JP3119015B2 - Smelting reduction of Ni ore - Google Patents

Smelting reduction of Ni ore

Info

Publication number
JP3119015B2
JP3119015B2 JP05069748A JP6974893A JP3119015B2 JP 3119015 B2 JP3119015 B2 JP 3119015B2 JP 05069748 A JP05069748 A JP 05069748A JP 6974893 A JP6974893 A JP 6974893A JP 3119015 B2 JP3119015 B2 JP 3119015B2
Authority
JP
Japan
Prior art keywords
blowing
smelting furnace
ore
secondary combustion
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05069748A
Other languages
Japanese (ja)
Other versions
JPH06279882A (en
Inventor
治良 田辺
千尋 滝
敦 渡辺
秀昭 水上
英夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP05069748A priority Critical patent/JP3119015B2/en
Publication of JPH06279882A publication Critical patent/JPH06279882A/en
Application granted granted Critical
Publication of JP3119015B2 publication Critical patent/JP3119015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は炭材を燃料及び還元材
として用い、Ni鉱石を転炉型製錬炉内において溶融還
元し、含Ni溶湯を得るNi鉱石の溶融還元法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting and reducing Ni ore using a carbonaceous material as a fuel and a reducing agent to melt and reduce Ni ore in a converter type smelting furnace.

【0002】[0002]

【従来の技術】従来、ステンレス鋼の溶製は、スクラッ
プ、FeCr、FeNi等の合金鉄または電解法による
Ni等の原料を電気炉或いは転炉で再溶解することによ
り行われていた。この方法によると、ステンレス鋼の主
要成分であるCr,Niは予め電気炉等で還元された合
金鉄を原料としており、高価な電気エネルギ−を使用し
ているため、経済的な方法ではない。このような観点か
らより経済的にステンレス鋼を製造する方法としてCr
源としてCr鉱石を用い、これを転炉またはその他の溶
解炉において溶融還元する方法が提案されている。
2. Description of the Related Art Conventionally, melting of stainless steel has been carried out by remelting raw materials such as scrap, alloy iron such as FeCr and FeNi, or Ni by an electrolytic method in an electric furnace or a converter. According to this method, Cr and Ni, which are the main components of stainless steel, are made of ferro-alloy reduced in advance in an electric furnace or the like and use expensive electric energy, so that they are not economical. From this point of view, a more economical method for producing stainless steel is Cr.
A method has been proposed in which Cr ore is used as a source and is smelted and reduced in a converter or other melting furnace.

【0003】一方、Ni源として安価原料を使用する方
法は、FeNi溶解費の低減を目的とした電気炉におけ
るFeNi溶湯の直接使用[鉄と鋼、69(1983)
7,p.59]、転炉におけるニッケルマットの溶融還
元(特開昭58−104153号公報)あるいはニッケ
ル酸化物に炭材を混合、成型したものを加熱して予備還
元する方法(特開昭60−36613号公報)等があ
る。しかしながら、上述の公知例はいずれもNi鉱石を
直接溶解炉に装入して溶融還元するものではない。Ni
鉱石は、Ni成分が2〜3重量%と低いので、Ni鉱石
重量の約70%はスラグとなるので、溶融還元において
は多量のスラグを発生する。従って、所定のNi濃度の
溶湯を得ようとすると、多量のスラグが発生する。例え
ば、8%含Ni溶湯を得る場合は溶湯ton 当たり2〜3
ton のスラグが発生する。これに伴って、(1) 溶融還
元の工程で還元材、または熱源として装入する酸素と炭
材により発生する反応ガスによってスロッピング(炉口
からのメタル粒を含むスラグ塊の飛散)が発生し易く、
定常的な操業が困難となり、操業が不安定となる虞があ
り、さらには(2) 上記スロッピングに伴う設備機器の
損傷、(3) 上記スロッピングに伴うNi歩留まりの低
下が顕著になる。
On the other hand, a method of using inexpensive raw materials as a Ni source is to directly use molten FeNi in an electric furnace for the purpose of reducing FeNi melting cost [Iron and Steel, 69 (1983)
7, p. 59], a method of melting and reducing nickel matte in a converter (Japanese Patent Application Laid-Open No. 58-104153) or a method of preliminarily reducing a nickel oxide by mixing and molding a carbon material (Japanese Patent Application Laid-Open No. 60-36613). Gazette). However, none of the above-mentioned known examples directly charge Ni ore into a melting furnace and perform smelting reduction. Ni
Since the ore has a low Ni content of 2 to 3% by weight, about 70% of the ore weight of the ore becomes slag, so that a large amount of slag is generated in the smelting reduction. Therefore, a large amount of slag is generated when trying to obtain a molten metal having a predetermined Ni concentration. For example, to obtain an 8% Ni-containing molten metal, 2-3 tons per molten ton
Ton slag occurs. Along with this, slopping (scattering of slag lump containing metal particles from the furnace port) occurs due to the reactant gas generated by the reducing material or the oxygen and carbon material charged as a heat source in the smelting reduction process. Easy to do,
There is a possibility that the steady operation becomes difficult and the operation becomes unstable, and further (2) damage to the equipment due to the above-mentioned slopping, and (3) a decrease in the Ni yield due to the above-mentioned slopping becomes remarkable.

【0004】こうした問題があるため、前述の公知例で
は、Ni源としてNi鉱石を直接製錬炉に装入せず、何
等かの予備処理をして含有Ni成分の割合を増加させた
ものを用いている。以上のような理由から特開平2−2
21336号公報では、多量のスラグの発生にも拘ら
ず、安定した操業を行うことが出来、スロッピングに伴
う設備機器の損傷、Ni歩留まりの低下等の問題が解消
出来るNi鉱石の溶融還元法を提供している。その方法
によるNi鉱石の溶融還元法は、Ni鉱石を炭材、造滓
剤とともに製錬炉に装入し、脱炭用および2次燃焼用ノ
ズルを有する上吹き酸素ランスから酸素を吹き込むとと
もに、該製錬炉の炉底に設けられた底吹き羽口から攪拌
ガスを吹き込んでNi鉱石を溶融還元する方法である。
そして該製錬炉内の2次燃焼比 [(H2 O+CO2 )/(H2 +H2 O+CO+CO2 )] を0.3以上とすることを特徴とするものである。この
方法によれば、溶湯中の[C]は、脱炭用酸素によって
COガスとなって脱炭されるが、このCOガスは2次燃
焼用酸素によってCO2 ガスとなる。この脱炭および2
次燃焼の反応熱が溶融還元の主たる熱源であり、製錬炉
からの排出ガスの上式で示される酸化度が大きいほど発
生熱が増大する。これにともなって製錬炉に投入する炭
材を低減することができ、したがってスロッピングの発
生要因であるCO、CO2 ガスが低減されるので、スロ
ッピングの発生頻度は顕著に低減される。
[0004] Because of these problems, in the above-mentioned known example, Ni ore as a Ni source was not directly charged into the smelting furnace, but was subjected to some kind of pretreatment to increase the proportion of the contained Ni component. Used. For the above reasons, Japanese Patent Laid-Open No. 2-2
Japanese Patent Application Laid-Open No. 21336 discloses a method for smelting and reducing Ni ore that can perform a stable operation despite the generation of a large amount of slag, and can solve problems such as damage to equipment and a decrease in Ni yield due to slopping. providing. In the smelting reduction method of Ni ore by the method, Ni ore is charged into a smelting furnace together with a carbon material and a slag-making agent, and oxygen is blown from a top-blown oxygen lance having nozzles for decarburization and secondary combustion, This is a method in which a stirring gas is blown from a bottom blowing tuyere provided at the furnace bottom of the smelting furnace to melt and reduce Ni ore.
And it is characterized in that the secondary combustion ratio of the formulation smelting furnace [(H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2)] of 0.3 or more. According to this method, [C] in the molten metal is decarbonized as CO gas by decarburizing oxygen, and this CO gas is converted into CO 2 gas by secondary combustion oxygen. This decarburization and 2
The reaction heat of the next combustion is the main heat source of the smelting reduction, and the generated heat increases as the degree of oxidation shown by the above equation of the exhaust gas from the smelting furnace increases. Accordingly, it is possible to reduce the amount of carbon material to be supplied to the smelting furnace, and hence CO and CO 2 gas, which are factors causing the occurrence of slopping, are reduced. Therefore, the frequency of occurrence of slopping is significantly reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、2次燃
焼比を0.3以上とした前記特開平2−221336号
公報による溶融還元方法においても以下のような問題が
ある。即ち、一般に溶融還元に用いられるような製錬炉
で使用される炉体耐火物としては、例えばマグカーボ
ン,マグクロレンガ等のマグネシアレンガが考えられ
が、Ni溶融還元が長時間処理となることから、高二次
燃焼(高スラグ温度)では イ、MgOのスラグ中への溶出 ロ、スラグ中のFeOとの反応による(酸化)溶出 ハ、MgO−Cの高温でのマグカーボン(還元)反応 等により炉体損耗が無視できなくなる。また、二次燃焼
による熱効率アップ、スロッピング対策のために底吹き
を強化すると、スピッティング(炉口からの細かいメタ
ル粒の飛散)の発生が大となり、その結果メタルロスの
問題が実生産では無視できなくなる。
However, the smelting reduction method disclosed in JP-A-2-221336 in which the secondary combustion ratio is set to 0.3 or more has the following problems. That is, as a furnace body refractory used in a smelting furnace generally used for smelting reduction, for example, magnesia bricks such as mag carbon and magcro bricks are considered, but since Ni smelting reduction is a long-term treatment, In high secondary combustion (high slag temperature), b) elution of MgO into slag b) (oxidation) elution due to reaction with FeO in slag c) furnace by high temperature magcarbon (reduction) reaction of MgO-C Body wear cannot be ignored. In addition, if bottom blowing is strengthened to increase thermal efficiency and countermeasures against slopping due to secondary combustion, spitting (dispersion of fine metal particles from the furnace opening) will increase, and as a result, the problem of metal loss will be ignored in actual production become unable.

【0006】本発明は、かかる事情に鑑みてなされたも
ので、炉体レンガ損耗の問題を克服し、底吹きガスに起
因するスピッティングの問題が無く、かつ、スロッピン
グが無く安定したNi鉱石の溶融還元操業を行うことが
できる方法を提供することを目的とする。
[0006] The present invention has been made in view of the above circumstances, and overcomes the problem of furnace body brick wear, does not have the problem of spitting caused by bottom blown gas, and has a stable Ni ore without slopping. It is an object of the present invention to provide a method capable of performing a smelting reduction operation.

【0007】[0007]

【課題を解決するための手段】本発明者らは、Ni鉱石
の直接溶融還元に関して鋭意研究を重ね、炉体レンガ損
耗や操業の安定性に関して後述する知見を得て本発明を
完成したものである。即ち、本発明は、上吹酸素ラン
ス、底吹及び/又は横吹羽口を備えた転炉型製錬炉にお
いて、 (1)Ni鉱石を予備還元することなく炭材と共に直接
製錬炉に装入する工程 (2)前記上吹酸素ランスから製錬炉に酸素を吹込む工程 (3)前記底吹及び/又は横吹羽口から製錬炉にN2 又は
COなどの攪拌ガスを吹込み攪拌する工程の溶融還元工
程からなり、該工程においてスラグ温度を1580℃以
下に調節し、下式にて示される二次燃焼比 (H2 O+CO2 )/(H2 +H2 O+CO+CO2 ) を0.3未満に保持し、スラグ中のT.Feを10重量
%以下に保持し、さらに底吹及び/又は横吹羽口からの
攪拌ガス流量を0.1〜1.0Nm3 /min.tonに調節
することを特徴とするNi鉱石の溶融還元法である。
た、本発明は、上吹酸素ランス、底吹及び/又は横吹羽
口を備えた転炉型製錬炉において、 (1)Ni鉱石を炭材と共に該製錬炉に装入する工程 (2)前記上吹酸素ランスから製錬炉に酸素を吹込む工程 (3)前記底吹及び/又は横吹羽口から製錬炉にN 2 又は
COなどの攪拌ガスを 吹込み攪拌する工程の溶融還元工
程からなり、該工程において下式にて示される二次燃焼
(H 2 O+CO 2 )/(H 2 +H 2 O+CO+CO 2 を0.3未満に保持し、底吹及び/又は横吹羽口からの
攪拌ガス流量を0.1〜1.0Nm 3 /min.ton かつス
ラグ中のMgO量を(飽和+1%)以上に調節すること
を特徴とするNi鉱石の溶融還元法である。
Means for Solving the Problems The present inventors have conducted intensive studies on the direct smelting reduction of Ni ore, and have completed the present invention based on the knowledge described below regarding furnace body brick wear and operation stability. is there. That is, the present invention relates to a converter type smelting furnace provided with a top blowing oxygen lance, a bottom blowing and / or a side blowing tuyere, and (1) directly into the smelting furnace together with the carbonaceous material without pre-reducing Ni ore. Step of charging (2) Step of injecting oxygen from the top-blown oxygen lance into the smelting furnace (3) Injecting a stirring gas such as N 2 or CO into the smelting furnace from the bottom-blowing and / or side-blowing tuyere A slag temperature of 1580 ° C. or lower
Adjusted below, the secondary combustion ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) expressed by the following equation was maintained at less than 0.3 , and T.C. Fe 10 weight
% Or less, and the flow rate of the stirring gas from the bottom-blowing and / or side-blowing tuyere is adjusted to 0.1 to 1.0 Nm 3 /min.ton. Ma
Further, the present invention relates to a top blowing oxygen lance, a bottom blowing and / or a side blowing blade.
In a converter type smelting furnace provided with a port, (1) a step of charging Ni ore into the smelting furnace together with a carbon material; (2) a step of blowing oxygen from the top-blown oxygen lance into the smelting furnace (3) ) N 2 or smelting furnace from the bottom blowing and / or Yokobuki tuyere
Molten reduction process in the process of injecting stirring gas such as CO.
Secondary combustion represented by the following equation in the process:
The ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) is kept at less than 0.3,
The stirring gas flow rate is 0.1 to 1.0 Nm 3 / min.
Adjust the amount of MgO in the lag to (saturation + 1%) or more
This is a smelting reduction method of Ni ore characterized by the following.

【0008】[0008]

【作用】本発明は、前記の如く、上吹酸素ランス、底吹
及び/又は横吹羽口を備えた転炉型製錬炉において、N
i鉱石を予備還元することなく炭材と共に直接該製錬炉
に装入して溶融還元するに当たって、二次燃焼比 (H2 O+CO2 )/(H2 +H2 O+CO+CO2 ) を0.3未満に保持すること、即ち、排ガスの酸化度を
下げることにより、反応熱を下げ溶融還元するので製錬
炉の炉体構造物の損耗を少なくする本願発明の目的を達
成するものである。本発明において、二次燃焼比を0.
3未満に限定した理由は、二次燃焼比を0.3以上にし
た場合、後述する図2に示すごとく、スラグ中のMgO
を飽和にコントロ−ルしても、スラグ温度が1600℃
以上にもなり、炉体レンガの損耗が急激に進行する。ま
た二次燃焼比を0.3以上と高くするためには、酸化度
を上げるための二次燃焼用ノズルを複雑な構造のランス
を用いることが必要となり、そのランスのメンテナンス
が困難となること、さらには高二次燃焼比を一定に維持
制御することが困難である等の操業性に問題が生じ、操
業中、二次燃焼比率が安定しないなどの問題があり、短
期間の操業でも二次燃焼比が上昇した時には炉体レンガ
の損耗が加速されることがある。以上から二次燃焼比を
0.3未満とした。二次燃焼比を上げると酸化度が高く
なるので発熱量が増加し、高生産性が確保できるが同時
に着熱効率が低下するためスラグ温度が上昇する。本発
明では着熱効率を考慮してスラグ温度を1580℃以下
とした。一方、二次燃焼比を下げると排ガス流量が増大
し、スロッピング頻度が高くなる傾向があるが、本発明
者は鋭意実験を行った結果、スロッピング発生が低二次
燃焼比でも抑えられる条件を見出だした。
As described above, the present invention relates to a converter type smelting furnace provided with a top-blowing oxygen lance, a bottom-blowing and / or a side-blowing tuyere.
When charging ore directly into the smelting furnace together with the carbonaceous material without pre-reduction and performing smelting reduction, the secondary combustion ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) is less than 0.3. In other words, the present invention achieves the object of the present invention to reduce the heat of reaction and reduce the smelting by reducing the degree of oxidation of the exhaust gas, thereby reducing the wear of the furnace body structure of the smelting furnace. In the present invention, the secondary combustion ratio is set to 0.1.
The reason for limiting to less than 3 is that when the secondary combustion ratio is 0.3 or more, as shown in FIG.
Slag temperature is 1600 ° C even when controlling to saturation
As described above, the wear of the furnace body brick progresses rapidly. In addition, in order to increase the secondary combustion ratio to 0.3 or more, it is necessary to use a lance of a complicated structure for the secondary combustion nozzle for increasing the degree of oxidation, which makes maintenance of the lance difficult. In addition, there are problems with operability such as difficulty in maintaining and controlling the high secondary combustion ratio at a constant level, and problems such as unstable secondary combustion ratio during operation. When the combustion ratio increases, the wear of the furnace body brick may be accelerated. From the above, the secondary combustion ratio was set to less than 0.3. The higher the secondary combustion ratio, the higher the degree of oxidation
Increases the amount of heat generated, ensuring high productivity, but at the same time
The slag temperature increases because the heat transfer efficiency decreases. Departure
In the light, the slag temperature is 1580 ° C or less in consideration of the heat transfer efficiency
And On the other hand, when the secondary combustion ratio is lowered, the exhaust gas flow rate increases, and the frequency of slopping tends to increase. However, as a result of the inventor's intensive experiment, the conditions under which the occurrence of slopping can be suppressed even at a low secondary combustion ratio are obtained. Was found.

【0009】後述する図2〜図4に示す通り、底吹きガ
ス量が0.1Nm3 /min.ton 以上あれば、スラグ中の
T.Feは10重量%以下に出来、スロッピングを抑え
ることができる。しかし、底吹きガス量が1Nm3 /mi
n.ton 以上では、スラグ中のFeOは低下するもののス
ピッティングが激しくなり歩留まりが悪化するので、底
吹ガス量を0.1〜1.0Nm3 /min.ton にすること
により、二次燃焼比0.3未満でもスロッピング並びに
スピッテングが全く無い操業を達成することができた。
さらに、スラグ中のT.Feを10%以下と低濃度にす
るのはMgO系炉体の保護にも有利な作用を及ぼす。次
に実施例により本発明の効果について述べる。
As shown in FIGS. 2 to 4, which will be described later, if the amount of bottom blown gas is 0.1 Nm 3 / min. Fe can be reduced to 10% by weight or less, and slopping can be suppressed. However, the bottom blowing gas amount is 1 Nm 3 / mi
Above n.ton, the amount of FeO in the slag decreases, but spitting becomes severe and the yield deteriorates. Therefore, the secondary combustion is performed by adjusting the bottom blowing gas amount to 0.1 to 1.0 Nm 3 /min.ton. Even with a ratio less than 0.3, an operation without any slopping and spitting could be achieved.
Furthermore, T. in slag Making the Fe concentration as low as 10% or less has an advantageous effect also on protection of the MgO-based furnace body. Next, the effects of the present invention will be described with reference to examples.

【0010】[0010]

【実施例】図1は本発明を実施するための態様例である
転炉型製錬炉の説明図である。図1において、10はマ
グネシア系レンガからなる転炉型製錬炉体、11はメタ
ル層、12はスラグ浴、21は上吹酸素ランス、24は
底吹羽口、25は原料であるNi鉱石、炭材または造滓
材を製錬炉に投入するためのホッパー、26は攪拌ガ
ス、27はスラグ測温体、28は排ガス分析用サンプル
口である。なお本実施例において用いられた製錬炉体1
0の容量は120ton で送酸量は平均35,000Nm
3 /Hrである。
FIG. 1 is an explanatory view of a converter type smelting furnace as an embodiment for carrying out the present invention. In FIG. 1, 10 is a converter type smelting furnace made of magnesia-based brick, 11 is a metal layer, 12 is a slag bath, 21 is an upper oxygen blowing lance, 24 is a bottom blowing tuyere, and 25 is Ni ore as a raw material. A hopper for charging a carbon material or a slag-making material into a smelting furnace; 26, a stirring gas; 27, a slag temperature detector; and 28, a sample port for exhaust gas analysis. The smelting furnace body 1 used in this embodiment
Zero capacity is 120 tons and acid supply is 35,000 Nm on average
3 / Hr.

【0011】この様な製錬炉体10を用いて、Ni鉱石
の直接溶融還元をバッチで種々の試験を行った。まず、
操業手順について述べると、最初に製錬炉体10に溶銑
(Fe:95重量%)を約50トン装入し、次いで炭材
としてコークス(F.C:87重量%)を装入して上吹
酸素ランス21から酸素を吹き込むことにより、溶湯が
1500℃程度に昇温した後、次に示す組成のNi鉱石
の投入を開始する。
Using the smelting furnace body 10 as described above, various tests were conducted in batches on the direct smelting reduction of Ni ore. First,
First, about 50 tons of hot metal (Fe: 95% by weight) was charged into the smelting furnace body 10, and then coke (FC: 87% by weight) was charged as a carbon material. After blowing the oxygen from the blowing oxygen lance 21 to raise the temperature of the molten metal to about 1500 ° C., the supply of Ni ore having the following composition is started.

【0012】[0012]

【表1】 [Table 1]

【0013】一方、溶銑が装入された時から底吹羽口2
4が閉塞されないように、底吹羽口24からN2 又はA
r,COなどの攪拌ガス26を吹き込み、必要に応じて
その吹き込み量を増大して溶融還元反応を起こし、図1
に示すように炉体内にメタル層11とスラグ浴12を生
成せしめ、途中2回程度排滓を実施し4〜5時間後にメ
タルを排出する。
On the other hand, from the time when the hot metal is charged,
4 so as not be closed, the bottom吹羽port 24 N 2 or A
A stirring gas 26 such as r, CO or the like is blown, and the blowing amount is increased as necessary to cause a smelting reduction reaction.
The metal layer 11 and the slag bath 12 are generated in the furnace body as shown in Fig. 7, and the waste is discharged about twice on the way, and the metal is discharged after 4 to 5 hours.

【0014】2次燃焼比(O.D)を求めるには、排ガ
ス分析用サンプル口28より排ガスをサンプリングし
て、排ガス分析を行い、H2 O及びCO2 濃度を求め、
次式に代入して2次燃焼比(O.D)を求める。 O.D=(H2 O+CO2 )/(H2 +H2 O+CO+CO2 ) この2次燃焼比は、上吹酸素ランス21のランスの高さ
及び送酸量を操作することにより調節し得る。さらに、
スラグ温度の調節は、該温度をスラグ測温体27により
測定し、高い場合は、鉱石と造滓剤を増加する等して調
節する。
In order to determine the secondary combustion ratio (OD), the exhaust gas is sampled from the exhaust gas analysis sample port 28, the exhaust gas is analyzed, and the H 2 O and CO 2 concentrations are determined.
The secondary combustion ratio (OD) is obtained by substituting into the following equation. O. D = (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) This secondary combustion ratio can be adjusted by manipulating the lance height and the amount of acid supply of the top-blown oxygen lance 21. further,
The slag temperature is adjusted by measuring the temperature with a slag temperature measuring element 27. If the temperature is high, the ore and the slag-making agent are increased.

【0015】上記のようにして、Ni鉱石の溶融還元を
行った場合に溶湯温度を1520℃とした時の二次燃焼
比と製錬炉体10のMgO−Cレンガの損耗度合いを調
査した。なお、一般に二次燃焼比を上げると発熱量が増
加し、高生産性が確保できるが同時に着熱効率が低下す
るためスラグ温度が上昇するので、スラグ温度も調査し
た。図2は、二次燃焼比とMgO−Cレンガの損耗指数
の関係を示したグラフであり、併せてスラグ温度も示
す。図2から、二次燃焼比が0.3以上ではスラグ中の
MgOを飽和にコントロールしても、スラグ温度が16
00℃以上にもなり、炉体の損耗が急激に進行し、二次
燃焼比が0.3未満が好ましいことが判る。またスラグ
温度は1580℃以下に保持することが好ましいことが
示されている。また0.3以上の高二次燃焼は、二次燃
焼用ノズルを有した上吹き酸素ランスの使用により得ら
れ、この時のスラグ中のT.Feはすべて8重量%以下
であった。
As described above, the secondary combustion ratio when the molten metal temperature was set to 1520 ° C. and the degree of wear of the MgO—C brick in the smelting furnace body 10 when the smelting reduction of Ni ore was performed were examined. In general, when the secondary combustion ratio is increased, the calorific value increases, and high productivity can be ensured, but at the same time, the slag temperature rises due to a decrease in the heat transfer efficiency. Therefore, the slag temperature was also investigated. FIG. 2 is a graph showing the relationship between the secondary combustion ratio and the wear index of the MgO-C brick, and also shows the slag temperature. From FIG. 2, it is found that when the secondary combustion ratio is 0.3 or more, the slag temperature becomes 16 even if the MgO in the slag is controlled to be saturated.
It can be seen that the temperature of the furnace reached 00 ° C. or higher, and the wear of the furnace body rapidly progressed, and the secondary combustion ratio was preferably less than 0.3. Further, it is indicated that the slag temperature is preferably maintained at 1580 ° C. or lower. High secondary combustion of 0.3 or more can be obtained by using an upper-blown oxygen lance having a secondary combustion nozzle. Fe was 8% by weight or less in all cases.

【0016】一方、二次燃焼比を下げると排ガス流量が
増大し、スロッピング頻度が高くなる傾向があるので、
この点の影響を調べるために2次燃焼比を0.1〜0.
3としてスラグ中のT.Feとスロッピング頻度との関
係を調べるために試験を行った。図3はスラグ中のT.
Fe(重量%)とスロッピング頻度(%)の関係グラフ
である。図3に示す如く、スラグ中のT.Feを10重
量%以下にすることによりスロッピング頻度は著しく少
なくなることが判る。次に、この条件を達成するための
底吹きガス攪拌の影響を調べた。図4は底吹きガス量と
スラグ中T.Fe(重量%)との関係を示したグラフで
ある。図4に示す通り、底吹きガス量が0.1Nm3
min.ton でスラグ中のT.Feが10重量%にコントロ
ールできており、底吹きガス量はこれ以上であればよい
ことが判る。しかし、1Nm3 /min.ton 以上ではスラ
グ中のFeOは低下するもののスピッティングが激しく
なり歩留まりが悪化する。更に、図4の結果から底吹ガ
ス量のスピッティングに及ぼす影響を調べた。図5は底
吹ガス量(Nm3 /min.ton )とスピッティング指数と
の関係を示したグラフである。図5に示す如く、底吹ガ
ス量を0.1〜1.0Nm3 /min.ton にすることによ
り二次燃焼比0.3未満でもスロッピング並びにスピッ
テングが全く無い操業を達成することができることが判
った。
On the other hand, when the secondary combustion ratio is lowered, the exhaust gas flow rate increases, and the frequency of slopping tends to increase.
In order to examine the effect of this point, the secondary combustion ratio is set to 0.1 to 0.
As T.3 in slag as A test was conducted to examine the relationship between Fe and the frequency of slopping. FIG.
5 is a graph showing the relationship between Fe (% by weight) and the frequency of slopping (%). As shown in FIG. It can be seen that the frequency of slopping is remarkably reduced by making Fe 10% by weight or less. Next, the effect of bottom-blown gas stirring to achieve this condition was investigated. Fig. 4 shows the amount of bottom blown gas and T.C. It is the graph which showed the relationship with Fe (weight%). As shown in FIG. 4, the amount of bottom blown gas is 0.1 Nm 3 /
T. in slag at min.ton It can be seen that Fe can be controlled to 10% by weight, and the amount of bottom blown gas should be more than this. However, at 1 Nm 3 /min.ton or more, FeO in the slag decreases, but spitting becomes severe and the yield deteriorates. Further, the effect of the bottom blowing gas amount on spitting was examined from the results of FIG. FIG. 5 is a graph showing the relationship between the bottom blowing gas amount (Nm 3 /min.ton) and the spitting index. As shown in FIG. 5, the operation without slopping and spitting can be achieved even when the secondary combustion ratio is less than 0.3 by setting the bottom blown gas amount to 0.1 to 1.0 Nm 3 /min.ton. I understood.

【0017】次に本発明方法を用いた場合の効果につい
て述べる。前述の転炉型製錬炉を用いて同様な操業手順
で4〜5時間のバッチの溶融還元を行った。溶融還元時
の二次燃焼比率は前述したように高二次燃焼比率では炉
体損耗が激しくなるため、二次燃焼比率を0.3未満の
範囲に設定する。一方二次燃焼比が0.3未満では前述
したようにスロツピングの発生が問題になるので、前述
の図3よりスラグ中のT.Feを5重量%以下に設定し
た。
Next, the effects obtained by using the method of the present invention will be described. Using the converter type smelting furnace described above, smelting reduction of the batch was performed for 4 to 5 hours in the same operation procedure. As described above, the secondary combustion ratio at the time of smelting reduction is set to a range of less than 0.3 because the furnace body wear becomes severe at a high secondary combustion ratio. On the other hand, if the secondary combustion ratio is less than 0.3, the occurrence of slopping becomes a problem as described above. Fe was set to 5% by weight or less.

【0018】また、Ni溶融還元時の炉体損耗は二次燃
焼比率の因子以外に実際のスラグ温度のコントロールに
よっても軽減でき、1550℃とすることが望ましくそ
のように設定した。さらにスラグ組成のコントロールに
よっても軽減でき、スラグ組成をT.Fe5重量%以
下、スラグ中のMgO%を(飽和+1%)以上の組成と
する。MgO%はMgO−Cレンガ屑等をNi鉱石、炭
材とともに操業中に添加して、MgO%が(飽和+1
%)以下にならないように常に保つ。スラグ中のT.F
e5重量%以下は底吹ガス量0.5Nm3 /min.ton で
得られ、これにより長時間操業でのメタルロスを低減で
きた。
In addition, furnace body wear during Ni smelting reduction can be reduced by controlling the actual slag temperature in addition to the factor of the secondary combustion ratio, and is desirably set to 1550 ° C. as such. Furthermore, the slag composition can be reduced by controlling the slag composition. The composition is such that Fe is 5% by weight or less and MgO% in the slag is (saturation + 1%) or more. MgO% is added during operation by adding MgO-C brick debris and the like together with Ni ore and carbonaceous material.
%) Always keep below. T. in slag F
e5% by weight or less was obtained with a bottom blown gas amount of 0.5 Nm 3 /min.ton, thereby reducing metal loss in long-term operation.

【0019】この様な条件の下でNi鉱石平均1200
kg/分、コ−クス平均650kg/分の投入速度でN
i鉱石を溶融還元し、途中排滓を2回実施し約70トン
のNi溶銑(Ni:9.7重量%)が得られた。スラグ
温度は1550℃±20℃に保持できた。この操業にお
いて、特にスロッピングも無くダスト、ヒュームの発生
も軽微で10チャージ溶解後の炉体レンガ損耗速度の測
定結果も0.1mm/Hrと本発明を実施しない場合の1
〜2mm/Hrに比較して損耗速度を格段に低く抑えるこ
とが出来た。本実施例に於ける製錬炉は底吹羽口により
攪拌ガスを吹き込んで攪拌したが、横羽口を設けた製錬
炉の横羽口または底吹羽口と横羽口の両方を設けた製錬
炉の底吹羽口と横羽口の両羽口より攪拌ガスを吹き込ん
でよい。
Under these conditions, the average Ni ore is 1200
kg / min, coke average 650 kg / min
The ore was melt-reduced, and the waste was carried out twice to obtain about 70 tons of molten Ni (Ni: 9.7% by weight). The slag temperature could be maintained at 1550 ° C ± 20 ° C. In this operation, no dust and fume were generated without slopping, and the measurement result of the furnace brick wear rate after 10 charge melting was 0.1 mm / Hr.
The wear rate was significantly reduced as compared with 低 く 2 mm / Hr. The smelting furnace in this embodiment was stirred by blowing the stirring gas through the bottom tuyere, but was provided with the horizontal tuyere or both the bottom tuyere and the horizontal tuyere of the smelting furnace provided with the horizontal tuyere. The stirring gas may be blown from both the tuyere and the bottom tuyere of the smelting furnace.

【0020】[0020]

【発明の効果】本発明により、溶銑、Ni鉱石及び炭
材、造滓材等の原料が予備還元することなく直接装入さ
れた転炉型製錬炉に上吹ランスからの送酸、炉底からの
攪拌ガス吹き込みにより、二次燃焼比を0.3未満に設
定し、さらにスラグ中T.Feのコントロール、スラグ
温度のコントロール、底吹ガス適正化により、炉体レ
ンガ損耗を軽減でき、スロッピング、スピッティングが
少なく安定したNi鉱石の直接溶融還元ができる。
た、二次燃焼比が0.3未満であれば、スラグ中のMg
O量を(飽和+1%)以上とすることにより、炉体レン
ガ損耗を極めて効果的に抑制することができる。
According to the present invention, acid supply from a top blowing lance to a converter type smelting furnace into which raw materials such as hot metal, Ni ore, carbonaceous materials, and slag-making materials are directly charged without preliminary reduction. By injecting stirring gas from the bottom, the secondary combustion ratio was set to less than 0.3. By controlling the Fe, controlling the slag temperature, and optimizing the bottom blowing gas , it is possible to reduce the wear of the furnace body brick, and it is possible to directly melt and reduce Ni ore with little slopping and spitting. Ma
If the secondary combustion ratio is less than 0.3, Mg in the slag
By adjusting the amount of O to (saturation + 1%) or more, the furnace body
Gas wear can be extremely effectively suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例において用いた転炉型製錬炉の
説明図である。
FIG. 1 is an explanatory view of a converter type smelting furnace used in an embodiment of the present invention.

【図2】実施例における二次燃焼比とMgO−Cレンガ
の損耗指数の関係を示したグラフである。
FIG. 2 is a graph showing a relationship between a secondary combustion ratio and a wear index of MgO—C brick in Examples.

【図3】実施例におけるスラグ中のT.Fe(重量%)
とスロッピング頻度(%)の関係グラフである。
FIG. 3 is a graph showing T.V. Fe (% by weight)
6 is a graph showing the relationship between the frequency and the dropping frequency (%).

【図4】実施例における底吹きガス量(Nm3 /min.to
n )とスラグ中のT.Fe(重量%)との関係を示した
グラフである。
FIG. 4 shows the amount of bottom blown gas (Nm 3 /min.to
n) and T. in slag. It is the graph which showed the relationship with Fe (weight%).

【図5】実施例における底吹ガス量(Nm3 /min.ton
)とスピッティング指数との関係グラフである。
FIG. 5 shows the amount of bottom blown gas (Nm 3 /min.ton) in the embodiment.
7) is a graph showing the relationship between a spitting index and a spitting index.

【符号の説明】[Explanation of symbols]

10 製錬炉体 11 メタル層 12 スラグ浴 21 上吹ランス 24 底吹羽口 25 原料ホッパー 26 攪拌ガス 27 スラグ測温体 28 排ガス分析用サンプル口 DESCRIPTION OF SYMBOLS 10 Smelting furnace body 11 Metal layer 12 Slag bath 21 Top blowing lance 24 Bottom blowing tuyere 25 Raw material hopper 26 Stirring gas 27 Slag temperature detector 28 Sample port for exhaust gas analysis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水上 秀昭 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 中村 英夫 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭60−36613(JP,A) 特開 平1−162712(JP,A) 特開 平2−221336(JP,A) 特開 平2−274824(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22B 23/02 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Mizukami 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Hideo Nakamura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (56) References JP-A-60-36613 (JP, A) JP-A-1-162712 (JP, A) JP-A-2-221336 (JP, A) JP-A-2-274824 (JP, A A) (58) Field surveyed (Int. Cl. 7 , DB name) C22B 23/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上吹酸素ランス、底吹及び/又は横吹羽
口を備えた転炉型製錬炉において、 (1)Ni鉱石を予備還元することなく炭材と共に直接
製錬炉に装入する工程 (2)前記上吹酸素ランスから製錬炉に酸素を吹込む工程 (3)前記底吹及び/又は横吹羽口から製錬炉にN2 又は
COなどの攪拌ガスを吹込み攪拌する工程の溶融還元工
程からなり、該工程においてスラグ温度を1580℃以
下に調節し、下式にて示される二次燃焼比 (H2 O+CO2 )/(H2 +H2 O+CO+CO2 ) を0.3未満に保持し、スラグ中のT.Feを10重量
%以下に保持し、さらに底吹及び/又は横吹羽口からの
攪拌ガス流量を0.1〜1.0Nm3 /min.tonに調節
することを特徴とするNi鉱石の溶融還元法。
In a converter type smelting furnace equipped with a top blowing oxygen lance, a bottom blowing and / or a side blowing tuyere, (1) Ni ore is directly loaded into the smelting furnace together with carbonaceous material without pre-reduction. (2) Injecting oxygen from the top-blown oxygen lance into the smelting furnace (3) Injecting a stirring gas such as N 2 or CO into the smelting furnace from the bottom-blowing and / or side-blowing tuyere A slag temperature of 1580 ° C. or lower in this step.
Adjusted below, the secondary combustion ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) expressed by the following equation was maintained at less than 0.3 , and T.C. Fe 10 weight
% Or less, and the flow rate of the stirring gas from the bottom-blowing and / or side-blowing tuyere is adjusted to 0.1 to 1.0 Nm 3 /min.ton.
【請求項2】 上吹酸素ランス、底吹及び/又は横吹羽
口を備えた転炉型製錬炉において、 (1)Ni鉱石を炭材と共に該製錬炉に装入する工程 (2)前記上吹酸素ランスから製錬炉に酸素を吹込む工程 (3)前記底吹及び/又は横吹羽口から製錬炉にN 2 又は
COなどの攪拌ガスを 吹込み攪拌する工程の溶融還元工
程からなり、該工程において下式にて示される二次燃焼
(H 2 O+CO 2 )/(H 2 +H 2 O+CO+CO 2 を0.3未満に保持し、底吹及び/又は横吹羽口からの
攪拌ガス流量を0.1〜1.0Nm 3 /min.ton かつス
ラグ中のMgO量を(飽和+1%)以上に調節すること
を特徴とするNi鉱石の溶融還元法。
2. A blown oxygen lance, a bottom blow and / or a side blow blade.
In a converter type smelting furnace provided with a port, (1) a step of charging Ni ore into the smelting furnace together with a carbon material; (2) a step of blowing oxygen from the top-blown oxygen lance into the smelting furnace (3) ) N 2 or smelting furnace from the bottom blowing and / or Yokobuki tuyere
Molten reduction process in the process of injecting stirring gas such as CO.
Secondary combustion represented by the following equation in the process:
The ratio (H 2 O + CO 2 ) / (H 2 + H 2 O + CO + CO 2 ) is kept at less than 0.3,
The stirring gas flow rate is 0.1 to 1.0 Nm 3 / min.
Adjust the amount of MgO in the lag to (saturation + 1%) or more
A smelting reduction method of Ni ore characterized by the following.
JP05069748A 1993-03-29 1993-03-29 Smelting reduction of Ni ore Expired - Fee Related JP3119015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05069748A JP3119015B2 (en) 1993-03-29 1993-03-29 Smelting reduction of Ni ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05069748A JP3119015B2 (en) 1993-03-29 1993-03-29 Smelting reduction of Ni ore

Publications (2)

Publication Number Publication Date
JPH06279882A JPH06279882A (en) 1994-10-04
JP3119015B2 true JP3119015B2 (en) 2000-12-18

Family

ID=13411736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05069748A Expired - Fee Related JP3119015B2 (en) 1993-03-29 1993-03-29 Smelting reduction of Ni ore

Country Status (1)

Country Link
JP (1) JP3119015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737212B1 (en) 1999-10-07 2004-05-18 Clariant Finance (Bvi) Limited Photosensitive composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002364A (en) * 2014-04-15 2015-10-28 中国瑞林工程技术有限公司 Nickel slag side-blowing reduction technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737212B1 (en) 1999-10-07 2004-05-18 Clariant Finance (Bvi) Limited Photosensitive composition

Also Published As

Publication number Publication date
JPH06279882A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
KR930001129B1 (en) Method for smelting reduction of ni ore
US5039480A (en) Method for manufacturing molten metal containing Ni and Cr
EP0160374B1 (en) Method for producing steel in a top-blown vessel
JP3119015B2 (en) Smelting reduction of Ni ore
AU604974B2 (en) Process for producing molten stainless steel
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JP2959368B2 (en) Manufacturing method of Ni-Cr containing hot metal
JPH07310110A (en) Production of stainless steel
EP0360954B1 (en) Method of melting cold material including iron
JP2797953B2 (en) Method for smelting reduction of Ni ore
JPH0987722A (en) Method for refining molten crude stainless steel
JP2757761B2 (en) Method for producing molten stainless steel by smelting reduction
JPH07100810B2 (en) Method for producing molten alloy containing Ni and Cr
JP2587286B2 (en) Steelmaking method
JP2805815B2 (en) Smelting reduction of Ni ore
JPH07100811B2 (en) Method for producing molten stainless steel by smelting reduction
JPH0892627A (en) Production of stainless steel
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JP4184855B2 (en) Method for adjusting Cr content in molten steel
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPH0762413A (en) Production of stainless steel
JPH02285017A (en) Production of molten stainless steel
JPH01168806A (en) Production of chromium-contained molten iron
JPH03271310A (en) Smelting reduction method for chromium ore
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees