Cr = 20%,
T.Fe = 3%, CaO / SiO 2 = 1.4, MgO = 5%, Al 2 O 3 <10
%), Ar gas blown from the bottom blowing tuyere (flow rate 17N
While stirring the molten metal at (m 3 / min), oxygen (flow rate 146 Nm 3 / min) was also blown from this top blowing lance to perform blowing for 45 minutes. Then, 200 kg of Fe-Si was added.

【0044】この吹錬中、上記の酸化クロム含有スラグ
6000kg、コークス4000kg、生石灰570 kgを吹錬前、吹錬
開始10分後、吹錬開始20分後、吹錬開始30分後の4回に
等分に分けて炉内に添加した。
During this blowing, the above-mentioned chromium oxide-containing slag is used.
6000 kg, 4000 kg of coke, and 570 kg of quick lime were added to the furnace in four equal portions before blowing, 10 minutes after starting blowing, 20 minutes after starting blowing, and 30 minutes after starting blowing.

【0045】粗脱炭した溶鋼へのFe−Si添加後の温度は
1630℃、スラグ塩基度は1.5 、[%Cr] =1.65%であっ
た。また脱炭終了時のメタル中[%C]は1%であった。そ
の後スラグを排出し、フェロクロムを21トン、生石灰を
1.8 トン添加して、仕上げ脱炭処理を行った。この仕上
げ脱炭処理後の温度は1700℃、スラグ塩基度は1.5 、[%
Cr] =13%であった。
The temperature after adding Fe--Si to the molten steel that has been roughly decarburized is
At 1630 ° C, the slag basicity was 1.5, and [% Cr] = 1.65%. At the end of decarburization, the metal [% C] was 1%. After that, the slag is discharged and 21 tons of ferrochrome and quicklime are added.
A final decarburization treatment was performed by adding 1.8 tons. The temperature after this finishing decarburization treatment is 1700 ℃, the slag basicity is 1.5, [%
Cr] was 13%.

【0046】[0046]

【発明の効果】以上説明したように、本発明法によれ
ば、酸化クロム含有スラグを粉砕して添加するため、脱
炭中に酸化クロムを還元する際、還元速度を高い値に維
持することが可能となり、還元時間の短縮および耐火物
溶損の抑制が可能となる。
As described above, according to the method of the present invention, since the chromium oxide-containing slag is crushed and added, the reduction rate is maintained at a high value when the chromium oxide is reduced during decarburization. It is possible to shorten the reduction time and suppress the melting loss of the refractory.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粗脱炭工程、仕上げ脱炭工程、および還
元工程を経て製造されるステンレス鋼の製造方法におい
て、ステンレス鋼の粗溶鋼を粗脱炭するとき、粗脱炭末
期または仕上げ脱炭期に生じた酸化クロム含有スラグ
を、少なくとも一部粉体の形態で粗脱炭または仕上げ脱
炭工程における溶湯に添加し、溶湯中の炭素または添加
された炭素材中の炭素により酸化クロム含有スラグ中の
酸化クロムを還元して溶湯中に回収することを特徴とす
るステンレス鋼の製造方法。
1. A method for producing stainless steel produced through a rough decarburizing step, a finish decarburizing step, and a reducing step, wherein when crude molten steel of stainless steel is roughly decarburized, the final decarburizing step or the final decarburizing step is performed. The chromium oxide-containing slag generated during the cooling stage is added to the molten metal in the rough decarburization or finish decarburization step in the form of at least a part of powder, and the chromium oxide-containing slag is added by the carbon in the molten metal or the carbon in the added carbon material. A method for producing stainless steel, characterized in that chromium oxide therein is reduced and recovered in a molten metal.
【請求項2】 粉体の形態の前記酸化クロム含有スラグ
は、上吹法またはインジェクション法により添加される
ことを特徴とする請求項1記載のステンレス鋼の製造方
法。
2. The method for producing stainless steel according to claim 1, wherein the chromium oxide-containing slag in the form of powder is added by a top blowing method or an injection method.
【請求項3】 粉体の形態の前記酸化クロム含有スラグ
は、仕上げ脱炭工程における真空脱ガス精錬炉中の溶湯
に、上吹法またはインジェクション法により添加される
ことを特徴とする請求項1記載のステンレス鋼の製造方
法。
3. The chromium oxide-containing slag in the form of powder is added to the molten metal in the vacuum degassing and refining furnace in the final decarburizing step by a top blowing method or an injection method. A method for producing the described stainless steel.
JP6228338A 1994-09-22 1994-09-22 Stainless steel manufacturing method Expired - Lifetime JP3063537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6228338A JP3063537B2 (en) 1994-09-22 1994-09-22 Stainless steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6228338A JP3063537B2 (en) 1994-09-22 1994-09-22 Stainless steel manufacturing method

Publications (2)

Publication Number Publication Date
JPH0892627A true JPH0892627A (en) 1996-04-09
JP3063537B2 JP3063537B2 (en) 2000-07-12

Family

ID=16874900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6228338A Expired - Lifetime JP3063537B2 (en) 1994-09-22 1994-09-22 Stainless steel manufacturing method

Country Status (1)

Country Link
JP (1) JP3063537B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519906A (en) * 2004-11-12 2008-06-12 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Manufacturing method of AISI standard 4xx ferritic steel class in AOD converter
US7591876B2 (en) 2002-04-24 2009-09-22 The Boc Group Plc Injection of solids into liquids by means of a shrouded supersonic gas jet
US8142543B2 (en) * 2002-06-11 2012-03-27 The Boc Group Plc Refining ferroalloys

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591876B2 (en) 2002-04-24 2009-09-22 The Boc Group Plc Injection of solids into liquids by means of a shrouded supersonic gas jet
US8142543B2 (en) * 2002-06-11 2012-03-27 The Boc Group Plc Refining ferroalloys
JP2008519906A (en) * 2004-11-12 2008-06-12 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Manufacturing method of AISI standard 4xx ferritic steel class in AOD converter

Also Published As

Publication number Publication date
JP3063537B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
JP2947063B2 (en) Stainless steel manufacturing method
JPS61166910A (en) Production of chromium-containing alloy
JP3063537B2 (en) Stainless steel manufacturing method
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JP3158912B2 (en) Stainless steel refining method
JP2964861B2 (en) Stainless steel manufacturing method
JPH0967608A (en) Production of stainless steel
JPS6247417A (en) Melt refining method for scrap
KR102171769B1 (en) Method for processing molten material and stainless steel manufactured using the same
JP2587286B2 (en) Steelmaking method
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP2882236B2 (en) Stainless steel manufacturing method
JP3173325B2 (en) How to make stainless steel
JPH11343514A (en) Method for melting high carbon steel using bottom-blown converter
JP2757761B2 (en) Method for producing molten stainless steel by smelting reduction
JPH02221310A (en) Production of ni-and cr-containing molten metal
JPH07310109A (en) Production of stainless steel
CN115232894A (en) Method for extracting pure iron from iron oxide hot slag by using AOD furnace or ladle
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPS61291911A (en) Production of stainless steel
JP2000328121A (en) Dephosphorization method of molten iron
JPH01246309A (en) Method for melting high alloy steel
JPS61139614A (en) Manufacture of steel
JP3765092B2 (en) Ladle stirring method for electric arc furnace hot metal
JPH0438806B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000404